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Abstract Surface water is the most dynamic land-cover type. Transitions between water and nonwater
types (such as vegetation and ice) can happen momentarily. More frequent mapping is necessary to study
the changing patterns of water. However, monitoring of long-term global water changes at high spatial
resolution and in high temporal frequency is challenging. Here we report the generation of a daily global
water map data set at 500-m resolution from 2001 to 2016 based on the daily reflectance time series from
Moderate Resolution Imaging Spectroradiometer. Each single-date image is classified into three types: water,
ice/snow, and land. Following temporal consistency check and spatial-temporal interpolation for missing
data, we conducted a series of validation of the water data set. The producer’s accuracy and user’s accuracy
are 94.61% and 93.57%, respectively, when checked with classification results derived from 30-m
resolution Landsat images. Both the producer’s accuracy and user’s accuracy reached better than 90% when
compared with manually interpreted large-sized sample units (≥1,000 m × 1,000 m) collected in a previous
global land cover mapping project. Generally, the global inland water area reaches its maximum
(~3.80 × 106 km2) in September and minimum (~1.50 × 106 km2) in February during an annual cycle.
Short-duration water bodies, sea level rise effects, different types of rice field use can be detected from the
daily water maps. The size distribution of global water bodies is also discussed from the perspective of
the number of water bodies and the corresponding water area. In addition, the daily water maps can
precisely reflect water freezing and help correct water areas with inconsistent cloud flags in the MOD09GA
quality assessment layer.

Plain Language Summary Daily global inland surface water maps are produced from more than
1.9 million frames of satellite images for the period of 2001–2016 with a spatial resolution of 500 m. From
this time series of maps, we found that the inland surface water on Earth varies greatly in area within an
annual cycle. It can reach more than 3.8 million square kilometers in September and reduce to approximately
1.5 million square kilometers in February. We demonstrate that (1) short-duration water bodies in arid areas,
which are particularly important to life, can be detected from these daily water maps; (2) sea level rise
effects on land submersion can be detected over some gentle-slope coasts like west Florida; and (3) different
types of rice field use exist in the world. For example, in California, United States, rice fields are filled with
water after harvest to help create a wetland environment for wild birds in the winter.

1. Introduction

Abundance and distribution of surface water are direct indicators of availability and accessibility of water in a
region. Surface water is an essential variable in ecological, hydrological, climate, and even carbon cycling and
biodiversity studies (Downing et al., 2006; Jung et al., 2010; Pereira et al., 2013; Raymond et al., 2013; Schuur
et al., 2015; Seekell et al., 2014). Since water is a highly variable surface parameter on Earth, it is particularly
important to have an accurate, frequent, and long-term record of its spatial-temporal distribution over large
areas (Sun et al., 2014). For applications like land surfacemodeling andwatermanagement, it is desirable to have
daily ormore frequent water information (Howells et al., 2013; Pfister et al., 2011; Wada et al., 2014). To have such
information over large areas, satellite remote sensing is the only possible technology (Gong et al., 2013).

At the global scale, although satellite remote sensing has the global coverage in the 1970s, it was not until the
1990s that global water data with kilometer-scale resolution derived from the NOAA weather satellite data
became available in general land cover classification maps (e.g., Hansen et al., 2000; Loveland et al., 2000).
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Water surface is always a land cover category in general purpose land cover maps in 500-, 300-, 250-, and 30-m
resolution products (e.g., Arino et al., 2008; Friedl et al., 2002; Gong et al., 2013; Wang et al., 2015). However,
general purpose land cover maps are primarily produced from optical satellite data acquired at best in annual
scales that are subject to cloud contamination and topographic effects, and due to the limitation of
classification-based algorithms, accuracies of the water category from land cover map products are not opti-
mized (Ji et al., 2015). Therefore, specialized water extraction algorithms have been developed to take advan-
tages of more frequent optical remotely sensed data, more weather robust microwave data, or the integration
of optical and microwave data. A 250-m resolution global land water mask was developed by integrating
90-m resolution Shuttle Radar Topographic Mission (SRTM) data and Moderate Resolution Imaging
Spectrometer (MODIS) data (Carroll et al., 2009). Because SRTM was acquired in 2000, this water mask used
MODIS data acquired around 2000 and 2001, so it can be regarded as a global water mask for 2000. Coarse
resolution (~25 km) water masks have been produced frommicrowave radiometer data at annual (Papa et al.,
2010) and monthly (Prigent et al., 2012) basis covering a time span of 1993–2007. Ancillary topographic and
hydrological data were used to downscale those coarser resolution data to 500-m resolution annual global
inundation data (Fluet-Chouinard et al., 2015). With intensive manual editing, a 30-m resolution global water
mask was produced using single-date circa 2010 Landsat Thematic Mapper (TM) data (Liao et al., 2014). More
automated data products on global lake inventory and global water mask were generated from circa 2000
Landsat TM data (Feng et al., 2016; Verpoorter et al., 2014). By using multitemporal Landsat images, a global
3 arc-second water body map, which can separate permanent water bodies from the temporal water-covered
areas, was conducted for four Global Land Survey epochs (Dai et al., 2015). A 30-m resolution monthly global
water surface product was produced using classificationmethods in Google Earth Engine based on all Landsat
TM data during 1984–2015 (Pekel et al., 2016).

From the above review, it can be seen that creation of daily water surface data at the global scale is still a
challenge. The reasons include the restrictions of data availability due to the limited spatial coverage and
low temporal frequency of higher spatial resolution data (finer than 100 m) or the lack of spatial detail due
to low spatial resolution (poorer than 10 km) of more frequently available data. It seems that despite of
the cloud and snow/ice effects over various geographical locations on Earth, the freely accessible, daily
repeat-cycle MODIS data (two bands of 250 m with five more bands of 500-m resolution optical data) from
the United States and the Medium Resolution Imaging Spectrometer data (300-m full resolution) from
Europe are the only choices for producing daily surface cover products at the subkilometer level. Because
Medium Resolution Imaging Spectrometer data were only available from 2002 to 2012, MODIS became the
only alternative with a continuing capability of data acquisition since 2000. Klein et al. (2015) developed a
technique to map daily global surface water using 250-m MODIS data, but they only tested it for the year
of 2013 and 2014 (Klein et al., 2015, 2017). However, the 250-m MODIS data are acquired from only two
spectral bands in visible (VIS) and near infrared. The unique niche of 500-m resolution MODIS data, which
not only have spectral coverage expanding into the short wave infrared (SWIR) spectral region but also are
continuously available on a daily basis covering nearly two decades of the Earth surface, makes it worthwhile
to continuously generate daily global water cover data for both the water resource management and the
scientific community at large in various other Earth system studies.

The purpose of this research is to develop and evaluate an efficient algorithm for producing global surface
water cover and apply it to 500-m resolution MODIS data and ancillary topographic and land surface
temperature (LST) data to create an archive of daily global water surface data product from 2001 to 2016.
The cloud and ice effects have been reduced as much as possible. In the rest of this paper, we present the
algorithms, the validation, and some characteristics of the produced daily global water maps through some
preliminary analysis.

2. Data
2.1. A MODIS Daily Reflectance Time Series

The 500-m MODIS surface reflectance product, MOD09GA (version 6, https://lpdaac.usgs.gov/) from 2001 to
2016, is selected for daily global water mapping. MODIS data are organized in 10° × 10° image tiles. There are
more than 1.9 million titles of images during the period of 2001 and 2016. For each tile, it provides seven
reflectance bands from the VIS to SWIR spectral ranges in a daily gridded level-2 product in Sinusoidal
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projection. Besides, it also includes a 500-m State quality assessment (QA) layer, which describes the data
quality of the seven reflectance bands, and a 1-km State QA layer to indicate whether a pixel contains
cloud, cloud shadow, snow, aerosol, and so forth.

Two major data problems exist in this product: cloud cover and the no valid data (NVD), as shown in Figure 1a.
The average occurrence of cloud and valid data for these 16 years are given in Figures 1b and 1c. It can be seen
that the tropics and the east side of the Tibet Plateau suffer from severely high cloud cover throughout a year,
while the high latitude area is subject to the lack of valid data.

2.2. Auxiliary Data

Three different types of auxiliary data sets are used. (1) Topographic information is derived from the
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30-m elevation data and
SRTM 90-m elevation data. The ASTER Digital Elevation Model (DEM) data are used as supplementary data
in slope calculation for areas from 60°N to 80°N where SRTM DEM does not cover. (2) MODIS daily LST time
series. The LST is important for differentiating between water and low-reflectance snow-cover or ice area. The
MODIS LST daily product, MOD11A1 (version 6, https://lpdaac.usgs.gov) at 1-km spatial resolution, is utilized
as an additional information for water and snow/ice classification. (3) Improved FROM-GLC water layer. Finer
Resolution Observation and Monitoring of Global Land Cover (FROM-GLC) is the first 30-m resolution global
land cover product. Its water mask has been refined mainly by eliminating the misclassification of cloud and
mountain shadows (Ji et al., 2015). This product has been used as a reference map, especially in preserving
small-sized water bodies.

2.3. Validation Data

Two kinds of validation samples, FROM-GLC training and test samples and the higher resolution Landsat
imagery, were used in this study.

(1) A total of 91,433 training and 38,664 test sample units was produced for FROM-GLC circa 2010 (Zhao et al.,
2014). The locations of training samples were manually determined by interpreters traversing all Landsat
images used in producing FROM-GLC 2010, while the locations of test samples were fixed by preset in a
systematic unaligned manner. Both training and test samples are globally distributed, except for Arctic and
Antarctic regions (Gong et al., 2013). Five years later, a multiseason sample set for FROM-GLC circa 2015
was developed, which had the same sample location as in the 2010 version but contain dynamic land cover
types for four seasons (C. Li et al., 2017). The attributes for each sample point include location, date, sample
size, and land cover type. The date of sample units in the FROM-GLC 2010 product ranges from 13 September

Figure 1. Illustration of pixels without valid data (a, R: Band 4, G: Band 3, B: Band 2, hv = “h28v06”, day of year [DOY] = 096,
year = 2014). The average percentage of cloud cover (b) and valid data (c) from 2001 to 2016. The image stretchingmode is
Minimum-Maximum.
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1984 to 09 August 2011, and 69.39% of the samples were between 2009
and 2010, while the FROM-GLC 2015 sample units range from 26
February 1985 to 06 July 2015, and 99.85% of the sample units are
between 2014 and 2015. Considering the consistence in time and exclu-
sion of cloud cover, the sample used in this study was picked from differ-
ent FROM-GLC sample sets (Table 1). It can be observed that the
percentage of water for test samples (i.e., 3.14% for 2015 and 3.78% for
2010) is close to the actual percentage of the inland water on Earth
(≈380 × 104 km2/149 × 106 km2 = 2.55%). The percentage of 2015 is lower
because the there is more inland water on Earth in 2010 than 2015 (refer-
ring to Figure 13).

(2) Seven hundred twenty globally distributed Landsat-8 images were selected for further validation
(Figure 2). The selection criteria for these Landsat images are

1. The Landsat image should contain water pixels;
2. For the convenience, each Landsat image should fall inside one MODIS tile; and
3. Landsat images that are partially or totally falling into those NVD gaps in the MODIS data were not chosen.

The percentage of valid Landsat-8 images that can be used for validation is shown as the background in
Figure 2. Finally, time series of 55 validation sites (red dots in Figure 2) consist of a total of 720 Landsat tiles,
including 196 in spring, 203 in summer, 176 in autumn, and 145 in winter, the cloud covers of which are all
less than 50%. Moreover, Landsat images of saline lakes, small-size ponds and rivers, frozen lakes, and
flooded wetland were deliberately chosen for closer assessment of the accuracy of our MODIS water product
in those typically difficult areas.

3. Method

Global water time series are produced through an automated, three-stage procedure (Figure 3). First, water is
identified on each single-date MODIS reflectance image by a rule-based algorithm. Then, an object-based
postclassification method is applied to each water classification result to remove the misclassification from
shadow (including cloud and mountain shadows). At this stage, prior knowledge about global water distribu-
tion and DEM information is used. Finally, cloud and NVD areas are removed using time series
processing methods.

3.1. Preprocessing for Cloud, Ice/Snow, and NVD

The 1-km MOD09GA State QA layer contains both cloud and ice/snow flags that can be applied to the 500-m
reflectance data. For cloud, it contains two flags: cloud state (bit 0-1; 00: clear, 01: cloudy, 10: mixed, and 11:
not set, assumed clear) and internal cloud algorithm flag (bit 10; 1: cloud and 0: no cloud). We combined the

Table 1
The Number of Sample Units in the Four FROM-GLC Sample Sets for All Land
Cover Types (Except Cloud) and Water

FROM-GLC sample set All types Water Percent

FROM-GLC training, 2015, multiseason 305,877 33,345 10.90
FROM-GLC test, 2015, multiseason 128,584 4,040 3.14
FROM-GLC training, 2010 73,839 9,979 13.51
FROM-GLC test, 2010 31,827 1,204 3.78
Total 540,127 48,568 8.99

Figure 2. The Landsat image-based validation sites. The background is the percentage of the valid Landsat images for vali-
dation. An example where the arrow refers is found in Figure 9.
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two flags to form a new cloud flag that contains as describe in Figure 4a, where the uncertain flag means the
inconsistent result for cloud in MODGA State QA layer. These will be subsequently processed.

Similarly, the State QA layer also have two ice/snow flags:MOD35 snow flag (bit 12; 1: yes and 0: no) and inter-
nal snow mask (bit 15; snow, 0: no snow). We also combined the two flags to form a new ice/snow flag as
shown in Figure 4b, where the uncertain flag shows the inconsistent result for ice/snow in MODGA State
QA layer. For those inconsistent cloud or ice/snow pixels, they will be reclassified in the following single-tile
water classification process. In the case that a pixel is simultaneously labeled as cloud or ice/snow, ice/snow
has a higher priority.

However, overclassification of ice/snow is found globally, even in tropical area (Figure 5). To overcome this
problem, the strategy is to use the surface temperature. Therefore, the MODIS daily LST time series is applied
here to identify the real snow/ice pixels. That is, a pixel that has a LST value LST> TLST will be excluded (in this
study, the threshold is set to TLST = 1 °C).

Similar to the MODIS reflectance data, the LST data also have the cloud and NVD problem, the interpolation
for these gaps will be introduced in section 3.4.

When a pixel has NVD on a certain day (Figure 1a), it is labeled as NVD for that day. Technically, it includes two
kinds of situations:

1. when the image is not acquired, all pixels of that image are labeled as NVD on that day. For the absent
image, the corresponding water cover map is interpolated with time series processing, which is described
in section 3.2.2.

2. when the image is not absent, the 500-m MODIS State QA layer is used. If the first two bits of the State QA
layer are equal to 10 or 11, then the pixel is referred to NVD.

3.2. Rule-Based Water Classification

In the solar spectral range, a typical spectral characteristic of water is that it has higher reflectance at the VIS
bands than at the SWIR range (Ji et al., 2015). However, due to atmospheric correction error, some low

Figure 3. The flow chart of MODIS daily reflectance time series water mapping. LST = land surface temperature.
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reflectance water pixels may fail to exhibit this spectral property.
Therefore, we first divide the water into two types, high-reflectance and
low-reflectance water based on VIS reflectance. Suppose maxVIS = max
{Band 1, Band 2, Band3}, representing the maximum reflectance value in
the VIS bands. Then the definition for the three types of water are

high� reflectance : maxVIS≥TVIS
low� reflectance : maxVIS < TVIS

�
; (1)

where the thresholds are set to TVIS = 0.05 in this study. The strategies to
detect the two types of water are different, and the detailed description
is as follows.
3.2.1. High-Reflectance Water Classification
The spectral characteristic of water that its VIS bands has higher reflec-
tance than the SWIR range can be represented using the following simple
water index (WI),

WI ¼ 0; if maxVIS ≤ maxSWIR

1; if maxVIS > maxSWIR
;

�
(2)

where variable maxSWIR is defined as max {Band 6, Band 7}, meaning the
maximum reflectance value in SWIR spectral ranges.

Figure 4. Combined layers for cloud (a) and ice/snow (b) generated from 1-km MOD09GA State QA layer. Internal in
(a) = internal cloud algorithm flag; MOD35=MOD35 snow flag; internal in (b) = internal snow mask.

Figure 5. The global ice/snow cover days derived from 1-km MOD09GA
State QA layer in 2015 (a) and the number of pixels labeled as ice/snow
for tile “h29v08” (b), which is located in the tropical area where there is no
ice/snow.
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Figure 6. Illustration of water spectra from erroneous atmospheric correction, as W2~4 and the confusion between water
(W1) and vegetation (Veg) in visible bands. (a) Locations of water and vegetation samples and (b and c) the corresponding
spectral signatures. The image covers the northern part of Lake Superior. VIS = visible; SWIR = short wave infrared.

Figure 7. Illustration of the time series process for MODIS LST data (valid data in blue and originally no valid data in red). LST = land surface temperature;
MODIS = Moderate Resolution Imaging Spectroradiometer.
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Figure 8. Illustration for the definition of spatial limit, S (a) and temporal limit, D (b). MODIS = Moderate Resolution Imaging
Spectroradiometer; DOY = day of year; NVD = no valid data.

Figure 9. Illustration of the problem in the water map in the Cfmask layer for Landsat image (path = 203, row = 028 with
location corresponding to the arrow in Figure 2). (a) False color image with day of year = 001 (2014, R: NIR band, G: Red
band, B: Green band) and (b) for day of year = 257. (c and d) Zoom images for the squares in (a) and (b).
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In addition, due to the strong water absorption in the SWIR range, the SWIR bands usually have very low
reflectance for water. The SWIR reflectance is also used for water classification in this study. The classification
rule for high-reflectance water is

condition 1 high� reflectance waterð Þ : maxVIS≥TVIS andWI ¼ 1 and maxSWIR
< TSWIR;where the thresholds are set to TSWIR ¼ 0:1:

3.2.2. Low-Reflectance Water Classification
However, when the total water reflectance is low, its VIS and SWIR bands may not satisfy WI = 1 because of
atmospheric correction errors. An example is shown in Figure 6 to illustrate this phenomenon. For water pix-
els W2~4, the reflectance of their SWIR bands should be lower based on the absorption characteristics of
water. Yet, as shown in Figure 6b, W2~4’s SWIR bands have a higher reflectance value than the VIS bands.
Accordingly, their WIs are equal to 0, which is obviously wrong. Therefore, another important feature of this
type of water is used here, that is, water generally has low reflectance in VIS and SWIR bands.

However, vegetation-dominated pixels (like wetland) could also have low reflectance in these bands (Veg in
Figure 6c). So the normalized difference vegetation index (NDVI) is also introduced to reduce the confusion
between water and “dark” vegetation. The NDVI index in the form of MODIS band designation is expressed in
the following:

NDVI ¼ Band 4� Band 3ð Þ= Band 4þ Band 3ð Þ: (3)

To sum up, if a pixel satisfies the following condition, it will also be classified as water,

condition 2 low� reflectance waterð Þ : maxVIS < TVIS and maxSWIR < TSWIR and NDVI
< TNDVI;where the NDVI threshold is set to TNDVI ¼ 0:2:

Figure 10. Flow of the water classification for Landsat-8 time series.

Figure 11. Distribution of global water cover days for 2010. The image stretching mode is Minimum-Maximum.
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It should be noted here that the inconsistent cloud- or ice/snow-covered pixels (i.e., cloud or ice/snow flag
equal 1 or 2) will be relabeled as water if it satisfies either condition (1) or (2). Thereby, water that has been
misrecognized by MODIS cloud and ice/snow flags can be corrected by our algorithm.

3.3. Object-Based Post-Classification

Shadows caused by cloud and mountains also have relatively low reflectance as water. For many prevalent
classifiers, shadows are easily misclassified as water, which becomes the largest source of error in water map-
ping. An object-based postclassification method is adopted here, which has been successfully applied to
remove incorrectly classified water pixels in Landsat water mapping (Ji et al., 2015). To remove these sha-
dows, this method computes the topographical feature, spectral feature, and geometrical relation with cloud
for each water object and sets specific rules to determine whether the water object is misclassified.

Since spectral features (WI) have already been used in the rule-based classification procedure, we only com-
pute the average terrain slope and cloud shadow probability for each water object. The cloud shadow flag for
each pixel is directly derived from theMODIS State QA layer. Next, a water object satisfies any of the following
conditions will be ruled out as shadows:

Exclusion criterion 1 (mountain shadow): the average slope > Tslope,
Exclusion criterion 2 (cloud shadow): the cloud shadow probability > Tshadow.

The improved 30-m FROM-GLC water map is used for better threshold setting. Looser criteria will be set if a
water body has a greater overlap with the FROM-GLC water layer. Here we use the sigmoid function to adjust
the thresholds. That is, Tslope = 4 × S(10 × [pFROM � GLC� 0.5]) + 6, where S(x) = 1/(1 + e�x) is the sigmoid func-
tion, and pFROM � GLC ∈ [0, 1] is the overlap extent of the water body with the FROM-GLC water layer. Similarly,
Tshadow = 0.2 × S(10 × [pFROM � GLC� 0.5]) + 0.8. As a result, some small-sized water bodies in mountainous or
cloudy areas will have a larger chance to avoid being mistakenly deleted in this procedure.

Figure 12. Comparison between our result (2010 water cover days) and global lakes and wetlands database (red) in
(a) Poyang Lake and (b) Lake Chad.

Figure 13. Daily global water area dynamics from 2001 to 2016.
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3.4. Time Series Processing

To solve the cloud cover and NVD problem (Figure 1), a temporal-spatial filtering algorithm is adopted for
both MODIS daily LST and water classification time series. Since the former is continuous while the latter is
discrete, their detailed processing steps are different.
3.4.1. MODIS LST Time Series Processing
An example diagram for MODIS LST time series process is presented in Figure 7, which aims to provide
continuous values for cloud/NVD gaps in LST data. Suppose LSTM × N × L is the input MODIS LST time ser-
ies, where M and N represent numbers of lines and columns and L stands for the number of days (here
M = N = 1,200 and L = 12 × 365 + 4 × 366). First, we downscale the data in the spatial dimension with

a factor of K pixels using a spatial average method, and the downscaled data are noted as LSTM�N�L, where

M ¼ fix M=Kð Þ, and N ¼ fix N=Kð Þ (the operator fix(.) means returning a integer value). The selection criterion
for K is to choose the minimum integer which can guarantee that the time series for each pixel in

LSTM�N�L does not contain invalid value (here K = 100). Then a linear regression method is applied for

each pixel to fix the cloud and NVD problem. For simplicity, let y1 × L = LSTi, j, : represent the LST time

series for pixel (i, j). So the corresponding downscaled LST time series y1�L ¼ LST i;j;: , where i ¼ fix i=Kð Þ,
and j ¼ fix j=Kð Þ . Suppose indexvalid and indexnon � valid represent the indices for the valid and invalid
values in y. Then a linear regression model is established as

yindexvalid ¼ a�yindexvalid þ b: (4)

Figure 14. Comparison of water cover days between 2009 and 2010 in Pakistan (a) and Mexico (b).

Figure 15. The distribution of water area with the number of water covered days (a) and the number of water lasting days
(b). The y axis is plotted in a logarithmic scale.
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Those nonvalid values in y can be interpolated by

ey indexinvalid ¼ a�yindexinvalid þ b: (5)

Therefore, the final cloud and NVD-free LST time series gLSTM�N�L is com-
bined by

gLST i; j;indexvalid ¼ yindexvalid and gLST i; j;indexinvalid ¼ ey indexinvalid : (6)

3.4.2. MODIS Water Time Series Processing
In order to produce a gap-free MODIS water time series, all the cloud/NVD

pixels are eliminated based on certain rules considering both spatial and temporal consistency. Two para-
meters, the spatial limit S and temporal limit D, are first calculated for each pixel (i, j), which are defined as

1. Spatial limit S. The improved FROM-GLC water layer is used, noted as WFROM � GLC. For pixel (i, j), if it is a
water pixel in the FROM-GLC water layer, the spatial limit S is defined as the minimum value that the S
neighborhood of pixel (i, j) is all water (Figure 8a). On the other hand, if pixel (i, j) is a land pixel in the
FROM-GLC water layer, then S = 1. In the following interpolation process, for pixel (i, j), only its
(2S + 1) × (2S + 1) neighborhood pixels are involved.

2. Temporal limitD. For pixel (i, j, k) (where i and j stand for the spatial coordinates and k is the temporal coor-
dinate), D represents the lasting cloud/NVD days around pixel (i, j, k) in the temporal dimension, as illu-
strated in Figure 8b. It is the minimum value that the D temporal neighborhood of pixel (i, j, k) is all
cloud/NVD. The temporal limit D is used to determine the temporal range for interpolation. The detailed
interpolation method is as follows.

Then, monthly downscaled water-cover time series W
year
M�N�K were calculated in time, where year = 2001, …,

2016, andK ¼ 12. For each month from January 2001 to December 2016, a voting method is applied by com-
paring the probability of pixel (i, j) being land, ice/snow, and water with only valid classification values. If pixel

(i, j) does not have any valid label for a whole month, Wi;j;k is kept as cloud/NVD.

To process pixel (i, j, k) that is labeled as cloud/NVD, if D < TD, which indicates a short-term cloud/NVD per-
iod (here TD = 7), a spatial temporal nearest neighborhood method is applied. That is, Wi, j, k is replaced by
the nearest valid label in theWi � S : i + S, j � S : j + S, k � D � 1 : k + D + 1. For the same distance, the priority rank
is snow/ice > water > land. On the other hand, if D ≥ TD, which implies a long-term cloud/NVD period,Wi, j, k

is assigned toWi;j;k ¼ W
year

i;j;k
. IfW

year

i;j;k
is labeled as cloud/NVD, we applied the nearest neighborhood method

on the time series W
2001
i;j;k ;…;W

2016
i;j;k

h i
:

Table 2
Confusion Matrix Using 720 Landsat Images

Landsat

Non-water Water UA (%)

MODIS Non-water 15,393,169 62,166
Water 75,022 1,091,581 93.57
PA (%) 94.61 99.17

Note. MODIS = Moderate Resolution Imaging Spectroradiometer;
UA = user’s accuracy; PA = producer’s accuracy.

Figure 16. The accuracy of Moderate Resolution Imaging Spectroradiometer water product based on FROM-GLC samples.
(a) The distribution of FROM-GLC sample units of different spatial sizes and (b) corresponding PA and UA of the
Moderate Resolution Imaging Spectroradiometer water product. The number in the bracket represents the number of
sample units. PA = producer’s accuracy; UA = user’s accuracy.
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3.5. Landsat Image Processing for Validation

The Cfmask in the Landsat surface reflectance package, which is mainly
produced for cloud and cloud shadow identification, also includes classes
for water and snow/ice (Zhu &Woodcock, 2012). Therefore, the water layer
from Cfmask for each Landsat image can be used to validate the MODIS
result. For Landsat data acquired in the summer with relatively flat terrain,
the Cfmask water result is quite reliable. However, for mountainous areas,
shaded slopes covered by snow/ice are easily misclassified as water, even
in the summer season (Figure 9). To solve this problem, the improved
FROM-GLC water results are introduced as an auxiliary data to exclude
mountain shadows with steep slopes. Based on the algorithm for mountai-
nous shadow removal (Ji et al., 2015), a simplified method is applied here.
Water objects satisfy either of the following two conditions will be rela-
beled as nonwater,

1. average slope > Tslope and the percentage of FROM-GLC being
water < TFROM-GLC;

2. average NDVI > TNDVI and the percentage of FROM-GLC being
water < TFROM-GLC,

where the percentage of FROM-GLC being water is calculated by the num-
ber of pixels being labeled by FROM-GLC as water divided by the total number of pixels in the water object.
The thresholds used here are set as Tslope = 8°, TNDVI = 0.2, and TFROM-GLC = 30%.

In addition, the cloud cover problem is implemented by using the time series interpolation (Figure 10).
Finally, careful manual inspection for each Landsat water mapping result is done to ensure a high accuracy
validation data set.

4. Results

Our daily 500-m water map is a global raster data set in the same sinusoidal projection as in MODIS data pro-
ducts. There are four discrete values as 0-Land, 61-Water (unfrozen), 62-Water (frozen), and 255-Fill (areas of
no value). A data quality layer is also produced for all water pixels in each tile in two states: high quality and
low quality (cloud or NVD pixels). Figure 11 presents the global distribution of water cover days (both frozen
and unfrozen states) in 2010, and some details are given in Figure 12 for two highly dynamic lakes, Poyang
Lake and Lake Chad. Compared with the static water product, like the global lakes and wetlands database
(Lehner & Döll, 2004), our result is able to reveal the temporal changes for those dynamic water systems.

Figure 17. Accuracy assessment for Moderate Resolution Imaging
Spectroradiometer water product for spring, summer, autumn, and winter
with large FROM-GLC samples (≥1,000 m × 1,000 m). In the north (south)
hemisphere, spring: March–May (September–November), summer: June–
August (December–February), autumn: September–November (March–May),
winter: December–February (June–August). The number in the bracket
represents the number of sample units. PA = producer’s accuracy; UA = user’s
accuracy.

Table 3
Comparison of Global Water Area for Different Water Products

Product name Main data sources Spatial resolution Temporal range Temporal resolution Water area (×104 km2)

MOD44W (Carroll et al., 2009) MOD44C (optical) 250 m 2000–2007 Single-period 373
GIW (Feng et al., 2016) Landsat (optical) 30 m 2000 Single-period 365
Improved FROM-GLC (Ji et al., 2015) Landsat (optical) 30 m 2010 Single-period 407
Pekel et al. (2016) Landsat (optical) 30 m 1984–2015 Monthly Extenta: 452

Permanentb (2015): 278
Prigent et al. (2012) SSMI (passive microwave)

ERS (active microwave)
AVHRR (optical)

~25 km 1993–2004 Monthly Minc: 210
Maxd: 590

This study MOD09GA (optical) 500 m 2001–2016 Daily Min: 150
Max: 380
Extent: 490

Permanent (average): 125

aAll the locations ever detected as water over a period of time. b12 months of water over a year. cThe water area with the least water cover over a period of
time. dThe water area with the most water cover over a period of time.
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Daily change of global inland water areas is shown in Figure 13. Generally, global water area reaches its max-
imum (~380 × 104 km2) in September and its minimum (~150 × 104 km2) in February. It is mainly because (a)
water will freeze in winter in the northern hemisphere and (b) most of the water is distributed in the northern
hemisphere. Our result also reveals the importance of water mapping in a daily frequency. It can be found
that water covers more area in some year (like 2010) than other years (like 2009). Examples of water cover
days for 2009 and 2010 of Pakistan and Mexico are shown in Figure 14. Both areas have suffered severe flood
disasters in 2010.

The distributions of water area versus the number of water covered days and the number of water
lasting days are shown in Figure 15. Generally, water area decreases as the number of water
covered/lasting days increases, except when the number of water covered/lasting days ≥360. It is because
some large lakes are mostly covered by water, such as the Caspian sea, Lake Victoria, the Great Lakes in
North America, and so forth. From Figure 15, we can see that high temporal resolution is important to
mapping the water dynamics.

Figure 18. The cloud detection problems of Moderate Resolution Imaging Spectroradiometer State QA layer at high-
reflectance water bodies. (a) False color image at SaltPans (year = 2015, day of year = 003). (b) The number of water
cover days in 2015 of our product. (c) The percentage of cloud cover labeled as “cloudy” or “mixed” in the cloud state layer,
and (d) the percentage of cloud cover labeled as “cloud” in the internal cloud algorithm flag for 2015.
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5. Validation

The accuracy of our product is assessed by using both the image-based data (Landsat-8 images) and the
point-based data (FROM-GLC sample sets). Each Landsat image is first classified into two classes, water and
nonwater, and then resampled into a 500-m resolution water fraction map in Sinusoidal projection. Finally,
the reference Landsat-8 water map is produced by labeling all the pixels with water fraction no less than
50% as water. A pixel-to-pixel comparison with the MODIS result is performed, and the producer’s accuracy
(PA), user’s accuracy (UA), and overall accuracy are computed (Table 2). It can be seen that both PA and UA
are higher than 93%.

FROM-GLC sample units with different sizes are used to evaluate our product separately (Figure 16). It can be
seen that more than half of the sample units are smaller than 90 m × 90 m in area. Only about 11% of the
sample units are ≥500 m × 500 m. With respective to the accuracy, both PA and UA increase as the size of
sample units increases, and both reach 90%when the area of sample units are ≥1,000 m × 1,000 m. The result
indicates that our product has higher performance at larger-sized water bodies. Due to misregistration

Figure 19. The cloud detection problems of Moderate Resolution Imaging Spectroradiometer State QA layer at ocean.
(a) False color image at Persian Gulf (year = 2015, day of year = 282). (b) The number of water cover days in 2015 in our
product. (c) The percentage of cloud cover labeled as “cloudy” and “mixed” in the cloud state layer, and (d) the
percentage of cloud cover labeled as “cloud” in the internal cloud algorithm flag layer for 2015.
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Figure 20. The spatial limits of MODIS data in water mapping at flooded wetland (a–c), saline lake (d–f), and freezing lake
(g–i). Flooded wetland: (a) false color image of Landsat 8 data (path = 121, row = 040, year = 2014, DOY = 281), (b) Landsat
result, and (c) MODIS result for the same day. Saline lake: (d) false color image of Landsat 8 data (path = 109, row = 082,
year = 2014, DOY = 037), (e) Landsat result, and (f) MODIS result for the same day. Freezing lake: (g) false color image of
Landsat 8 data (path = 170, row = 021, year = 2014, DOY = 112), (h) Landsat result (the ice classification is derived from
Cfmask), and (i) MODIS result for the same day. DOY = day of year; MODIS = Moderate Resolution Imaging
Spectroradiometer.

Figure 21. Illustration of cloud/NVD distribution over time. (a) Evenly distributed; (b) connectedly distributed. NVD = no
valid data.
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uncertainties, 500-m resolution data cannot be perfectly overlaid.
Therefore, a lower accuracy is expected for sample units smaller than
1,000 m × 1,000 m. Limited by the resolution of our data set, we will only
use those sample units ≥1,000 m × 1,000 m in area in subsequent analysis.

Next, we consider the temporal effect on the accuracy of our product using
only sample units ≥1,000 m × 1,000 m. The corresponding PA and UA are
shown in Figure 17. It can be seen that the lowest PA in winter is approxi-
mately 89%, at least 3% lower than those in other seasons. The reasons
could be explained as follows: (1) the low solar incidence angle in the
higher northern latitudes causes low data quality of MODIS data in winter.
As a result, the water detection accuracy is lower. (2) There are errors in fro-
zen water bodies of FROM-GLC sample units. Thirty-five winter FROM-GLC

sample units are classified as ice/snow by our product, among which 23 can be confirmed as ice/snow by
careful manual checking. It indicates the effectiveness of using LST in distinguishing ice from water. The
remaining 12 sample units are partially frozen lakes or unfrozen lakes or sea water surrounded by
snow/ice covered land.

Finally, a comparison between our data set with other global water mapping products from different data
sources and with different spatial/temporal resolution is tabulated in Table 3. It can be found that compared
with single-period products, multitemporal water mapping can always map more water with respect to
Extent or Max water area, which infers that it is necessary to develop dynamic water mapping. Among them,
Prigent’s product, though with the coarsest spatial resolution, can achieve the largest maximum water area.
The most probable reason is that they used microwave data to detect water, which can capture inundated
areas even covered with vegetation, and thus can detect more water area.

6. Discussions
6.1. Effects of Cloud Contaminations and Spatial Resolution

The MODIS09GA product contains a 16-bit 1-km State QA layer, which has two flags for cloud description: the
cloud state (bit 0–1) and the internal cloud algorithm flag (bit 10). Figures 17 and 18 show the cloud cover per-
centage of both flags in two areas. It can be seen that the internal cloud algorithm flag overdetect clouds at

Figure 22. Global distribution of the average cloud index from 2001 to 2016.
The image stretching mode is Maximum-Minimum.

Figure 23. Illustration of the advantage of daily water mapping in capture fast changes. (a) The 3-Dmodel of our study area
(MODIS HV = “h21v06”, year = 2015 and DOY = 086) based on Shuttle Radar Topographic Mission Digital Elevation Model.
(b) MODIS water cover days (green) and Pekel’s 30-m Landsat water mapping product (extent, red) and (c) the daily
water cover area curve and the cloud cover for all the Landsat-8 images in 2015. MODIS = Moderate Resolution Imaging
Spectroradiometer.
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shallow water areas (Figure 18), while the cloud state overdetect clouds in large open water areas
(Figure 19). Our algorithm corrected a large proportion of these areas with inconsistent cloudy flags in
MODIS State QA layer.

Limited by resolution, MODIS data are not able to extract small-sized lakes, sinuous rivers, narrow water
bodies, and fine pieces of ice (Figures 20a–20c). Compared with the Landsat-derived water mask, the loss
of those fine features is the main source of omission error in the MODIS water maps. On the other hand,
small-sized islands or ices in a large water area are more favorably recognized in the MODIS water maps,
which increases the commission error. For the case of saline lakes, as exemplified in Figures 20d–20f, the
MODIS water map can capture the water area well for the major water body except small water bodies.
For partially frozen lakes, the MODIS water extraction produces more accurate results than the Cfmask result
from the Landsat product (Figures 20g–20i).

6.2. Accuracy of Water Time Series Processing

The time series processing in section 3.2.2 is mainly to solve the cloud/NVD problem as shown in Figure 1. It
can be found that the accuracy of the applied temporal-spatial filtering method is largely dependent on the
cloud/NVD distribution over time. When the cloud/NVD is evenly distributed, as shown in Figure 21a, the
cloud/NVD gaps are much easier to fill. However, if the cloud/NVD is distributed more continuously as shown
in Figure 21b, pixels within the cloud/NVD window are hard to recover.

In order to demonstrate the influence of cloud/NVD cover to the accuracy of our product, we first design the
following cloud index (Icloud) as

Icloud ¼ pcovered
0:5�plasting

0:5; (7)

where pcovered is the percent of cloud cover over time, which can be calculated by pcovered = (number of days
labeled as cloud/NVD) ∕ (total number of days), and plasting corresponds to themaximum cloud/NVD duration
days, which can be calculated by plasting = (maximum cloud/NVD duration days) ∕ (total number of days). The
data range of the cloud index is Icloudϵ[0,1].

The global distribution of the cloud index is shown in Figure 22, where a higher value indicates lower time
series interpolation accuracy. It can be seen that Icloud is low in most parts of the land areas in the world.
However, the cloud index at northern part of South America, West Africa, and Southeast Asia around the
Equator and Antarctica is relatively high, implying that the time series processing accuracy at these regions
cannot be guaranteed. This problem should be improved to some extent when MODIS time series by Aqua is
included. This will be assessed in a future study.

Figure 24. (a) Annual change rate determined from our daily Moderate Resolution Imaging Spectroradiometer product in
west Florida (b) determined from Landsat images as in (W. Li & Gong, 2016).
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Figure 25. Two study areas of Paddy fields in the United States of America (a) and China (b). Corresponding daily water
area changes are plotted in (c) and (d).
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6.3. The Daily Water Time Series Captured Short Duration of Surface Water

Figure 23 shows the ability of our daily water maps in detecting short-term water existence. The region is
located at the dry area of the Middle East, where the corresponding cloud index is low (Figure 22), so it is easy
to grab reliable flash flood results. From the daily water area curves, we can see that there exist three water
accumulation in this area for 2015, day of year (DOY) = 78–96, DOY = 127–128, and DOY = 337–354. On the
other hand, due to its 16-day revisit period and cloud cover, Landsat may fail to capture these short life water
surfaces, not to mention their maximum extent during the peaking time. The Landsat-based water product
produced by Joint Research Centre with 32 years of data also fails to obtain these short-lived waters.

6.4. Sea Level Rise Effects on Land Submerging

On average, the sea level has risen at an annual rate of approximately 3.2 mm/yr. Therefore, it is natural to
imagine that land will be gradually submerged by sea water for relatively stable coastal areas. However,
the sea level rise is not rising evenly over the entire globe with the low-latitude Western Pacific region being
the highest from 1996 to 2010 (Yang et al., 2013). Due to the tide effect, sea level variation is one of the most
frequent surface phenomena on Earth. Therefore, the trend of sea level rise can only be estimated when there
are abundant number of scenes. W. Li and Gong (2016) found in a vegetated mud flat area of west Florida
that the more Landsat images, the better is the precision in determining the land-sea proportional change.
To study the long-term changing trend of sea level, it is suitable to set the time interval for estimation of
land-sea proportion on an annual basis. Our daily water mapping result can be used for detecting land-sea
proportional changes over gently sloped coasts where subtle sea level rise could cover a large tract of lands.

We computed the probability of water for each pixel location in each year. The annual change rate is then
determined. Figure 24 shows the annual change rate determined from our daily MODIS data and that derived
with themethod proposed inW. Li and Gong (2016) applied to Landsat data during 2001–2013. It can be seen
that the general patterns do agree, and the majority of pixels affected are showing land loss and sea gain.

6.5. Differences of Rice Fields Use

Besides wetland, paddy fields have a flood season due to its plantation requirement. Two study areas in
California, United States, and Heilongjiang Province, China, are selected for a comparison. The corresponding
daily water changes can be seen in Figure 25. Comparing their water curves, we can observe different planta-
tion styles. Both fields are irrigated in April (DOY = 100). Yet in California, the field is irrigated again in
September (DOY = 260). From the fall to the next spring, rice fields in California were filled with water to help
provide a wetland environment for wild birds. From Figure 25d, we can observe that the water area increases
before 2012 and decreases gradually since then. This indicates that the area in Heilongjiang, China, has
undergone a process of rice plantation increase up to around 2012, and thereafter, the expansion trend
has been arrested. This indicates the potential of our daily water time series in studying different rice planting
styles and timing of rice plantation.

6.6. More Precise Freezing Date

The freezing time can be derived from the MODIS State QA layer. Thus, it can be compared with the freezing
data derived from our product. Since 2009, daily ice concentration of the Great Lakes in North America has

Figure 26. Comparison of ice concentration for the Great Lakes from 2009 to 2016 using Coastwatch and MODIS result (a)
and the comparison with MODIS State QA ice/snow flag in 2015. MODIS = Moderate Resolution Imaging
Spectroradiometer.
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been posted at the Coastwatch website (https://coastwatch.glerl.noaa.gov/statistic/statistic.html). This can
be regarded as a source of reference to compare the accuracy of our daily water product and the MODIS
State layer (Figure 26). We can see that our result agrees well with the Coastwatch data. Large frozen areas
occurred in 2013–2014, while the lowest happened in 2011–2012. Figure 26b also shows the comparison
with MODIS State QA ice/snow flag, and it can be found that due to the cloud cover and NVD data gap, there
were much fewer ice/snow pixels recorded by MODIS State QA layer.

6.7. Size Distribution of Water Bodies

The size distribution of global water bodies is shown in Figure 27. As shown in Figure 16b and discussed in
section 6.1, due to the limitation of the 500-m resolution, we are unable to map small-sized water bodies
in the world. Thus, only water bodies greater than 1,000 m × 1,000 m are used here. It can be seen that
the number of water bodies decreases gradually as the size of water body increases, which agrees with
previous studies (Downing et al., 2006; Lehner & Döll, 2004). Though the number of water bodies in the size
class from 1 to 10 km2 occupies more than 87%, they only account for ~15% of the total water area on land.
On the other hand, though the number of water bodies in the size class of 104 to 105 km2 is only 0.01% of the
total number of water bodies in the world, they account for more than 15% of the total water area.

7. Conclusion and Future Works

In this paper, we reported a new daily global water data set has been produced in this research covering a
16-year period (2001–2016). It involved the use of more than 1.9 million tiles of MODIS daily reflectance data.
The daily global water data set is freely available to potential users through email request to the correspond-
ing author. It will be continuously updated as more recent MODIS data are processed with our algorithm.

Because we did not use auxiliary data in our interpolation of missing or cloud contaminated water areas,
there is a limitation in our data in those areas. There is a trend that more satellite data will become available.
In particular, high-resolution microwave/radar data are becoming more available. Such data are less affected
by clouds, so they could help further reduce cloud or shadow effects and are also helpful for capturing water
under vegetation (e.g., swamp forest). Moreover, subpixel approaches need to developed to capture water
bodies smaller than a single pixel (Devries et al., 2017), especially for midresolution satellite data like
MODIS data. In addition, constellation of small satellites acquiring high-resolution data at high-temporal
frequency are also becoming available (e.g., the possibility of better than 10-m resolution daily global
coverage from over 100 small satellites from PLANET company). Although there is a huge potential of
integrating these various types of data for more precise water extraction from remotely sensed data, there
is a lack of algorithms that can handle all data for mapping water surfaces. More efforts need to be made
to the development of next generation of algorithms for consistent processing of those large volumes of
data. We expect that the 16-year global water dynamics data set will receive a wide range of applications
in the future.

Figure 27. The size distribution of global water bodies in 2001, 2005, 2010, and 2015 for water bodies greater than
1,000 m × 1,000 m. (a) The percentage of number of water bodies = the number of water bodies within the size class /
the total number of water bodies × 100%; and (b) the percentage of water area = the total area of water bodies within the
size class / the total water area. The numbers in (a) are the average percentage of 2001, 2005, 2010, and 2015.
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