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A B S T R A C T   

Most studies on the robustness of high-speed rail (HSR) network examine the issue at the 
aggregate level and consider a fixed period (e.g., a day or a month), regardless of when and where 
the disruption occurs. This study proposes a holistic framework of assessing the impact of node 
cascading disruptions in HSR network considering different affected times-of-day and geographic 
regions. A weighted network efficiency metric is proposed to assess network performance 
considering both travel time and train frequency along the topological shortest path. Analysis of 
China’s HSR finds that (1) the network is less robust to disruptions occurring in East China or 
along the Harbin-Hong Kong corridor; (2) Disruptions during 10:00–15:00 have the largest 
impact; (3) lockdowns during COVID-19 outbreak in Jan-Feb 2020 led to 14.5% reduction in 
overall network efficiency. The results generate insights into further development of the HSR 
network and provide policy support for HSR resilience-enhancing strategies.   

1. Introduction 

High-speed railway (HSR) is a crucial transport infrastructure and plays a growing role in intercity travels in many countries around 
the world. The HSR network may face different types of disturbances such as natural hazards (e.g. typhoon and continuous snowfall), 
technological failures (e.g. device fault), and man-made failures (e.g. cyber-attack), which may result in significant travel delays, 
reduced accessibility, unexpected detour and transfers, and even loss of lives, causing enormous economic loss and/or serious fatality 
(Wang et al., 2015). For example, influenced by the Coronavirus Disease 2019 (COVID-19), all HSR stations in Wuhan City, the capital 
of Hubei Province, were forced to shut down from 23 January 2020 to 8 April 2020, which largely affected the performance of the HSR 
network in China. It is our urgent need to understand the robustness of the HSR network and minimize the negative impacts of HSR 
disruptions on passengers and economic losses. 

Robustness, the opposite of vulnerability, has long been a central issue in transportation and is traditionally defined as the ability to 
retain its performance under disruptions and attacks (Sullivan et al., 2010; Lordan and Albareda-Sambola, 2019; Li and Rong, 2020; 
Chen et al., 2020). Robustness is widely used to explore the network performance of transportation systems under disruptions, 
especially the air transport (Pien et al., 2015), urban road network (Zhang et al., 2013; Tang and Huang, 2019; Sun et al., 2018), urban 
rail system (Sun et al., 2018; Yang et al., 2019; Yap et al., 2018), port (Cao and Lee, 2019), and railway system (Hong et al., 2019; Ye 
and Kim, 2019). 
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The metrics of network performance in the previous literature can be divided into three types, namely the topology-based, service- 
based, and the location-based metrics (Tang and Huang, 2019; Li and Rong, 2020). The first type of metric only measures the con-
nectivity in the topological network that describes the physical network. The metrics often involve the size of the giant component, the 
average size of the isolated clusters and network efficiency (Chen et al., 2020), and the degree and betweenness centrality (Erath et al., 
2009). The second type focuses on the evaluation of transportation function considering traffic characteristics, including the number of 
canceled trains (Vansteenwegen et al., 2016), the delay of passengers (Adjetey-Bahun et al., 2016; Khaled et al., 2015), and changes in 
passenger flow (Jiang et al., 2018). The third type of metrics incorporates connectivity or accessibility indicators in the geographical 
network, e.g., the average travel time (Rodríguez-Núñez and García-Palomares, 2014). Some scholars pointed out that the importance 
of a station or a link depends not only on topology attributes but also on the service level and their location in the network. For 
example, Erath et al. (2009) estimated the robustness of the railway in Switzerland using both the topology-based indicators i.e. degree 
and closeness centrality, and the location-based indicator i.e. travel time. Some studies also incorporated the service-based indicators, 
i.e., number of trains, delay of passengers, and the location-based indicators, i.e. travel time, to evaluate the robustness of various 
transport networks (Rodríguez-Núñez and García-Palomares, 2014; Cats et al., 2017; Yin et al., 2016). These methods are also widely 
used in the analysis of other network systems, e.g., the water distribution system (Yazdani et al., 2011; Meng et al., 2018) and power 
grid (Zhang et al., 2014). 

With the recent development of HSR, there is a growing interest in the robustness of HSR networks (Zhang et al., 2016; Janić, 2018; 
Li et al., 2019; Chen and Wang, 2019; Li and Rong, 2020). Previous researches mainly concentrate on the robustness of the HSR 
network in a fixed period (a day or a month). However, disruptions and failures may occur at any time, last for long or short, and can 
happen anywhere1. Although some researchers began to explore the robustness from the time and space-dynamic perspectives (Hong 
et al., 2019; Li and Rong, 2020), the following questions have not yet been addressed: (a) Regarding disruption starting time point, will 
earlier system disruption generate greater impact on network performance? (b) Regarding disruption duration, will longer-lasting 
disruption have a stronger impact? When is the critical period within the 24-h daily cycle? (c) Regarding spatial variation, which 
regions and HSR lines are more vulnerable? Regarding HSR stations, which ones should be given higher priorities to defend the overall 
network performance in certain time slots? (d) How does disruption propagation regimes influence network performance? Does the 
influence vary across time slots? 

To answer these questions, this study focuses on investigating the spatiotemporal characteristics of HSR network performance with 
exogenous disturbances, especially the cascading failures. We examine the robustness of the HSR network affected by disruptions at 
different times of a day or different regions. This study proposes a new framework to analyze the cascading failures of nodes in the HSR 
network considering different disruption time slots and different affecting regions and different stations in the HSR network. Firstly, a 
weighted directed HSR network is built according to the service timetable, in which an attribution matrix for each node and edge, 
including the service ID, departure/ arrival station name, and departure/arrival time is incorporated. Secondly, a new algorithm is 
built to perform the robustness assessment considering the disruption time slots, by removing records associated with disrupted nodes 
from the attribute tables according to the service departure time and arrival times. The weighted network efficiency considering both 
travel time and service frequency along the shortest topological path is built to measure the network performance. Three types of 
disruption propagation regimes, the random, malicious, and event-led regimes, are analyzed, where HSR stations are disrupted one-by- 
one in different sequences. Lastly, taking China as a case study, the robustness of the weighted HSR network is investigated from both 
time- and space-dynamic perspectives. 

This study contributes to the existing literature in several ways. Firstly, a new framework is proposed to analyze the cascading 
failures of nodes in the HSR network considering different times of the day and different affecting regions. Previous studies normally 
assess the railway network robustness in a static manner and do not differentiate disruptions happen in different time slots. The 
assessment is conducted by completely removing the disrupted nodes and/or connecting edges (Lordan and Albareda-Sambola, 2019; 
Hong et al., 2019; Li and Rong, 2020). This method cannot identify the impacts of cascading failures of nodes that happen in different 
time slots. Motivated by this, we propose a holistic framework to incorporate temporal heterogeneity in the robustness assessment. In 
the proposed framework, the HSR service network is updated dynamically according to the disruption propagation evolution and the 
HSR service timetable. Specifically, within a given time slot, an HSR service is considered as disrupted (and removed from the network) 
if and only if the disruption start time precedes the HSR departure/arrival time. The affected nodes/edges are taken out of the service 
network only in the time slots where the disruption is present. Once the service resumes, the network is updated accordingly. The 
proposed framework enables dynamical assessments of the HSR service network performance and robustness. 

Secondly, we measure the integrated network efficiency on account of travel time, frequency, and network topology. Empirical 
evidence has documented a number of factors that travelers may consider when they take public transportation services, among which 
the shortest travel time, service frequency, and shortest topological path (number of transfers) are the key factors (e.g., Tillema et al., 
2010). The three factors respectively reflect the topology-based, the service-based, and the locational-based characteristics of a service 
network and are all key determinants of travelers’ route choice. In general, travelers prefer routes with fewer transfers, shorter travel 
time, and higher frequency (more flexible departure time choices). We find that most previous studies of railway network efficiency 
considered part of the key factors while missing consideration of other aspects of the network efficiency. In this study, a composite 

1 For example, influenced by the Typhoon Lekima, the HSR services between Shanghai and other cities in China were temporarily shut down in a 
whole day at August 9, 2019 (https://www.jiemian.com/article/3389622.html, accessed: September 15th, 2019); while influenced by the strong 
wind causing foreign matters hanging on the contact network between Tai’an and Qufu, several services on Beijing -Shanghai HSR line were delayed 
about one hour during 13:02 to 14:06 on October 25, 2019 (http://m.zhicheng.com/news/xwyd/n/298840.html, accessed: October 25th, 2019). 
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indicator, namely the weighted network efficiency, is built to incorporate all three factors into the evaluation metric of network ef-
ficiency, aiming to provide a comprehensive appraisal framework for HSR network efficiency. 

Thirdly, the variation of the robustness of the HSR network in China is assessed in spatial and temporal dimensions. In the space 
dimension, we examine the impact of node disruptions in different geographical regions, along different HSR corridors or a certain HSR 
station. In the time dimension, we examine the impact by simulating 576 (24 × 24) disruption propagation scenarios, each corre-
sponding to a specific time slot of disruption occurrence. It is often the case that nodal disruptions only affect a certain period or a 
certain realm of space. Several studies began to explore the spatiotemporal vulnerability of the HSR system in China, but they mainly 
focused on selected stations or disruptions that affect a small realm of space (e.g., Hong et al., 2019; Li and Rong, 2020). In this study, 
we explore the impacts of nodal cascading failures on the performance of the overall HSR network. By examining the evolutions of 
weighted network efficiency in different scenarios, we find that service disruptions starting at 10:00; lasting for a longer duration, 
especially that during 10:00–15:00; affecting the HSR stations in East China and Yangtze River Delta regions; or along the Harbin-Hong 
Kong corridor have the largest impact on overall network performance. The most critical stations are mostly located at the in-
tersections of multiple HSR lines, which include Guangzhou South, Nanjing South, Chengdu East, Hankou (a station in Wuhan City), 
Shijiazhuang, Xi’an North, Wuhan, and Zhengzhou East stations. For example, Wuhan City is located near the geographical center of 
Mainland China and lies on the intersection of several major HSR lines. Although the number of HSR stations in Wuhan City accounts 
for 1.6% of that in China, the suspension of Wuhan’s HSR stations can generate a larger impact on the overall performance of the 
national HSR network than the other cities (i.e. Guangzhou, Shanghai, and Nanjing). 

Finally, the robustness of the HSR network under three types of disruption propagation regimes is considered to illustrate different 
scenarios where disruptions spread in the HSR network in different sequences. The results show that the HSR network is the most 
resilient in the random propagation regime, where the disruption develops in a random sequence within the network. The HSR 
network is least robust to the betweenness-based propagation regime, where the disruption propagates from HSR stations with the 
largest betweenness centrality to the smallest. The robustness under degree-based and betweenness-based regimes depends mostly on 
the top 10% HSR stations, but that under random regime depends on 80% of the HSR stations. The impact of lockdowns during the 
COVID-19 outbreak in early 2020 is examined as a case study of the event-led disruption. 

The remainder of the study is organized as follows. Section 2 describes the network description of the methodology; Section 3 and 
Section 4 present robustness assessment results with spatially and temporally variant disruptions, respectively; Section 5 discusses the 
impact of disruption propagation regimes; Section 6 concludes the study. 

Fig. 1. The modeling process of HSR network of G1 and G14 services.  
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2. Network description and methodology 

2.1. Network description 

The railway network is widely characterized by two types of topology using train timetables and physical network attributes. One 
type is the so-called ‘Space-L’ topology, which defines HSR stations as nodes and connections/links between two adjacent stations on 
an HSR service2 route as edges (Sienkiewicz and Hołyst, 2005). The other type is the ‘Space-P’ topology, which is a more general 
network. Space-P defines HSR stations as nodes; differently, edges are defined for all links between all station pairs along the HSR line 
(Zhang et al., 2013). For example, Station A and B are not immediate neighbors and they are served by the same HSR service. In this 
case, there is a link defined between A and B in Space-P topology, but no link can be defined in Space-L topology. In this sense, Space-P 
has a more decent generalization ability by ignoring the sequential order of stops along a route (Zhu et al., 2008), which can thus better 
describe the accessibility and convenience of the transportation network (De Bona et al., 2016). We utilize the Space-P topology to 
construct the HSR network in this study. Fig. 1 shows an example of the network construction process from the train timetable data to 
the weighted HSR network associated with two HSR lines. 

In the Space-P of HSR network, a node represents an HSR station. Any ordered node-pair is linked by an edge if there is an HSR 
service operating between this ordered node-pair, and the weight of each link is the service frequency between the ordered node-pair. 
On this basis, the topological structure of HSR network is characterized by a weighted directed multigraph3 G= (V, E, W, VA, EA), 
where G denotes the HSR service network in China, V is the station set, represented by V={vi: i = 1,2,…,n}, where vi represents node i, n 
is the number of nodes (HSR stations); the edge set (E={eij: i = 1,2,…,n}) is the ordered node-pairs with HSR services running directly 
from node vi and vj; and the weight set W={wij: i,j = 1,2,…,n} is a set of edge weights, which is defined by the service frequency running 
directly from node vi and vj. VA refers to the attribution matrix of each node, including the basic information of all HSR services 
stopping at it, i.e., the service ID, station name, departure time, and arrival time; EA is the attribution matrix of each edge including all 
the basic information of HSR services between two nodes, i.e., the service ID, station name of origin node, departure time of origin 
node, station name of the destination node, and arrival time of destination node. 

2.2. Network efficiency metric 

Considering most travelers prefer routes with fewer transfers, shorter travel time, and more service choices (represented by service 
frequency), each directed edge is weighted by both service frequency and actual travel time calculated according to the train timetable 
along the directed edges in our study. The travel distance from origin node i to destination node j weighted by service frequency and 
actual travel time is calculated, to respectively reflect how connected and accessible the origin node i is to destination node j in the 
network. In this way, the network efficiency weighted by service frequency and travel time, namely the Weighted Network Efficiency 
(WNE), is proposed. It is a composite index, which measures the inverse product of the sum of reciprocal service frequencies and the 
shortest travel time with the prerequisite of least transfers through the shortest topological path. It is written as: 

WNE =
2

n(n − 1)
∑n

i,j=1(i∕=j)

1/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Wij × Tij

√
(1)  

where WNE is the weighted network efficiency metric of the network; Tij is the travel distance measured by the travel time from origin 
node i to destination node j; Wij is the travel distance weighted by the service frequency from origin node i to destination node j. The 
product of Wij and Tij represents the generalized travel distance weighted by both service frequency and journey time, where frequency 
and time have equal weight in the measurement. This reflects the travel behavior that travelers will consider both the journey time and 
service frequency (size of selection choice set) when making travel choices. The equal weight implies that the changes of both distance 
measures have equal impact magnitude on the overall perception of travel distance between the origin–destination pair. 

Following the previous study by Zhou et al. (2019), the travel distance weighted by service frequency from origin node i to 
destination node j along the shortest topological path is calculated by: 

Wij = min
p∈Pij

∑

k∈p

1
wk

(2)  

whereWij denotes the travel distance weighted by service frequency from origin node i to destination node j, which equals the min-
imum sum of inverse service frequency on each edge of the shortest route between the two nodes. This variable represents the travel 
distance weighted by inverse service frequency, based on the shortest topological path. It refers to the ‘effective’ travel distance rather 
than the ‘geographic’ distance. In general, an origin–destination pair that requires more transfers or has less frequent services will be 
perceived less accessible, and thus the ‘effective’ distance decreases with frequency. 

2 The high-speed train (HST) refers to the rolling stock (a set of railway vehicles) that can be operated with a high-speed (over 200km/h); while 
the high-speed rail service (HSR service) refers to the high-speed passenger-carrying service with the G/D/C prefix, which is operated to a specific 
schedule.  

3 A multigraph is a graph which is permitted to have multiple edges (also called parallel edges). 
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In Eq. (2), Pij represents the set of paths with the shortest topological path length (the least number of transfers) linking the origin 
node i and destination node j. A particular path p in Pijconsists of a series of directed edges k that form the shortest topological path (Liu 
et al., 2020). wk is the weight of directed edge k, which is set as the HSR service frequency operating on the directed edge k. An 
origin–destination pair that requires more transfers or has less frequent services corresponds to a larger Wij value, indicating that this 
route is less connected by HSR service. 

The travel distance weighted by the travel time from origin node i to j in the condition of least transfers is defined as: 

Tij = min
i∕=j∈n,p∈Pij ,k,f∈p

(tArrivaltimejp − tDeparturetimeip ) (3)  

where Tij is the shortest travel time from the origin node i to destination node j, reflecting the travel distance weighted by travel time, 
and the larger value of Tij indicating the less accessible from node i to node j;tArrivaltime

jp and tDeparturetime
ip are the arrival time at node j and 

departure time at node i along path p, respectively. Edges k and f can be represented by 〈vk
origin, vk

destination〉, 〈v
f
origin, v

f
destination〉,v

k
origin, 

vk
destination, vf

origin, vf
destination ∈ V. When the edges k and f are connected, donated by vk

destination= vf
origin, the departure time at node vf

origin 

should be an hour later than the arrival time at nodevk
destination. 

The prerequisite of least transfers is imposed on the measurements of travel distances because most travelers prefer routes with 
fewer transfers to avoid inconvenience, transfer delay, and travel time uncertainty. When we search for feasible paths according to the 
service timetable, the 60-minute transfer duration requirement is enforced. For example, when there is no direct HSR service from 
node i to node j, meaning that travelers need to transfer to other HSR services via intermediate HSR stations, a feasible path requires 
that the departure time of the subsequent train at the interchange HSR station is at least 60 min later than the arrival time of the 
preceding train at intermediate HSR stations. On average, 60 min is sufficient and necessary for a traveler to transfer between services 
in the same station. In most cases, the travel distance considering the transfers is larger than that without such consideration. 

According to the definition of robustness, the ability to retain its performance under disruptions and attacks, the percentage change 
in WNE (DWNE) is introduced to evaluate the robustness of the HSR network in this study. The percentage change of WNE measures the 
changing rate of WNE before and after the service disruption, which is the ratio of the gap between the WNE before and after the 
failures to the WNE before failures. The WNE before failures is the WNE of the initial graph, which is the graph without disruptions. The 
formula of DWNE is given by: 

DWNE =
(WNEbefore − WNEafter)

WNEbefore
× 100% (4)  

where DWNE is the percentage decrease of WNE before and after the failures; WNEbefore and WNEafter are the WNE before and after 
failures, respectively. While the network efficiency metric, WNE, can take any value without a specific range; the robustness metric, 
DWNE (the percentage decrease of WNE), ranges between 0 and 100%. The larger the DWNE value is, the larger influence HSR failures 
will have on network efficiency, indicating the HSR network is less robust to disruptions. 

To examine the effectiveness of the proposed metric, we compared the results measured by DWNE and several other metrics 
adopted by previous studies, including the weighted network efficiency (based on Zhou et al., 2019′s definition), the average shortest 
travel time with least transfers (Hong et al., 2019), the network efficiency (Chen et al., 2020), the number of affected trains, and the 
influenced passengers based on expected demand. The details are presented in Appendix A. 

2.3. Robustness assessment procedure 

It is often the case that HSR disruptions only affect a certain period or a certain realm of space. In this study, we propose a new 
algorithm to assess the network robustness with respect to service disruptions that occur in varying time slots (differentiated by the 
disruption start time and duration) and in varying locations (differentiated by geographical divisions and HSR corridors). The service 
disruption of an HSR station in a certain time slot means that HSR service may be suspended at the affected station for a certain time 
slot instead of a whole day. Therefore, we examine the time-varying robustness by removing the records in the attribute table of edges 
according to the departure time or arrival time at the failure node, instead of removing the edges connected to the failure node. The 
space-varying robustness is mostly explored by assessing the impacts of individual station failure and the spatially local failure (Hong 
et al., 2019) or the disruptions occur at a few major HSR stations (Li and Rong, 2020); however, less attention has been paid to the 
disruption of all stations in the network. 

Without loss of generality, we consider 576 (24 × 24) different time slots, each representing a combination of a particular 
disruption start time (denoted by a ∈ A) and a disruption duration (denoted by b ∈ B). Set A represents the set of disruption start times 
and setB represents the set of disruption durations. The disruption start time is set in line with the operating period of HSR service, 
between 00:00 and 23:00. For simplicity, the time resolution is set to be 1 h. Thus, the possible disruption start time a ∈ Aincludes 0:00, 
1:00, …, 23:00. The disruption duration b ∈ B can take any integer value between 1 h and 24 h. Each combination (a, b) is denoted by 
A× B = {(a, b)|a∊A, b∊B }. Each combination is referred to as a disruption time slot, or a simulation scenario thereafter. 

The failure of the HSR system in the real world may come in different types, such as station failure, track failure, and rolling stock 
failure. The impact of HSR failure varies as they may be caused by different reasons. Considering the broad scope, it is difficult (if not 
impossible) to cover all types. In this paper, we consider a typical type of HSR station failure that only affects the train services that 
were scheduled to arrive at/depart from the stations. The services passing by the station will not be affected as long as other stations 
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along the line remain operating. This is very realistic. For example, during the early stage of lockdown due to the COVID-19 outbreak, 
the HSR stations in Wuhan City were closed but some services remain operation without stopping in Wuhan. To contextualize the 
analysis, several related assumptions are introduced. 

In each scenario, we consider that the HSR disruption occurs at specific HSR stations in specific time slot(s) such that only the HSR 
services that were scheduled to arrive at/depart from these stations during these time slots will be suspended. Other HSR services will 
not be affected. This is realistic as China’s HSR stations commonly have one (or more) track(s) is/are designated for passing-by ser-
vices. In contrast with other tracks that are used for arrival/departure services, these tracks do not serve for passenger boarding and 
thus do not have platforms. Therefore, in the circumstances of station disruption/closure, it is often the case that the passing-by track 
(s) can still be useable. 

Regarding the propagation of disruption in the HSR network, we consider the case where HSR stations fail in batches in successive 
time steps; stations of the same batch are assumed to be disrupted at the beginning of the time step. To simplify the analysis, there is no 
further subdivision in each time step. The model can be readily extended to cases with further discretized time slots. 

As noted in the Introduction, HSR stations may face different types of disturbances such as natural hazards, technical failures, man- 
made failures (e.g. cyber-attack), and disruptions caused by social/public health events. In particular, natural hazards, such as extreme 
weather, are more likely to disrupt nodes randomly. Malicious attacks, including disruptions caused by political events and terrorist 
attacks, are more likely to target important HSR stations (Chen et al., 2020). Technical failures also have larger probabilities occurring 
at stations with larger traffic volume and service frequency. Social/public health event-led disruption, such as that caused by the 
outbreak of COVID-19 in early 2020, may disrupt a series of HSR stations in a particular sequence, which is driven by the nature of the 
event. The above propagation regimes cover various types of disruptions in the real world and thus are considered to be representative. 

Thus, in this study, three types of disruption propagation regimes are considered to mimic different situations where disruptions 
spread in the network, i.e., random, and malicious and event-led propagation regimes. The random propagation regime refers to the 
situation where HSR stations are disrupted one-by-one in a random sequence. The malicious propagation regimes refer to the situation 
where HSR stations are disrupted in a descending sequence according to the status of nodes in the initial and upgraded graph. The 
malicious propagation regime refers to the situation where HSR stations are disrupted in a descending sequence according to the status 
of nodes in the initial and upgraded graph. The nodes with the highest status in the initial graph fail firstly, which results in the changes 
in the edge weight connected it, and then the nodes with the highest status in the remaining network are disrupted until all the nodes 
fail or when the network has isolated nodes only. Under the event-led regime, the sequence of station disruption occurrence depends 
on the spread of the event (e.g., lockdown sequence during the COVID-19 outbreak). 

Table 1 presents the algorithm we use to perform the robustness assessment. The input of the algorithm is the HSR network at-
tributes introduced in Section 2.1 and the output is a set of Weighted Network Efficiency (WNE) and Decrease in Weighted Network Ef-
ficiency (DWNE) metrics, which are defined in Section 2.2. The detailed procedure of robustness assessment considering disruption 
time slots is as follows: 

Step 1: Randomly choose a time slot of service disruption by deciding the start time of disruption and disruption duration. 
Step 2: Calculate the WNE of the initial graph. 
Step 3: Choose the failure node among the node-set based on the given disruption propagation regime. 
Step 4: Find out the edges associated with the affected node according to the departure time or arrival time at the node from the 

attribute table, i.e., if the departure time or arrival time at the failure node is within the duration of the system failure. 
Step 5: Recalculate the weight of each edge, and the WNE and DWNE of the updated network; and if there is more than one 

subgraph, the weighted network efficiency is calculated based on the maximal connected subgraph. 
Step 6: Repeat steps 3, 4, and 5 until the network has isolated nodes only or until all nodes are crashed. 

2.4. Case study settings 

Taking the HSR network of China as a case study, the robustness of the HSR network is explored in time- and spatial-dynamic 
dimensions. 

Table 1 
Algorithm for robustness assessment considering failure time slots.  

Algorithm1: Robustness assessment 

Input: The initial graph G0; the disruption propagation regimes S. 
Output: WNES, DWNES 

1: Randomly select a time slot A ▹Step 1 
2: e0 ← Compute Graph Efficiency in the initial graph G0, and WNES = {e0} ▹Step 2 
3: for each strategy s in S do. ▹Enumerate the propagation regimes 
4: while G is not paralyzed or all nodes have been attacked do 
5: n ← Select failure node according to the regime (s) ▹Step 3 
6: G ← Modify the attribute of edges connected the failure node ▹Step 4 
7: e ← Compute graph efficiency(G) ▹Step 5 
d ← Compute changes in graph efficiency(G) 
8: Add e to WNEs 

Add d to DWNEs 

9: Return WNES, DWNEs  
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2.4.1. Data processing 
High-speed railway in China includes the railway lines newly built for dedicated passenger services with the operating speed over 

250 km/h and the upgraded railway lines for passenger services with the operating speed over 200 km/h according to the ‘Railway 
Safety Management Regulations’ published by the central government of China. According to this definition, HSR services include all 
train services operating on HSR lines, including the G prefix HSR services (running on newly-built HSR lines), D prefix HSR services 
(running on upgraded HSR lines), and C prefix HSR services (running on intercity HSR lines). The study areas include all the railway 
stations located in mainland China (excluding Hong Kong and Taiwan) with the G, D, C prefix HSR services. Up to 31 December 2019, 
5,962 HSR services are operating on more than 35,000 km HSR lines and 1061 HSR stations in mainland China, according to the data 
collected from the China Railway website (https://www.12306.cn/index/) and the website of Huochepiao (http://huochepiao.com/). 
The collected data contains service ID, station name, departure time, and arrival time at each station. The longitude and latitude of 
each station are collected using Baidu API (http://api.map.baidu.com/lbsapi/getpoint/index.html). 

2.4.2. Statistical characteristics of China’s HSR network 
Fig. 2 illustrates the distribution of departure HSR services, arrival HSR services, and operating HSR services, which reflects the 

temporal distribution of HSR services. Taking an hour as the study unit, we calculate the number of HSR services departing, arriving, or 
remaining in the network to understand the supply characteristics of HSR services in China. In Fig. 2, data points on the black curve 
represent the number of operating services at the particular time point (for example at 9:00), which accounts for the number of services 
remaining in the network. This is calculated by the difference between accumulated departure and accumulated arrival services (e.g., 
the difference between departure accumulation and arrival accumulation during 5:00–9:00). For the other two curves, each data point 
on the red curve represents the number of departure services within the 1-hour period, e.g., the data point for 9:00 represents the 
departure services between 9:00–10:00. Similarly, each data point on the blue curve represents the number of arrival services within 
the 1-hour period. 

The temporal distribution of departure HSR services and arrival HSR services differs significantly. The peak of departure HSR 
services arises between 7:00 and 8:00. The number of HSR services reaches 832 during this period, accounting for 11.51% of the total 
number of HSR services per day. The number of departure HSR services dramatically decreases to 432 between 10:00 and 11:00, then 
keeps steady between 430 and 450 till 15:00, gets a second peak at 517 between 15:00 and 16:00, and then decreases slowly till 24:00. 
Before the peak between 22:00 and 23:00, the number of arrival HSR services increases slowly and continuously from 5:00 to 22:00. In 
terms of the operating HSR services, the number increases dramatically from 5:00 to 11:00 with the value increased from 27 to 2031, 
keeps at 1950–2150 till 19:00, and then decreases dramatically to 0 till 24:00. Before 9:00, the number of operating HSR services is 
greater than that of the arrival HSR services, but less than that of departure HSR services; During 9:00 and 20:00, the number of 
operating HSR services is greater than both of the departure and arrival HSR services. After 20:00, the number of operating HSR 
services is less than that of the arrival HSR services, but greater than that of departure HSR services. This indicates that most HSR 
services are operated between 9:00 and 20:00, and less than 10 HSR services are operating between 0:00 am and 5:00. 

3. The HSR network robustness with spatially variant disruptions 

HSR stations in different regions might be influenced by different types of natural hazards, i.e. those in East and South China are 
more likely to be attacked by typhoons, and those in North China might be influenced by heavy snows. Technological failures are more 
likely to influence the stations along certain HSR lines, instead of the whole network. Additionally, man-made disruption might happen 
anywhere, even in one city or one station. Triggered by this, we examine the network performance when the system experiences 

-500

0

500

1000

1500

2000

2500

0
100
200
300
400
500
600
700
800
900

0:
00

1:
00

4:
00

5:
00

6:
00

7:
00

8:
00

9:
00

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0
15

:0
0

16
:0

0
17

:0
0

18
:0

0
19

:0
0

20
:0

0
21

:0
0

22
:0

0
23

:0
0

N
o. of operating services 

N
o.

 o
f d

ep
ar

tu
re

/ a
rr

iv
al

 se
rv

ic
es

 

Departure/ arrival time 

# of departure services within the hour # of arrival services within the hour

# of operating services

Fig. 2. Daily frequency of departure/arrival/operating HSR services over time.  

J. Jiao et al.                                                                                                                                                                                                             

https://www.12306.cn/index/
http://huochepiao.com/
http://api.map.baidu.com/lbsapi/getpoint/index.html


Transportation Research Part D 89 (2020) 102584

8

disruptions in certain regions, lines, or a certain HSR station to understand the robustness of the HSR network affected by spatially 
variant disruption incidents. Taking HSR stations in Wuhan City and Hubei Province as a case study, the influence of COVID-19 on the 
network performance is examined and compared with several transportation hub cities4 in China. In this section, we focus on the effect 
of spatial variation. The disruption time slot is assumed to be a whole day. 

Table 2 summarizes the HSR service network characteristics and robustness metrics in different geographical divisions, along HSR 
corridors, in Hubei Province, in Wuhan City, and in other transportation hubs cities, respectively. The metrics include the number of 
HSR stations, the average degree, and the decrease of WNE when all nodes are disrupted in the geographical divisions and along HSR 
corridors in a whole day. Amongst, the geographical divisions are divided according to the geographical location and natural con-
dition, which include the East, South, Northwest, Northeast, Southwest, Central and North China (a total of 7 geographical divisions); 
the HSR corridors are defined according to the “Medium- and long-term railway network planning (revised in 2016)”, which proposed 
that China will build eight vertical- and eight horizontal-HSR corridors by 2030. By the end of 2019, there are 11 HSR corridors with 
through or several segments in operation. 

The results show that the HSR disruption occurs in East China generates the largest influence on network performance, followed by 
that in Central China, North China, and South China. Specifically, the node disruption in East China might lead to a 52.04% decrease in 
WNE, indicating that more than half of network performance is failed. The percentage is 34.66% for Central China, 25.9% for North 
China, 25.63% for South China, 22.99% for Southwest China, and 21.95% for Northwest China, respectively. The disruption has the 
smallest impact on WNE in Northwest China (11.23% decrease). The reason might be that the number of HSR stations and the average 
number of adjacencies are the largest in East China and the smallest in Northwest China. 

The node disruption of the Harbin-Hong Kong passageway generates the largest influence on the network performance across all 
HSR corridors. The WNE decreased by 68.36% if the Harbin-Hong Kong corridor stopped working, followed by the Yangtze River 
(58.87%), Shanghai-Kunming (53.57%), and Coastal (51.96%) passageways. Except for the Harbin-Hong Kong passageway, the other 
three passageways all go through the city of Shanghai and several other major cities in the Yangtze River Delta, one of the most 
developed regions in China. The disruptions occur in Beijing-Lanzhou, Xiamen-Chongqing, Suifenhe-Manzhouli, and Hohhot-Nanning 
passageways have relatively smaller influences on network performance. The reason might be that some segments of these HSR 
corridors are still in the development stage which has not yet formed a well-connected network. 

Our simulation also shows that the station suspension in Wuhan City may generate a larger influence on the network performance 
than other cities of Hubei Province. There were 17 HSR stations in Wuhan City in 2019, only accounting for 1.6% of that in China. 
However, the disruption of these 1.6% HSR stations in a whole day may lead to a 14.33% decrease in the WNE of the overall HSR 
network. Compared with the other transportation hub cities, the DWNE caused by Wuhan HSR suspension is the largest, followed by 
Guangzhou, Shenyang, Zhengzhou, Nanjing, Shanghai, Chengdu, Lanzhou, and Beijing. The reason might be that Wuhan City is 
located near the geographical center of Mainland China and the intersection of several HSR lines, i.e. Beijing-Guangzhou HSR line, 
Wuhan-Jiujiang HSR line, Shanghai-Chengdu HSR line, Wuhan-Huangshi and Wuhan-Huanggang intercity railways. It is interesting to 
find that suspension of Beijing’s HSR stations is corresponding to the smallest DWNE, indicating the largest robustness among the 
concerned transportation hubs. The reason might be that the HSR stations in Beijing serve different HSR lines in different directions5, 
leading to relatively larger path length (more transfer delay) traversing Beijing than the other cities. In the circumstance of HSR station 
disruption in Beijing, passengers can transfer service at other nearby HSR stations, e.g., HSR stations in Tianjin or Shijiazhuang, 
without too much additional cost. The journey time from Beijing to Tianjin or Shijiazhuang by HSR service is 0.5 and 1.15 h(s), 
respectively. Most Beijing services stop at Tianjin or Shijiazhuang. 

There were 64 HSR stations in Hubei Province in 2019 and the disruption of these HSR stations can lead to a 16.73% decrease in the 
WNE, which is slightly greater than that caused by Wuhan City. The reason might be that most HSR stations in other cities of Hubei 
Province are connected with Wuhan City. Once the HSR stations in Wuhan City are disrupted, the network connectivity of HSR stations 
is largely affected. The results imply that HSR stations in Wuhan City play an important role in the national HSR network, but a 
dominating role in Hubei Province. 

Fig. 3 presents the distribution of the decrease in WNE when a single HSR station stops working for the whole day in China. The HSR 
stations that can cause a large drop in WNE are mainly located at the intersection of several HSR lines or the Yangtze River Delta. 
Specifically, there are 16 HSR stations associated with a decrease in WNE greater than 0.66% (marked by the red dot in Fig. 3). This 
percentage is equivalent to 2.5 standard deviations (σ) plus the mean value (μ) of the WNE decrease associated with all HSR stations in 
China. We find that all these top stations are located at intersections of trunk HSR lines. There is a total of 81 HSR stations that can 
cause a decrease in WNE by 0.3%-0.66% (μ+ 0.5σ, μ+ 2.5σ). These stations are marked by yellow and orange dots in Fig. 3. They are 
distributed mainly in the Yangtze River Delta and the Pearl River Delta; several of them are located on the intersection of trunk HSR 
lines or inter-city HSR lines. Overall, the HSR stations where a single station disruption can lead to a decrease in WNE larger than the 
national mean (0.3%) are mainly located at the intersections of HSR lines or in the developed areas of China, i.e., Yangtze River Delta 
and Pearl River Delta. 

We further examine the scenarios where one particular HSR station is disrupted by incidents that start at different times or last for 
different durations, respectively. Based on the decrease in WNE associated with each HSR station disruption, we identify the top 10 

4 Our analysis includes Beijing, Shanghai, Nanjing, Guangzhou, Chengdu, Lanzhou, Zhengzhou and Shenyang. All of them are the comprehensive 
rail hubs according to the national “Medium- and long-term railway network planning (revised in 2016)”.  

5 For example, Beijing South station mostly serves the Beijing-Shanghai HSR line, Beijing-Tianjin intercity railway and so on; while Beijing West 
station serves the Beijing-Guangzhou HSR lines, Beijing-Kunming HSR lines etc. 
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Table 2 
HSR network characteristics and robustness metrics in different geographical divisions and along HSR corridors in China.    

No. of stations Average degree % of the decrease  
in WNE 

Scope 

National level  1061  75.6 100 All cities in China, excluding Hong Kong, Macao, and Taiwan 
Geographical Divisions East China 287  112.2 52.04 80 cities in Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Shandong, and 

Fujian Provinces 
South China 158  50.69 25.63 38 cities in Guangdong, Guangxi, and Hainan Provinces 
Northwest China 73  48.25 11.23 56 cities in Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, and the west of Inner 

Mongolia Provinces 
Northeast China 144  60.19 21.95 41 cities in Heilongjiang, Jilin, Liaoning, and east of Inner Mongolia 

Provinces 
Southwest China 159  57.03 22.99 56 cities in Chongqing, Sichuan, Guizhou, Yunnan, and Xizang Provinces 
Central China 153  80.74 34.66 44 cities in Henan, Hubei, and Hunan Provinces 
North China 87  73.44 25.9 29 cities in Beijing, Tianjin, Shanxi, Hebei, and the central region of Inner 

Mongolia Provinces 
Eight Vertical Corridors Coastal passageway 189  90.41 51.96 40 cities located along the HSR corridor along the eastern coast of China 

Beijing–Shanghai passageway 78  112.44 42.45 23 cities located along Beijing – Shanghai, Hefei-Bengbu, Hefei-Hangzhou, 
and Nanjing –Hangzhou HSR lines. 

Beijing–Hong Kong (Taipei) passageway 69  115.62 29.54 18 cities located along Shangqiu-Hefei-Hangzhou, Hefei-Fuzhou, Nanchang – 
Fuzhou HSR lines. 

Harbin–Hong Kong (Macau) Passageway 211  66.52 68.36 39 cities located along Harbin-Beijing, Beijing-Guangzhou, Guangzhou- 
Zhuhai, and Guangzhou-Shenzhen HSR lines. 

Hohhot–Nanning passageway 33  90.94 12.41 10 cities located along Zhengzhou-Jiaozuo, Loudi-Shaoyang, Hengyang- 
Liuzhou, and Nanning-Liuzhou HSR lines. 

Beijing–Kunming passageway 104  76.49 31.09 21 cities located along Beijing-Shijiazhuang, Shijiazhuang-Taiyuan, Beijing- 
Zhangjiakou, Datong-Xi’an, Xi’an-Chengdu, Chengdu-Chongqing HSR lines. 

Baotou (Yinchuan)–Hainan passageway 22  47.81 6.99 8 cities located along Hainan Roundabout Railway, Yinchuan-Wuzhong HSR 
line 

Lanzhou (Xining)–Guangzhou passageway 95  51.77 32.05 15 cities located along Chengdu-Guiyang, Guiyang-Guangzhou HSR lines 
Eight Horizontal Corridors Suifenhe–Manzhouli passageway 23  45.74 4.45 3 cities located along Mudanjiang-Suifenhe, Harbin-Mudanjiang HSR lines 

Beijing–Lanzhou passageway 12  42.42 3.02 5 cities located along Beijing- Hohhot HSR lines 
Qingdao–Yinchuan passageway 0  – – – 
Eurasia Continental Bridge passageway 69  84.8 18.87 22 cities located along Lanzhou-Lianyungang and Urumqi-Lanzhou HSR 

lines, except for Lianyungang and Xuzhou. 
Yangtze River passageway 139  74.77 58.87 22 cities located along Shanghai-Chengdu, Chengdu-Dazhou HSR lines. 
Shanghai–Kunming passageway 138  95.27 53.57 28 cities located along the Shanghai-Kunming HSR line. 
Xiamen–Chongqing passageway 19  94.47 4.15 4 cities located along Xiamen-Longyan, Longyan-Ganzhou HSR lines. 
Guangzhou–Kunming passageway 54  52.59 21.79 12 cities located along Nanning-Guangzhou, Nanjing-Kunming HSR lines. 

Key regions affected by COVID-19 Hubei Province 64  64.75 16.73 13 cities in Hubei Province 
Wuhan City 17  51.82 14.33 The capital of Hubei Province and a comprehensive transportation hub 

Key transportation hub cities Beijing City 5  92.4 3.13 The capital of China and a comprehensive transportation hub 
Shanghai City 15  66.73 8.02 A comprehensive transportation hub 
Nanjing City 7  126.29 8.58 The capital of Jiangsu Province and a comprehensive transportation hub 
Guangzhou City 5  116.5 12.5 The capital of Guangdong Province and a comprehensive transportation hub 
Chengdu City 28  26.07 5.54 The capital of Sichuan Province and a comprehensive transportation hub 
Lanzhou City 7  40.71 5.43 The Capital of Gansu Province and a comprehensive transportation hub 
Zhengzhou City 8  98.13 8.69 The capital of Henan province and a comprehensive transportation hub 
Shenyang City 5  128.2 11.46 The capital of Liaoning province and a comprehensive transportation hub 

Note: The degree of a node refers to the number of its adjacencies in a network (Freeman, 1978), defined by the number of nodes that are directly connected with the node and donated by k. The HSR 
stations located in the corridors are selected according to the cities they go through. 
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critical stations in various scenarios and summarize in Tables 3 and 4. Table 3 presents the decrease in WNE caused by disruption 
starting at 5:00, 7:00, 9:00, 11:00, 13:00, 15:00, 17:00, 19:00, and 21:00, respectively, where the disruption duration is fixed at 2 h. In 
Table 4, the disruption start time is fixed at 7:00, and the disruption duration is set to be ranging from 1 to 16 h. 

The HSR stations with the top 10 decrease in WNE vary across different time slots (see Tables 3 and 4). There are only two HSR 
stations, namely Guangzhou South and Nanjing South, appearing in all the selected 17 time slots. Xi’an North, Hankou (a station in 
Wuhan City), Shijiazhuang, Chengdu East, Wuhan, Zhengzhou East and Changsha stations are all listed in the top 10 HSR stations in no 
less than 10 time slots among the 17 selected time slots. Some HSR stations are appearing at only one certain time slot or no more than 4 
time slots. That’s to say, all of these HSR stations have a substantial impact on the whole network in several certain time slots. For 
example, Shanghai Hongqiao HSR stations only appear in the top 10 HSR stations lists in the time slots of 5:00–7:00 and 9:00–11:00, and 
Nanjing HSR stations only appear in the time slot of 5:00–7:00. Overall, the Guangzhou South and Nanjing South are the critical stations 
for all the selected time slots, and Xi’an North, Hankou, Shijiazhuang, Chengdu East, Wuhan, Zhengzhou East, and Changsha HSR 
stations are the critical stations in the majority of time slots, while the other HSR stations in Tables 3 and 4 are the critical stations in 
several certain time slots or even one time slot. All the critical stations in all or the majority of the selected time slots are located at the 
interaction of serval HSR lines, i.e. Zhengzhou East located at the intersection of Beijing-Guangzhou and Longhai HSR lines, and Nanjing 
South located at the intersection of Beijing-Shanghai, Shanghai-Chengdu, Nanjing-Hangzhou, Ning’an, and Nanjing-Hefei HSR lines. 

4. The HSR network robustness with temporally variant disruptions 

This section examines the effects of disruption time slots on the network performance and identifies the critical time slots, at which 
the disruptions have the largest influence on network performance. To better understand the effects of disruption time slots on the 
network performance, we assume that all the HSR stations are simultaneously disrupted in the time slot. 

We simulate disruptions that happen in 576 (24 × 24) different time slots (introduced in Section 2.3) and assess the robustness of 
the HSR network in each scenario. Fig. 4 illustrates the WNE of HSR networks in 576 time slots, reflecting the WNE when all nodes are 
disrupted in a certain time slot, where the x-axis represents the disruption start time, the y-axis represents the disruption duration, and 
z-axis shows the WNE when all nodes are disrupted in a certain time slot. Contours of WNE in the domain of disruption duration and 
disruption start time are shown by the color curves in the xy-plane. It can be seen that the earlier the disruption starts or the longer the 
disruption duration is, the larger impact the disruption has on the network performance. In the following subsections, we further 
analyze the changes in WNE with different disruption start times and durations.6 

Fig. 3. Decrease in WNE when a single HSR station is disrupted for a whole day.  

6 In Figs. 4, 5, 6, 7, 8, the absolute values of Weighted Network Efficiency (WNE) are presented instead of the relative value DWNE. The purpose is 
to better illustrate the evolutions of network efficiency, while DWNE can be immediately obtained by comparing the WNE with a constant (i.e., the 
WNE of the initial graph, 0.07931). 
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Table 3 
Top 10 stations in the HSR network with the largest DWNE with different disruption start times.   

5:00 7:00 9:00 11:00 13:00 15:00 17:00 19:00 21:00 

1 Shanghai Hongqiao Nanjing South Nanjing South Nanjing South Guangzhou South Guangzhou South Xuzhou East Nanjing South Guangzhou South 
2 Guangzhou South Guangzhou South Guangzhou South Guangzhou South Hankou Nanjing South Guangzhou South Guangzhou South Dingzhou 
3 Shanghai South Chengdu East Xi’an North Hankou Kunming South Lianyungang Nanjing South Chengdu East Nanjing South 
4 Nanjing South Wuhan Chengdu East Xi’an North Nanjing South Hankou Shenyang Xi’an North Shijiazhuang 
5 Qingdao North Lanzhou West Shanghai Hongqiao Wuhan Xi’an North Changsha South Chengdu East Hankou Lanzhou West 
6 Changchun Hankou Wuhan Shijiazhuang Wuhan Wuhan Zhengzhou East Bozhou South Zhengzhou East 
7 Nanjing Zhengzhou East Hangzhou East Zhengzhou East Chengdu East Shijiazhuang Xi’an North Fushun North Shenzhen North 
8 Zhengzhou East Shijiazhuang Shijiazhuang Changsha South Zhengzhou East Xi’an North Shijiazhuang Caofeidian Hankou 
9 Shenzhen North Xi’an North Lanzhou West Shenyang Changsha South Zhengzhou East Changsha South Wuhan Xi’an North 
10 Shenyang North Bozhou South Hankou Chengdu East Shijiazhuang Chengdu East Kaifeng Hangzhou South Minhe South  
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Fig. 4. Three-dimensional surface plot of weighted network efficiency, failure disruption start time and duration.  

Table 4 
Top 10 stations in the HSR network with the largest DWNE with different disruption duration.   

1 h 3 h 5 h 7 h 9 h 11 h 13 h 15 h 

1 Nanjing South Nanjing South Nanjing South Guangzhou 
South 

Guangzhou 
South 

Guangzhou 
South 

Guangzhou 
South 

Guangzhou 
South 

2 Hankou Guangzhou 
South 

Guangzhou 
South 

Nanjing South Nanjing South Nanjing South Nanjing South Nanjing South 

3 Shijiazhuang Chengdu East Chengdu East Chengdu East Hankou Hankou Hankou Xi’an North 
4 Wuhan Wuhan Hankou Hankou Wuhan Chengdu East Chengdu East Hankou 
5 Guangzhou 

South 
Lanzhou West Wuhan Xi’an North Chengdu East Wuhan Xi’an North Chengdu East 

6 Zhengzhou East Changsha 
South 

Xi’an North Wuhan Xi’an North Xi’an North Wuhan Zhengzhou East 

7 Xi’an North Shanghai Nan Shijiazhuang Zhengzhou East Zhengzhou East Zhengzhou East Zhengzhou East Wuhan 
8 Chengdu East Shijiazhuang Zhengzhou East Shijiazhuang Shijiazhuang Shijiazhuang Shijiazhuang Shijiazhuang 
9 Changsha 

South 
Xi’an North Hangzhou East Kunming Nan Kunming South Kunming South Xuzhou East Xuzhou East 

10 Hangzhou East Hankou Lanzhou Xi Changsha 
South 

Changsha 
South 

Changsha 
South 

Changsha 
South 

Urumqi  
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4.1. Effect of the disruption start time 

Fig. 5 shows the relationship between WNE when all nodes are disrupted in a certain time slot and disruption start time. Each curve 
represents a case with a specific disruption duration ranging from 1 to 24 h. 

The WNE when all nodes are disrupted in a certain time slot firstly decreases and then increases with the disruption start time when 
the duration time is fixed at a value smaller than 7 h; it firstly decreases, then increases, and lastly fluctuating increase when the 
duration time is fixed at a value greater than 7 h (see Fig. 5). For example, when the disruption duration is set as 2 h, the WNE when all 
nodes are disrupted slightly decreases from 0.07938 with the start time of 0:00 to 0.0772 with the start time of 5:00, and then to 0.0614 
with the start time of 11:00, and then increases to 0.0789 with the start time of 23:00. When the disruption duration is set as 12 h, the 
WNE when all nodes are disrupted decreases from 0.0572 with the start time of 0:00 to 0.0047 with the start time of 8:00, and then 
increases to 0.0683 with the start time of 20:00, and lastly decreases to 0.050 with the start time of 23:00. The most influential start 
time is 12:00 when the disruption duration is 1 or 4 h; 11:00 when the disruption duration is 2, or 5 h; 10:00 when the disruption 
duration is 3, 6, 7 or 8 h; 9:00 when the disruption duration is 9 or 10 h; 8:00 when the disruption duration is 11 or 12 h; 7:00 when the 
disruption duration is 13, 14, or 15 h, 6:00 when the disruption duration is 16 h; 5:00 when the disruption duration is 17,18 or 19 h; 
4:00 when the disruption duration is larger than 19 h. Overall, the start time with the lowest value of WNE keeps advancing with the 
increase of disruption duration, and the disruptions affecting the period 12:00–13:00 has a relatively higher influence on network 
performance than the others with the same disruption duration. 

The shorter the disruption duration is, the more robust the HSR network is. This means the WNE in scenarios with shorter 
disruption duration is greater than that with longer durations (see Fig. 5). Specifically, the WNE in the scenarios with 1-hour disruption 
duration is all greater than those with longer durations. 

4.2. Effect of disruption duration 

Fig. 6 shows the relationship between WNE and disruption duration. Each curve represents a specific disruption start time. The 
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Fig. 5. The weighted network efficiency (WNE) with different disruption start times.  
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subfigures Fig. 6 (a), (b), (c), and (d) show the cases with a start time between 0:00–4:00, 5:00–9:00, 10:00–15:00, and 16:00–23:00, 
respectively. 

As shown in Fig. 6, the WNE generally exhibits a decreasing trend when the disruption duration increases from 1 h to 24 h, for any 
given start time. But the decreasing rate varies with different start times. Some similar trends can be observed in each group. Fig. 6(a) 
shows that when the disruption starts between 0:00 and 4:00, the WNE firstly keeps at a steady level, decreases linearly, and then 
decreases slowly to a steady level. For example, when the start time is 1:00, the WNE keeps steadily at 0.0793 with the disruption 
duration between 1 h and 5 h, and then decreases linearly to 0.046 with the disruption duration of 14 h, and then decreases 
dramatically to 0.0014 with the disruption duration of 20 h, and then slowly decreases to zero with the disruption duration of 24 h. 

Fig. 6(b) shows that when the disruption starts between 5:00–9:00, the WNE firstly decreases linearly, and then decreases expo-
nentially, and then keeps at a steady level, along with the increase in disruption duration. For example, when the start time is 7:00, the 
WNE firstly decreases linearly from 0.0734 with the disruption duration of 1 h, to 0.0461 with the disruption duration of 8 h, and then 
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Fig. 6. The weighted network efficiency (WNE) with different disruption durations.  
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decreases dramatically to 0.0019 with the disruption duration of 13 h, and then slowly decreases to zero with the disruption duration 
of 24 h. 

When the disruption starts between 10:00 and 15:00, as shown in Fig. 6(c), the WNE firstly decreases linearly and then decreases 
slowly to a steady level. For example, when the start time is fixed at 10:00, the WNE decreases linearly from 0.0656 (when the 
disruption duration is 1 h) to 0.0292 (with a disruption duration of 10 h), and then decreases slowly to around 0.0274 (when the 
disruption duration is between 11 and 14 h), with an overall decrease by 58.6%. 

When the disruption starts after 16:00, especially after 20:00, the WNE maintains a steady level in the earlier stage, and then 
gradually decreases and lastly decreases slowly to a steady level, which is similar with that when the disruption starts between 0:00 
and 4:00 (see Fig. 6(d)). 

Overall, given the same duration of less than 9 h, the disruptions start at 10:00 have the largest influence on network performance. 
The WNE decreases slightly with the increasing disruption duration when the increased disruption duration is within 16:00–4:00, 
decreases linearly with the increasing disruption duration when the increased disruption duration is within 5:00–9:00, or decreases 
dramatically when the increased disruption duration is within 10:00–15:00. 

Fig. 7. Robustness of HSR network in different propagation regimes with varying disruption start times (where the disruption duration is fixed as 2 
h. WNE = weighted network efficiency of HSR network maximal connected subgraph; p = proportion of affected HSR stations in the 
whole network). 
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5. Effect of disruption propagation regimes 

This section examines the impact of failure propagation regimes, including random, malicious and event-led propagation regimes 
on the network performance. Under the random propagation regime, the sequence HSR stations are disrupted is randomly generated. 
Under malicious propagation regimes, the sequence is determined by the degree and betweenness centrality of HSR stations in the 
descending order.7 The effect of randomly- and maliciously-propagated disruptions are compared under comparable settings. Since the 
sequence of HSR disruptions under the event-led propagation regime is purely driven by the spread of the particular event and nor-
mally cover multiple days, it makes more sense to investigate the effect of this regime under a specific real case, rather than directly 
comparing with other simulated regimes within a single day. The impact of lockdowns during the COVID-19 outbreak in early 2020 is 
examined. 

5.1. Comparison between random disruption and malicious attack 

Regarding the centrality metrics used in the malicious regime, the degree centrality is referred to as the ‘strength’ of a node in the 
weighted network, which measures the sum of weights of its adjacencies in a network and is defined by the total number of HSR 
services operating on the edges that are connected with the node (Jiao et al., 2017; 2020). The betweenness centrality measures the 
extent to which a particular node lies between other nodes and is measured by the proportion of shortest paths passing a particular 
node in all the shortest paths between any two nodes (Freeman, 1979). In the weighted network, the shortest topological paths are 
commonly weighted by service frequencies. Thus, two nodes are considered closer to each other if there are more frequent HSR 
services between them (Opsahl et al., 2010; Zhou et al., 2019). The degree centrality and betweenness respectively reflect the 
importance and transitivity of nodes in the HSR network. Overall, three propagation regimes, namely random, degree-based, and 
betweenness-based regimes, are examined and compared. 

The degree-based propagation regime refers to the scenario where HSR stations are disrupted one-by-one in the sequence of 
descending degree centrality. The nodes with the largest degree centrality in the initial graph fail firstly, which results in the changes in 
the edge weight connected it, and then the nodes with the largest degree centrality in the remaining graph are disrupted until all the 
nodes fail or when the network has isolated nodes only. Similarly, the betweenness-based propagation regime refers to the scenario 
where HSR stations are disrupted according to the sequence of betweenness centrality in the initial and upgraded graph. 

We examine the evolutions of WNE when the proportion of disrupted HSR stations in the whole network gradually increases under 
different propagation regimes. Fig. 7 presents the evolutions of WNE with different disruption start times and fixed duration (2 h). 
Fig. 8 presents those with varying disruption durations and fixed start time (7:00). 

Results show that the HSR network is the most resilient to randomly-propagated disruptions than the other two propagation re-
gimes, while the betweenness-based propagation is most effective to reduce the network WNE when nodes are disrupted (see Figs. 7 
and 8). The same trend is found in most scenarios, except that when starting at 5:00 and less than 3% stations are disrupted, the 
network is more resilient to betweenness-based than degree-based propagation. 

A steep fall in the WNE occurs when 10% of HSR stations are affected by the betweenness and degree propagation regimes (see 
Figs. 7, and 8). Specifically, 10% of HSR stations under random propagation reduces the WNE in all the time slots when the disruption 
duration is set as 2 h by no more than 5%, while that under degree-based and betweenness-based propagation reduce the WNE by more 
than 10% when the start time is during 7:00 and 19:00. 

The same trend is observed for the robustness assessment across different time slots with random propagation, where the WNE 
decreases with the number of affected nodes. When 10% of HSR stations stopped working, the WNE decreases by 5.69% under random 
propagation when the time slot is 9:00–11:00, which is smaller than that under degree-based (13.62%) and betweenness-based 
(15.24%) propagation regimes. After the affected nodes increase to 80% or more, the WNE decreases slightly. This implies that the 
robustness against random propagation strongly depends on 80% of HSR stations, which is different from the degree- and betweenness- 
based regimes (more likely malicious-designed), which depend on 10% of HSR stations. 

The evolutions of WNE under degree- and betweenness-based propagation regimes demonstrate strong consistency across scenarios 
with various disruption durations and start times (see Fig. 8). For example, the maximum percentage changes of WNE under 
betweenness- and degree-based regimes both appear in the scenarios where disruption starts at 10:00. The maximum decrease per-
centage of WNE is 17.42% and 15.02% for betweenness- and degree-based regimes, respectively. This means that when the disruption 
duration is 2 h, malicious disruptions starting at 10:00 might has the largest influence on network performance. Under the random 
regime, the maximum drop of WNE, 5.69%, appears where the start time is 9:00, and 10% of nodes are disrupted. 

5.2. Effect of event-led propagation: A case study of the COVID-19 outbreak (early 2020, China) 

This subsection examines the impact of lockdowns during the COVID-19 outbreak in early 2020 as a case study of the event-led 
propagation regime. The Coronavirus Disease 2019 (COVID-19) refers to the cluster of viral pneumonia cases that occurred since 
December 2019. It was first diagnosed in Wuhan City, Hubei Province, China. The subsequent outbreak of COVID-19 led to the 
lockdowns of Wuhan City, other cities in Hubei Province, and then many cities around the country in China. 

7 The degree and betweenness centrality are representative indicators of nodal importance and transitivity in the network, respectively (Chen 
et al., 2020). 
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One of the lockdown actions is the closure of HSR stations (and all intercity transportation). According to the media news, the HSR 
stations in Wuhan City were closed from 23 January 2020 to 8 April 2020. Stations in other cities in Hubei Province were mostly closed 
before 3 February 2020. Some stations in other cities such as Tianjin, Zhejiang, Fujian, Jiangsu, Jiangxi, Heilongjiang, Henan, Shaanxi, 
Anhui, Liaoning, Sichuan, Guangxi, Jilin, and Hebei provinces were closed from 3 February 2020. After the peak of the COVID-19 

Fig. 8. Robustness of HSR network in different propagation regimes with varying disruption duration (the disruption start time is 7:00; WNE =
network efficiency of HSR network maximal connected subgraph; P = the proportion of affected HSR stations in the whole network). 
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pandemic, transportation, and economic activities gradually resumed. The critical time points are indicated along the time horizon in 
Fig. 9. 

To explore the influence of the COVID-19 outbreak on HSR service, the adjustment information about the HSR service is collected 
from the China Railway website between December 2019 and April 2020 (https://www.12306.cn/index/, accessed on 28 February 
and 27 June 2020). The information includes operated HSR service IDs, canceled service IDs, and the corresponding dates. To 
eliminate the influence of augmented HSR services during the Spring Festival travel rush, the benchmark of WNE is calculated based on 
the regular HSR services before the Spring Festival. Specifically, the HSR services during the lockdown period are compared with those 
on 31 December 2019. Only those operated on 31 December 2019 but disrupted during the lockdown are taken into the account of 
reduction of WNE (DWNE). Compared with the HSR service on 31 December 2019, an accumulation of 2436 services was canceled 
during the sampling period (23 January-10 April 2020). Most of the service cancelation is observed from the period before 28 February 
2020 while only 30 of them occurred thereafter. 

Based on the collected HSR service data, we calculate the WNE of the HSR network for each day from 23 January-10 April 2020 and 
the DWNE (with reference to 31 December 2019). The evolution of DWNE is presented in Fig. 9. To provide more context information, 
the percentage of canceled HSR services in all services and the total active COVID-19 cases in mainland China on each day is also 
collected and presented in Fig. 9 for the sampling period. The robustness metric, DWNE, is represented by the red solid line, while the 
other two variables are represented by the dashed line and vertical bars, respectively. 

To visualize the spatial distribution of canceled HSR services, we present in Fig. 10 the canceled HSR service network for the three 
critical periods, 23 January-3 February 2020, 4–10 February 2020, and 11–28 February 2020, respectively. Between each affected O-D 
pair, the line curvature represents the direction of canceled service, i.e., the clockwise direction along the curvature is canceled during 
the particular period. The line width represents the number of canceled services on a particular route. To delineate the evolution over 
time, we only present those newly affected in the specific period in subsequent subfigures. Specifically, Fig. 10(a) contain all the 
canceled services from 23 January-3 February 2020; those shown in Fig. 10(b) represent the newly canceled services during 4–10 
February 2020 (which were not affect earlier); and only those being newly affected during 11–28 February 2020 are presented in 
Fig. 10(c). 

It is shown that there are several stages in the evolution of DWNE during the sampling period. In the first stage (23 January-3 
February 2020), DWNE (solid line in Fig. 9) sharply increased to 9.75% at an increasing rate. During this period, the active COVID- 
19 cases (green bar in Fig. 9) surged to 20,438; 15 cities in Hubei Province (including Wuhan City) and 12 cities in Zhejiang, 
Guangxi, Shaanxi, Anhui, and Shandong provinces were locked-down successively; 1104 HSR services were canceled and the canceled 
HSR services are mostly connecting Wuhan City with the other HSR stations located along the Beijing-Guangzhou and Shanghai- 
Chongqing corridors (shown in Fig. 10(a)). Since the canceled services are mostly concentrated around a hub node, Wuhan, the 

Fig. 9. The percentage changes in WNE (DWNE) caused by COVID-19 from 23 January 2020 to 10 April 2020.  
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reduction effect on the overall network efficiency is significant. 
In the second stage (4–10 February 2020), DWNE slightly increased to 10.19%. During this period, the active COVID-19 cases 

increased to 37,626; and more and more cities and districts were locked-down and most of these cities are located in Zhejiang, Fujian, 
Jiangsu, Jiangxi, Heilongjiang, Henan, Shaanxi, Anhui, Liaoning, Sichuan, Guangxi, Jilin, and Hebei provinces and Tianjin. Compared 
with the previous stage, an additional 459 HSR services were canceled during this stage, and most of these HSR services connecting the 
short travel distance HSR station pairs (i.e. HSR stations in Guangzhou and Shenzhen City as shown in Fig. 10(b)), which has marginal 
influence on the WNE. 

In the third stage (10–28 February 2020), DWNE firstly increased to 14.57% between 10 and 19 February 2020 and kept steady 
around 14.33% till 28 February 2020. During this period, the total active COVID-19 in mainland China cases peaked at 58,016 on 17 
February 2020 and decreased to 37,414 on 28 February 2020. Although the extended Spring Festival holiday ended on 10 February, 
more and more cities implemented the closed management of communities (i.e. Beijing and Shanghai) and the Chinese government has 
issued an extension of order to shut down all non-essential companies in Hubei province on 13 February 2020 and extended it on 20 
February 2020, which largely reduced the human mobility and thus affected the service supply. Compared with the previous two 
stages, another 842 HSR services were canceled in this stage and most of these HSR services were located between HSR stations along 
the Shanghai-Kunming and Zhengzhou-Chengdu corridors, which are important horizontal transportation corridors. The canceled HSR 
services along these corridors largely deduced the network performance of the HSR service network. 

After 28 February 2020, the HSR service entered the resuming stages. With more and more HSR service resumed operation, the 
number of canceled HSR services decreased to 1,755 on 29 February 2020, 949 on 1 March 2020, 472 on 7 March 2020, and then kept 
stable at 472 before 25 March 2020, when 13 cities in Hubei resumed transportation. Thus, the period between 29 February 2020 and 
24 March 2020 is defined as the fourth stage, with the DWNE decreased from 12.97% to 4.02% and the total active COVID-19 cases 
decreased from 35,329 to 4,287. The rest of the sampling period is defined as the fifth stage. During the final stage, the DWNE 

Fig. 10. Spatial distributions of canceled HSR services by COVID-19 from 23 January 2020 to 28 February 2020.  
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decreased to 2.2% on 8 April 2020 and then to approximately 0, and the total active COVID-19 cases decreasing to 1,089 till 10 April 
2020. 

Some important implications can be obtained from the observations. Firstly, it is observed from Fig. 9 that prior to the peak of 
COVID-19 cases, the increasing rate of DWNE is larger than that of the active COVID-19 cases. This reflects that the lockdown actions 
are implemented preceding the increase of active cases. After the peak of COVID-19 cases, the DWNE increased slightly and kept stable 
at a high level and the canceled HSR services did not resume immediately. This reflects the protective strategy the central/local 
governments adopted in tackling the COVID-19 pandemic. 

Secondly, from the spatial distributions of canceled services in Fig. 10, one could infer that the impact of local station closure is 
marginal compared to large-scale disruption. The closure of HSR stations in Wuhan City is associated (before 26 January 2020) with 
around 1.3% drop in WNE in the national HSR network, even though Wuhan stations are ranked highly according to the simulation 
scenarios in Section 3 (see Tables 3 and 4). The closure of HSR stations in the other 12 cities of Hubei province is associated with a 1.4% 
drop in WNE in the national HSR network. However, the closure of HSR stations in Tianjin, Zhejiang, Fujian, Jiangsu, Jiangxi, Hei-
longjiang, Henan, Shaanxi, Anhui, Liaoning, Sichuan, Guangxi, Jilin, and Hebei provinces is associated with about 7% drop in WNE. 

Thirdly, compared with the scenario considered in Section 3 (Tables 3 and 4) where all services stopping at HSR stations in Wuhan 
City are suspended, the DWNE calculated based on real data is relatively smaller. The difference is caused by the flexibility of service 
scheduling. Facing station closure, the railway administrations could adjust the service timetable in order to reduce the influence on 
overall network efficiency. Some services (originally stopping at Wuhan) were modified to passing Wuhan without stopping or to avoid 
reaching Wuhan. For example, the service G79 from Beijing to Guangzhou was changed to passing Wuhan without stopping; and the 
service G507 from Beijing West to Hankou was modified to operate from Beijing West to Nanyang East in Henan province (without 
reaching Wuhan). 

More importantly, although exhibiting similar trends, the evolution of DWNE does not follow the exactly same pattern as the 
canceled service percentage. The magnitude of DWNE is also different from that of the canceled service percentage. This demonstrates 
the advantage of the composite metric, DWNE. While the number/percentage of canceled services can only reflect the quantity of 
service suspension, the composite metric reflects not only the quantity but also the impact magnitude on the generalized travel dis-
tance in terms of travel time and service frequency. Thus, the proposed metric, DWNE, is a plausible tool in comprehensive network 
robustness analysis to generate more significant managerial insights. 

6. Conclusions and policy implications 

This study proposes a new framework to assess the robustness of the HSR network influenced by service disruptions occurring in 
different time and space dimensions. We model the HSR network based on Space-P topological theory where disruptions change 
weights of edges instead of removing and losing all information related to the affected edges. The weighted efficiency metric is then 
introduced to evaluate the overall influence of disruptions on the network structure. Two types of disruption propagation regimes, 
including the random, and malicious propagation regimes, are considered and analyzed. Amongst, for the malicious propagation 
regime, the status of nodes in the network is evaluated using strength and weighted betweenness centrality, indicating the importance 
and transitivity of nodes in the weighted network for the degree-based and betweenness-based regimes, respectively. Taking China’s 
HSR network as a case study, we examine the robustness of the HSR network with disruptions that occur at various times of day and 
geographical locations. 

The main findings of this study include:  

1) HSR service disruptions happen in East China, in the Yangtze River Delta, or along the Harbin-Hong Kong corridor have the most 
significant influence on the network performance. HSR stations in Wuhan City play important role in the national HSR network; 
although the number of stations only accounts for 1.6% of the national total, disruptions of these stations may lead to a 14.33% 
decrease in the overall WNE of China’s HSR network, which is greater than many other transportation hub cities (e.g., Beijing, 
Guangzhou, Nanjing, and Shenyang).  

2) The HSR stations with the top 10 decrease in WNE vary across different time slots. The critical stations, i.e. Guangzhou South, 
Nanjing South, Chengdu East, Hankou (a station in Wuhan City), Shijiazhuang, Xi’an North, Wuhan, and Zhengzhou East stations, 
play important roles in the network performance of the HSR network and are mostly located at the intersections of multiple HSR 
lines.  

3) The robustness of the HSR network is sensitive to the disruption duration and start time. The HSR network in China is less robust 
with disruptions starting at 10:00 (among those ends within 9 h), or those with longer duration, especially those during 
10:00–15:00. The critical time slots show large similarity with the daily frequency of operating HSR services over time, indicating 
that modifications of service timetable can be potentially effective in enhancing the robustness of the HSR network over time.  

4) In terms of how the disruption propagates, the HSR network is the most resilient under random propagation regime, and less robust 
under the betweenness-based propagation regime in all time slots. It indicates that there may be a consistent pattern of robustness 
in the HSR network across different time slots. The robustness under random propagation depends on 80% of HSR stations, but that 
under degree-based and betweenness-based regimes depend substantially on 10% of HSR stations, which is different from the air 
transport network in China where the network will collapse when 20% of nodes are disrupted under the betweenness-based regime 
(Chen et al., 2020).  

5) According to real data, the impact of lockdowns during the COVID-19 outbreak in early 2020 led to approximately 14.5% reduction 
of the overall network efficiency at the peak. The evolutions of DWNE and COVID-19 cases indicate that central and local 
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governments have adopted the aggressive strategy in cooling down transportation and human mobility when facing the increase of 
COVID-19 cases; after the peak of COVID-19 cases, the protective strategy is adopted to resume HSR services gradually, lagging 
behind the decline of COVID-19 cases. 

This study implies it is necessary to research the robustness of the HSR network with both spatial and temporal variations of 
disruptions as time-of-day and geographical characteristics have significant influences on the network performance of the overall HSR 
network. The results demonstrate that the setting of technical standards of HSR infrastructure needs to take into account the variations 
to enhance the robustness of the overall network. This study provides methodological tools to facilitate decision-makers cognize the 
robustness of the HSR network with various types of disruptions. It can potentially provide policy supports for new HSR infrastructure 
planning and the uplift of security protections in critical areas, lines, and stations. 

There are some limitations in this work, which present opportunities for future research. First, the proposed framework in this study 
is built based on several assumptions to simplify the simulation of robustness assessment. The proposed framework is applicable to 
analyze and evaluate the cascading disruptions of nodes in a particular time slot, instead of multiple intermittent time slots. Hence, it is 
necessary to extend the framework to analyze service disruptions happening at more than one time slots. 

Second, this study focuses on the cascading disruptions of HSR stations, while the analysis of train/HSR line disruptions can also 
provide important insights into the overall service network robustness. The challenge of involving specific HSR services /lines of 
China’s HSR lies in the difficulty of retrieving the information regarding which HSR service physically uses which track segment. The 
HSR service between any two stations does not necessarily go along the shortest topological path in the network; services at different 
time-of-day for the same origin–destination pair may go along different paths. For example, between Nanjing South and Hangzhou 
East, the service G1509 stops at Shanghai Hongqiao, but service G1667 goes through Huzhou without passing Shanghai Hongqiao. 
Moreover, some services may physically pass through a station without stopping. For example, the service G31 from Beijing South to 
Hangzhou East that may not stop at any intermediate station. This leads to high complexity for data collection and network efficiency 
analysis in the context of train/line disruptions and deserves a profound study in the future. 

Third, while this study focuses on the HSR network, the interactions with air transport, intercity bus, and other transport systems 
can be explored in a future study. Traditionally, HSR is used as a relieving method for grounded air passengers. For example, Air 
Canada and VIA Rail have an airline-rail re-protection agreement, which is an emergency backup service for airline cancelations, 
providing train tickets in lieu of flights to get passengers to their destination (Jiang et al., 2017; Li et al., 2018). Some studies have 
compared and evaluated the vulnerability of HSR and air transport (Li et al., 2019; Chen and Wang, 2019) and the influence of HSR 
lines on the demand, price, and supply of air transport (Fu et al., 2012; Jiang and Zhang, 2014; Wan et al., 2016; Zhang et al., 2018, 
2019; Wang et al., 2020). However, little attention has been paid to the vulnerability of HSR and air transport from both spatially- and 
temporally-variant perspectives and the impacts of HSR on the vulnerability of the aviation service network. Future studies can extend 
the current framework to incorporate multi-modal systems. 

Lastly, the methodology for network performance assessment incorporating the other factors including the traveler behaviors, i.e. 
the ticket price, safety, comfort and the environment benefits from the perspective of energy consumption, CO2 emission, and eco-
nomic impacts (Robertson, 2016; Gu et al., 2019; Yang et al., 2020; Zhang et al., 2020) should be considered in the future study. 
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Appendix A. Comparison of the results by our method and alternative robustness metrics 

To examine the effectiveness and robustness of our method, we compared the results measured by our method and several 
alternative metrics adopted by previous studies. Alternative metrics include the weighted network efficiency (based on Zhou et al., 
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2019′s definition) and four more straightforward network efficiency metrics, i.e., including the average shortest travel time with least 
transfers (Hong et al., 2019), the network efficiency (adopted by Zhang et al., 2016; Chen et al., 2020), the number of affected trains, 
and the influenced passengers based on expected demand. The definitions of the alternative metrics are given as follows: 

1) Shortest travel time (adopted by Hong et al., 2019), of which the travel distance is set as the travel time between node pairs, is set 
as the difference of the arrival time at the destination station and the departure time at origin station. 

2) Network efficiency (adopted by Zhang et al., 2016; Chen et al., 2020), which is calculated using the average value of the 
reciprocal of the shortest topological paths between node pairs. In the unweighted network, the network efficiency measures the 
shortest topological paths between node pairs, which is calculated using the average value of the reciprocal of the shortest topological 
path length between node pairs (Zhang et al., 2016), written as: 

E =
2

n(n − 1)
∑n

i,j=1(i∕=j)

eij, eij = 1/dij (A.1)  

where E is the network efficiency metric in the unweighted network; n is the total number of nodes in the network at the initial state; eij 

is the path efficiency from origin node i to destination node jin the unweighted network; dij is the travel distance from origin node i to 
destination node j, which is set as the average value of reciprocal of the shortest topological path length between node pairs in the 
unweighted network and represented by the number of transfers. It is defined as: 

dij = min
p∈Pij

∑

k∈p
ek (A.2)  

where dijis the shortest topological path length and the number of transfers equals (dij − 1); Pij is a set of paths with the shortest to-
pological path length (or the least number of transfers) linking the origin node i and destination node j; a particular path p consists a 
series of directed edges from the shortest topological path; each directed edge k along path p is considered as an element of path p (Liu 
et al., 2020); ek is set as 1, indicating the presence of directed edge k, when there is an HSR service operating on the directed edge k. 

3) Weighted network efficiency (based on Zhou et al., 2019′s definition), of which the travel distance is set as the shortest paths 
between node pairs is calculated by setting the distance between two adjacent nodes as the reciprocal of train frequency instead of one. 
Based on this definition, the formula of weighted network efficiency is given by NE = 2

n(n− 1)
∑n

i,j=1(i∕=j)1/Wij, where Wij is the weighted 
shortest topological path, measuring the travel distances weighted by inverse service frequency from origin node i to destination node j 
along the shortest path, as defined by Eq. (2). 

4) The number of affected HSR services, one of the indicators reflecting the HSR service supply. Note that a more intuitive indicator 
of HSR service supply is the service capacity measured by the number of seats. However, the data regarding the number of seats per 
train of China’s HSR is inaccessible. Although some scholars (i.e. Wei et al., 2020) try to crawler the remaining ticket data from the 
open-source website (i.e. https://www.ctrip.com/), the data is of low quality. Thus, in this study, we use the number of affected HSR 
services to evaluate the influence of disruptions on the supply of HSR services. 

5) Affected potential demand. As the capacity and passenger volume data are unavailable for China’s HSR, we estimate the 
influenced potential demand as an approximation of the affected passengers by HSR disruptions. We regard all residents of a city as the 
potential demand for the HSR service. The disruption of HSR service between a specific O-D pair will potentially influence a proportion 
of the potential demand, where the proportion is determined by the strength of interactions between the O-D pair. Specifically, the 
expected potential demand from city a to city b is estimated by: 

Spatialinteractionab =
populationa*populationb

traveldistanceab
(A.3)  

Expectedpotentialdemandab = populationa ×
Spatialinteractionab

∑
cSpatialinteractionac

, b, c ∈ S 

Eq. (A.3) estimates the spatial interaction between city a and city b based on the Gravity model (Carrothers, 1956; Peters et al., 
2014). In Eq. (A.3), Spatialinteractionab represents the spatial interaction between city a and city b, populationaand populationb represent 
the population size of city a and city b, respectively, and traveldistanceab represents the travel distance between city a and city b. Eq. 
(A.4) estimates the expected potential demand from city a to city b, which is approximated by the population of city a multiplied by the 
proportion of Spatialinteractionab in the summation of the spatial interactions between city a and all possible destinations of city a, 
where S represents the destination set of city a by HSR. 

The robustness metric, affected potential demand, is defined by the total number of the expected demand of HSR service between 
the disrupted HSR stations, given by 

Affectedpotentialdemand =
∑

a

∑

b
Expectedpotentialdemandab, a, b ∈ R (A.5)  

where R represents the set of HSR stations affected by the disruption. 
Given the above definitions, we evaluate and compare the network performance under the proposed method and alternative 

metrics, respectively, affected by the same disruption. We consider the typical scenario where a particular HSR station is disrupted by 
an incident for a whole day. We simulate the scenario for all HSR stations in China and obtain the corresponding robustness metrics 
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based on different definitions. 
Table A.1 shows the top 20 HSR stations ranked by the proposed metric (DWNE) and alternative metrics. While a large proportion 

of the involved HSR stations appear in all rankings, different metrics give different priority sequences. The largest similarity between 
the proposed metric and alternative metric lies in the rankings by the reduction of weighted network efficiency (Zhou et al., 2019′s 
definition). However, rankings of Hankou (a station in Wuhan City), Xuzhou East, Urumqi, Foshan West, and Hefei South stations by 
DWNE are higher than those in the ranking of the reduction of weighted network efficiency (Zhou et al., 2019′s definition). This 
indicates the potential underestimate of the importance of some non-hub HSR stations if the network efficiency metric does not 
consider the location-based characteristics of HSR stations, which is evaluated by the average travel time to other stations. Similarly, 
rankings of HSR stations vary across other metrics. 

The similarities of rankings of our method and the shortest travel time (Hong et al., 2019′s definition), and that between our 
method and the weighted network efficiency (Zhou et al., 2019′s definition) are both 90%, but the included stations are different. For 
example, Kunming South and Lanzhou West respectively are ranked the 9th and 13th in terms of the methods used by Zhou et al. 
(2019), but their ranks change to 12th and 16th by DWNE. The reason might be that Kunming South and Lanzhou West are located in 
periphery areas. Compared with other methods, only 50% of the HSR stations amongst the top 20 HSR stations by DWNE appear on the 
list by the number of the affected potential demand. The affected population might overestimate the importance of HSR stations by 
including the whole population as the potential demand (i.e. Beijing South and Beijing West). 

To examine the overall similarity between DWNE and alternative metrics, we calculate the correlation coefficients between metrics 
based on the simulation results obtained for all HSR stations. The correlation coefficients are shown in Table A.2. It is found that the 
proposed metric has substantial correlations with alternative metrics, with correlation coefficients between 0.61 and 0.98. Some 
correlation coefficients are negative, as they measure the reduction of network efficiency. The correlation between alternative metrics 
is also high. This implies that various metrics, capturing different aspects of network efficiency, are consistent with one another in 
general. In particular, the proposed metric, DWNE, is a composite metric that can reflect more comprehensive characteristics of HSR 
stations in the network, including the topological, service-based, and location-based indicators. 

To summarize, the proposed metric DWNE is effective and robust as the measurements are consistent with existing metrics. 
However, DWNE is more plausible in generating a more comprehensive appraisal of network efficiency being more inclusive and 
informative. 

Table A1 
Top 20 HSR stations ranked by the proposed metric and alternative metrics.  

Rank Our method 
(DWNE) 

Increment of shortest 
travel time (Hong et al., 
2019) 

Reduction of network 
efficiency (Zhang et al., 2016; 
Chen et al., 2020) 

Reduction of weighted 
network efficiency (Zhou 
et al., 2019) 

No. of affected 
HSR services 

Affected 
potential 
demand 

1 Guangzhou 
South 

Guangzhou South Xi’an North Guangzhou South Guangzhou 
South 

Guangzhou 
South 

2 Nanjing South Shanghai South Urumqi Nanjing South Nanjing South Xi’an North 
3 Xi’an North Hankou Guangzhou South Chengdu East Shanghai 

Hongqiao 
Xuzhou East 

4 Hankou Xi’an North Shanghai South Xi’an North Hangzhou East Shanghai 
Hongqiao 

5 Shanghai 
South 

Nanjing South Xuzhou East Zhengzhou East Shenzhen North Chengdu East 

6 Chengdu East Xuzhou East Lanzhou Xi Hankou Changsha South Beijing Xi 
7 Wuhan Wuhan Chengdu East Wuhan Beijing South Beijing South 
8 Zhengzhou 

East 
Zhengzhou East Hankou Changsha South Zhengzhou East Chongqing West 

9 Xuzhou East Foshan West Lianyungang Kunming South Xi’an North Nanjing South 
10 Shijiazhuang Shijiazhuang Shenyang North Shanghai South Wuhan Shijiazhuang 
11 Changsha 

South 
Urumqi Beijing West Shijiazhuang Chengdu East Hangzhou East 

12 Kunming 
South 

Shenyang North Zhengzhou East Hangzhou East Jinan West Huaian East 

13 Urumqi Changsha South Wuhan Lanzhou West Shijiazhuang Zhengzhou East 
14 Hangzhou East Hefei South Shenyang North Xuzhou East Xuzhou East Taiyuan South 
15 Foshan West Lianyungang Kunming South Urumqi Hefei South Fuyang South 
16 Lanzhou West Beijing West Shijiazhuang Shanghai Hongqiao Nanning East Chaoyang 
17 Beijing West Tangshan Beijing South Shenzhen North Suzhou Changsha South 
18 Shenyang 

North 
Shenyang Shanghai Hongqiao Foshan West Wenzhou South Maoming 

19 Shenyang Chengdu East Nanjing South Beijing West Hankou Suqian 
20 Hefei South Hangzhou East Tangshan Shenyang Wuxi Hufei South  
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Table A2 
Correlation of the network efficiency measured by our method and alternative metrics.   

Our method 
(DWNE) 

Increment of shortest 
travel time (Hong 
et al., 2019) 

Reduction of network 
efficiency (Zhang et al., 
2016; Chen et al., 2020) 

Reduction of 
weighted network 
efficiency  
(Zhou et al., 2019) 

No. of 
affected HSR 
services 

Affected 
potential 
demand 

Our method (DWNE) 1      
Increment of shortest travel 

time (Hong et al., 
2019) 

0.9202 1     

Reduction of network 
efficiency (Zhang et al., 
2016; Chen et al., 
2020) 

0.8104 0.8344 1    

Reduction of weighted 
network efficiency ( 
Zhou et al., 2019) 

0.979 0.8269 0.726 1   

No. of affected HSR services − 0.7476 − 0.6331 − 0.5326 − 0.7657 1  
Affected potential demand − 0.6122 − 0.5161 − 0.512 − 0.6158 0.646 1  
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