
ARTICLE OPEN

A tumor microenvironment-specific gene expression signature
predicts chemotherapy resistance in colorectal cancer patients
Xiaoqiang Zhu1,2,7, Xianglong Tian1,3,7, Linhua Ji4,7, Xinyu Zhang1, Yingying Cao1, Chaoqin Shen1, Ye Hu5,6, Jason W. H. Wong 2,
Jing-Yuan Fang 1✉, Jie Hong1✉ and Haoyan Chen1✉

Studies have shown that tumor microenvironment (TME) might affect drug sensitivity and the classification of colorectal cancer
(CRC). Using TME-specific gene signature to identify CRC subtypes with distinctive clinical relevance has not yet been tested. A total
of 18 “bulk” RNA-seq datasets (total n= 2269) and four single-cell RNA-seq datasets were included in this study. We constructed a
“Signature associated with FOLFIRI resistant and Microenvironment” (SFM) that could discriminate both TME and drug sensitivity.
Further, SFM subtypes were identified using K-means clustering and verified in three independent cohorts. Nearest template
prediction algorithm was used to predict drug response. TME estimation was performed by CIBERSORT and microenvironment cell
populations-counter (MCP-counter) methods. We identified six SFM subtypes based on SFM signature that discriminated both TME
and drug sensitivity. The SFM subtypes were associated with distinct clinicopathological, molecular and phenotypic characteristics,
specific enrichments of gene signatures, signaling pathways, prognosis, gut microbiome patterns, and tumor lymphocytes
infiltration. Among them, SFM-C and -F were immune suppressive. SFM-F had higher stromal fraction with epithelial-to-
mesenchymal transition phenotype, while SFM-C was characterized as microsatellite instability phenotype which was responsive to
immunotherapy. SFM-D, -E, and -F were sensitive to FOLFIRI and FOLFOX, while SFM-A, -B, and -C were responsive to EGFR
inhibitors. Finally, SFM subtypes had strong prognostic value in which SFM-E and -F had worse survival than other subtypes. SFM
subtypes enable the stratification of CRC with potential chemotherapy response thereby providing more precise therapeutic
options for these patients.
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INTRODUCTION
Colorectal cancer (CRC) is a disease with great heterogeneity
characterized as distinctive molecular pathogenesis, histogenesis,
and drug sensitivity1,2. The heterogeneity of CRC has been
revealed by using whole-genome sequencing (WGS), epigenetic
analysis, and gene expression profiles. For instance, at the genetic
level, some DNA markers have been recognized including
microsatellite instability (MSI), CpG island methylator phenotype
(CIMP), chromosomal instability (CIN), BRAF, and KRAS mutations.
Further, tumor microenvironment (TME) components consist of
distinctive and interacting cell populations, including tumor
epithelial cells, immune cells, and cancer-associated fibroblasts
(CAFs)3,4. The diversity of TME has made it possible to perform
immune classification of cancers regarding prognosis5, che-
motherapy6, and immunotherapy7 response prediction. For
example, MSI tumor displays higher densities of type 1 T helper,
effector memory T cells8, and has good prognosis. It has also
shown significant benefit from immune checkpoint blockade
therapy, anti-PD1/PDL1 (refs. 9,10). Besides, increasing evidence
indicated that the dysbiosis of gut microbiota can lead to the
development and progression of CRC by inducting chronic
inflammatory state and immune response, regulating stem cell
dynamics, producing toxic and genotoxic metabolites, and
affecting the host metabolism11. Microbial communities also

varied in different parts of gut, including distal colon and proximal
ileum, both of which admittedly have distinctive prognosis and
treatment strategies12.
Gene expression-based classifying has shown high efficiency for

cancer classification. Several molecular classifiers in CRC have
been built using global gene expression analysis, including colon
cancer subtypes (CCS)13, the Colorectal Cancer Assigner14, colon
cancer molecular subtype systems, and colorectal cancer subtyp-
ing consortium (CRCSC)15. Most of them were constructed directly
based on global expression profiles using unsupervised
consensus-based clustering algorithms. However, these transcrip-
tome signals derived from both cancer cells and noncancerous
components. And these approaches can’t distinguish these signals
automatically when applied to classification. Recent studies have
consistently suggested that TME components played important
roles in defining CRC with poor prognosis and immune escape16–18.
Given that TME also makes great contribution to chemotherapy
and immunotherapy sensitivity7,19,20, and FOLFIRI (combination of
folinic acid, fluorouracil, and irinotecan) and FOLFOX (combination
of 5-fluorououracil, leukovorin, and oxaliplatin) are two of the
most common first-line treatment strategies for metastatic CRC
(mCRC), we proposed that using gene expression profiles that
could discriminate both TME and drug sensitivity might be an
effective way to define CRC molecular subtypes.
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To test this hypothesis, a total of 2269 gene expression profiles
from 18 datasets and another four single-cell RNA-sequencing
(scRNA-seq) datasets were analyzed in this study to (i) construct a
gene signature consisted of genes that could discriminate both
TME and drug sensitivity; (ii) further identify a robust molecular
classification using this gene signature; and (iii) evaluate the
associations between CRC subtypes and clinicopathological
factors, common oncogenic mutations, genetic changes, signaling
pathways, drug sensitivity, immune infiltration, prognosis, and gut
microbiota patterns.

RESULTS
A chemotherapy resistant gene signature associated with TME
A total of 2269 bulk gene expression profiles of CRC patients were
included in this study (Supplementary Table. 1). Supplementary
Figure 1a summarized the schematic workflow of this study. We
identified 896 probe sets that were involved with FOLFIRI
response. To further select genes that differed from TME, we
further identified genes with significantly discriminative expres-
sion amongst TME components, such as tumor epithelial cells,
immune cells, and stromal cells (see “Methods” section for details).
After overlapping the differential probes, we acquired a list of 317
probes which corresponded to 250 unique genes (Fig. 1a,
Supplementary Fig. 1b, and Supplementary Table 2) and referred
to this gene signature as the “Signature associated with FOLFIRI
resistant and Microenvironment” (SFM). To confirm that SFM
signature could discriminate TME, we applied SFM signature to
four scRNA-seq datasets of human CRC, head and neck squamous
cell carcinoma (HNSCC), melanoma and breast cancer (BRCA). Each
data contained malignant and nonmalignant cells derived from
human tumors, thus enabling to validate the ability of SFM to
define the heterogeneity of TME. We explored the global structure
of SFM expression in these four scRNA-seq datasets using t-
distributed stochastic neighbor embedding (t-SNE). t-SNE plot
indicated that SFM formed distinct clusters corresponding to
different cells types in all the four scRNA-seq datasets, implying
the universal ability of SFM to discriminate TME (Fig. 1b–e). SFM
expression profiles and SFM gene signature scores further
confirmed our observation (Supplementary Fig. 1c–g). Moreover,
we found that malignant cells from different origins (i.e., from
which tumor patients) could also form distinct clusters, while
nonmalignant cells could cluster together regardless of the origins
indicating that SFM expression of normal cells had no strong
interpatient heterogeneity. Next, we evaluated overlaps among
nine published gene signatures with SFM and found large
overlaps among some of these gene signatures (Fig. 1f and
Supplementary Table. 3). Intriguingly, the SFM displayed very
limited overlaps with other gene signatures. A total of 216 out of
the SFM genes were unique; 20, 8, and 6 genes were shared with
other gene signatures for one, two, and three times, respectively
(Fig. 1g).

K-means clustering CRC subtypes
To test if SFM could classify CRC subtypes, we used k-means
clustering algorithm to the classification using the SFM in
discovery dataset (GSE39582). By doing so, six subtypes were
identified and referred as CRC SFM subtypes from SFM-A to SFM-F
(Supplementary Fig. 1h and Supplementary Table. 4). The
robustness of SFM classification was further validated in two
large cohorts and our Renji cohort (Supplementary Fig. 1i–k and
Supplementary Table. 4). In Renji cohort, only four SFM subtypes
were classified mainly because of small number of sample size.
Overall, the proportion of each subtype was similar in three large
datasets (Fig. 1h). Given that stromal signal strongly affects the
transcriptional classification21 and SFM consists of genes pre-
dominately expressed in stomal content, we additionally applied

SFM to a patient-derived xenografts CRC dataset (GSE76402, n=
515), in which the stromal components from the original tumors
have been substituted by murine counterparts21. As expected, the
SFM classification was not perfect since the SFM genes were not
clearly discriminative amongst resulted clusters (Supplementary
Fig. 1l). This implied that the SFM classification was also depended
on original TME components. After combining the subtype
information, we saw that SFM-A (23%), SFM-B (23%), and SFM-E
(25%) accounted for larger proportions followed by SFM-C (12%),
SFM-F (10%), and SFM-D (8%). We then compared the overlap of
SFM subtypes with published CRC classifiers. For each classifier, we
combined all used samples that were annotated with individual
subtype information. As expected, we saw that SFM subtypes had
strong overlaps with other classifiers (Supplementary Fig. 1m). For
instance, compared to the CMS subtypes developed by Guinney
et al.15, 61% of SFM-A and 80% of SFM-B were CMS2; 81% of SFM-
C were CMS1; 33% of SFM-1 were SFM-C; half of SFM-D and E, and
92% of SFM-F were CMS4. As for CCS classification developed by
De. Sousa et al.13, almost SFM-A (96%) and SFM-B (75%) belonged
to CCS1; 86% of SFM-C belonged to CCS2; and all of SFM-F were
CCS3. Some overlaps could also be observed for the remaining
subtypes including The Cancer Genome Atlas (TCGA) CRC
molecular subtypes22, C1–C6 clusters developed by Marisa
et al.23, CRISA-CRISE clusters by Isella et al.21, and five molecular
subtypes by Sadanandam et al.14.

Leading peculiarities of SFM subtypes
Further analysis implied that SFM subtypes were associated with
distinct clinicopathological, molecular and phenotypic character-
istics, and specific enrichments of gene signatures and signaling
pathways. Firstly, we found higher proportion of stage II and III in
each SFM cluster compared to stage I and IV (Fig. 1i). Higher
proportion of stage IV could be observed in SFM-E (18%) and SFM-
F (17%). Secondly, 74% of SFM-C belonged to MSI tumors and 60%
MSI tumors were assigned to SFM-C (P < 0.0001, Supplementary
Fig. 1n). Furthermore, SFM-C and SFM-F were mainly endowed
with hypermutation genotype (P < 0.0001, Supplementary Fig. 1n),
proximal colon tumors (P < 0.0001, Supplementary Fig. 1n). On the
contrary, tumors classified as SFM-A-B-D-E showed CIN+ (P <
0.0001, Supplementary Fig. 1n), MSS, non-hypermutant features. In
addition to SFM-C, SFM-F was the second subtype enriched with
BRAF mutation (P < 0.0001, Supplementary Fig. 1n). And TP53 was
more frequently mutant in SFM-B and SFM-D (P= 0.0034,
Supplementary Fig. 1n), while KRAS mutations were more
frequently occurred in SFM-A (P= 0.0001, Supplementary Fig.
1n). As for oncogenic mutation, we further focused on 95 driver
mutations of CRC in TCGA dataset24. Among these 95 drivers, SFM-
C (33%, 26 in 80) and SFM-D (21%, 5 in 24) had higher proportion
of samples that had more than seven mutant driver genes
(Supplementary Fig. 1o). In addition, 53 of 95 gene mutation
status had significant differences among SFM subtypes (P < 0.05,
Supplementary Fig. 1p).
We used previously reported gene signatures to identify the cell

and precursor origins of SFM subtypes based on the nearest
template prediction (NTP) algorithm25 (Supplementary Fig. 1q,
and Supplementary Tables 5 and 6). We applied an intestinal stem
cell signature and a colon crypt signature to the four gene
expression profiles. SFM-E and SFM-F were found remarkably
enriched for “stem-like” phenotype (P < 0.0001) and SFM-B-E-F had
hallmarks of colon base crypt (P < 0.0001). As epithelial-to-
mesenchymal transition (EMT) has been regarded as a critical
process in CRC progression26, we applied an EMT signature to our
data similarly. The results indicated that SFM-D-E-F were enriched
for EMT phenotype (P < 0.0001). Besides, serrated CRC is
morphologically distinctive compared with conventional CRC
and has been suggested to be involved with serrated neoplasia
procedure27. We found that SFM-C-E-F were characterized as
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“serrated CRC” phenotype, whereas SFM-A-B-D displayed a
“conventional CRC” phenotype (P < 0.0001).
We also analyzed dysregulated signaling pathways in each SFM

subtype. Two thousand top up- and down-expressed genes in
each SFM subtype were subjected to perform analysis (Supple-
mentary Table. 7). Most of SFM subtypes were enriched in specific
activated pathways (Supplementary Fig. 1r). Specifically, glucose
metabolism was activated in SFM-A, while most signaling path-
ways were downregulated in this subtype. SFM-B showed
upregulation of DNA replication/damage associated pathways.
Upregulated interleukin-6/8 (IL-6/8) and downregulated EMT and
fibroblast growth factor receptor associated pathways were found
in SFM-C. SFM-D-E-F all displayed upregulation of cell focal
adhesion, collagen formation, and integrin pathways. In SFM-D, IL-
2 and IL-3 associated pathways were activated, while IL-5
mediated pathway was upregulated in SFM-E. SFM-E and SFM-F

displayed significantly upregulated immune system and EMT
pathways.

SFM subtype predicted chemotherapy response
Since SFM signature was correlated with FOLFIRI sensitivity
derived from GSE62080, we first performed K-means clustering
using the SFM signature in GSE62080 dataset to examine whether
SFM subtypes were associated with drug response. Our results
showed that 21 cases in GSE62080 could be classified into four of
the SFM subtypes (Fig. 2a, Supplementary Fig. 2a, and Supple-
mentary Table. 8). All of the SFM-E and SFM-F were responsive to
FOLFIRI, and eight out of nine FOLFIRI responsive CRCs were
defined as SFM-E and SFM-F (P= 0.0006). On the contrary, SFM-A
and SFM-B were resistant to FOLFIRI. Similarly, we also tested
another chemotherapy regimen FOLFOX response in combined
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datasets (n= 142, Fig. 2b, Supplementary Fig. 2b, and Supple-
mentary Table. 8). Interestingly, we found that 75% of SFM-F (n=
6), as well as 36% of SFM-E (n= 10), 55% of SFM-D (n= 12) and
64% of SFM-B (n= 14) responded to FOLFOX (P= 0.0627). In
addition, we included another two datasets (GSE72970 and
GSE104645) in which samples were treated with FOLFIRI or
FOLFOX, and the survival information was available. A total of
158 samples were classified into five main SFM subtypes
(Supplementary Fig. 2c). Although there was no significant
difference among the subtypes in terms of the response (P=
0.1003, Supplementary Fig. 2d) with more than half of SFM-A/B
resistant, but 75% of SFM-C responsive to FOLFIRI or FOLFOX.
Given that there were no significant differences in survival
between responder and nonresponder samples in these two
datasets, respectively, as indicated by He et al.28, we compared the
survival differences among SFM subtypes. Interestingly, our results
demonstrated that SFM-A/B had shorter OS and PFS, while SFM-C
and -E had better survival, and SFM-D and -F were intermediate
(log-rank P < 0.000 for OS, P < 0.0001 for PFS, Supplementary Fig.
2e, f). Hence, these results to some extent suggested that at least
SFM-A/B subtype could not benefit from FOLFIRI or FOLFOX
treatment. To comprehensively compare the drug-response
differences among SFM subtypes, we applied previous drug gene
signatures to gene expression profiles using NTP algorithm,
including FOLFIRI, FOLFOX, and vascular endothelial growth factor
(VEGF) or epidermal growth factor receptor (EGFR) inhibitors
(Supplementary Table. 5). Overall, the drug sensitivity among SFM
subtypes were distinctive (Fig. 2c, Supplementary Fig. 2g, and
Supplementary Table. 8). Specifically, the FOLFIRI response
signature was significantly (false discovery rate, FDR < 0.2)
associated with 99% (n= 166) of SFM-F, 80% (n= 328) of SFM-E,
and 67% (n= 84) of SFM-D subtype samples, as compared to only
10% (n= 37) of SFM-A, 30% (n= 108) of SFM-B, and 28% (n= 50)
of SFM-C subtype (P < 0.0001). Similar results could also be found
for FOLFOX response (P < 0.0001). We also applied another
FOLFOX response signature of five gene pairs which has shown
good performance to do the prediction by NTP or the way used in
corresponding study28. Similar results were obtained in these two
ways (Supplementary Fig. 2h, i), but not consistent with what we
found that SFM-D/E/F were prone to response to FOLFOX. Further
analysis on these two FOLFOX gene signatures, five gene pairs
signature from He et al.28 and 315 gene signature from Tong
et al.29 suggested that there were no overlapped genes between
these two gene signatures, implying the bias between them.
Indeed, the 315 gene signatures were more robust because these
genes were not only differentially expressed between responders
and nonresponders in both pre-chemotherapy and post-
chemotherapy samples, respectively, but also validated between
parental and resistant cancer cells. In addition, we found that most
of the SFM-A and SFM-B were significantly (FDR < 0.2) correlated
with EGFR inhibitors (P < 0.0001, Fig. 2c). For instance, 68% (n=
237) of SFM-A, 80% (n= 305) of SFM-B, and 50% (n= 193) of SFM-
E responded to cetuximab. Similar results could be observed for
avastin, afatinib, and sapitinib. The results also indicated that SFM-
C was responsive to EGFR tyrosine kinase inhibitors, including
gefitinib and vandetanib. Ninety one percentage (n= 100) and
96% (n= 96) of SFM-C were strikingly associated with gefitinib
and vandetanib response signature, respectively. As one of the
EGFR-specific monoclonal antibody, cetuximab has been applied
to treatment for mCRC harboring KRAS wild type. However, some
studies also implied that cetuximab did not have obvious benefit
in chemotherapy regimens regardless of KRAS status30. Thus, we
only included KRAS wild-type samples to further validate
cetuximab sensitivity across SFM subtypes. Again, we found that
SFM-A-B-E could predict the cetuximab response (Fig. 2d). This
result was more notable when combining these three SFM
subtypes compared with the remaining SFM subtypes (Supple-
mentary Fig. 2j, k). In view of this, several genes involved with

EGFR pathway activity have been suggested to be associated with
cetuximab response31–33. Consistently, this specific gene set
showed higher expression in SFM-A-B-E subtypes (Fig. 2e, f and
Supplementary Fig. 2l). It is also overt after combining SFM-A-B-E
compared with the rest irrespective of KRAS phenotype (Supple-
mentary Fig. 2m, n). To further confirm the association between
EGFR inhibitors and SFM subtypes, we applied SFM signature to a
combined dataset where samples were treated with cetuximab,
GSE5851 (ref. 32) and PRJEB34338 (ref. 34; total n= 95). Consider-
ing the small sample size, three main clusters were identified
including SFM-A/B, SFM-C, and SFM-D/E/F (Supplementary Fig.
2o). Overall, nearly half of SFM-A/B samples were responsive to
cetuximab, but lowest fraction for SFM-C (20%, P= 0.0421,
Supplementary Fig. 2p). Consistently, most of the EGFR pathway-
associated genes were highly expressed in SFM-A/B, but not for
SFM-C (Supplementary Fig. 2q, r). Together, these findings suggest
that SFM subtypes have predictive value of cetuximab response
regardless of KRAS phenotype.

Distinctive TME among SFM subtypes
Since the SFM signature could discriminate TME, we further
compared TME component among SFM subtypes. Firstly, we
explored cell fractions among SFM subtypes by CIBERSORT. Based
on this algorithm, we found that SFM subtypes displayed different
enrichment for immune cell populations (Fig. 3a, Supplementary
Fig. 3a–c, and Supplementary Table. 9). SFM-A was enriched with
memory B cells, memory CD4 T cells, regulatory T cells (Tregs),
plasma cells, and rested dendritic cells and rested NK cells. SFM-B
was characterized by increased memory CD4 T cells, activated
dendritic cells, rested NK cells. SFM-C displayed high infiltration of
activated NK cells, follicular helper T cells, M1 macrophage,
activated mast cells, and neutrophils. SFM-D exhibited enrichment
with activated naive CD4 T and B cells, plasma cells, CD8 T cells,
and Tregs. SFM-E showed increases of follicular helper T cells, M0/
1 macrophages, and neutrophils. SFM-F was enriched with naive B
cells and macrophages, rested mast cells and neutrophils. In
addition, SFM-D-E-F had displayed higher proportions of endothe-
lial cells and fibroblasts (Fig. 3b, c). SFM-F had predominant stroma
components with higher score of TGF-β response (Fig. 3d, e). As
for clinical features of immunotherapy, we found that SFM-C
displayed highest neoantigen production follow by SFM-F (Fig. 3f, g).
Consistently, SFM-C-F exhibited higher mutation burden than
other subtypes (Fig. 3h, i). Based on several gene signatures, we
found that SFM-F was also enriched with exhausted T cells and
myeloid-derived suppressor cells (MDSCs; Fig. 3j, k). Importantly,
we found that checkpoint biomarkers were highly expressed in
SFM-C-F, including CD274, PDCD1, and CTLA4 (Fig. 3l–n). These
suggested that SFM-C-F were T cell suppressive. Further, both
SFM-C and F were characterized as “hot” tumor and were
responsive for IFN-γ response (Fig. 3o, p). However, SFM-F was
enriched with innate anti-PD1 resistance (IPRES) gene signature
(Fig. 3q, r) and displayed higher IPRES score, which meant that
SFM-F had features of “nonresponder” of immunotherapy. Results
above indicated that even though SFM-C and -F were T cell
suppressive, they responded differently to immunotherapy. This
might be explained by that SFM-C was enriched with MSI
phenotype, in which the immune suppressive could be blocked
by immune inhibitors, while SFM-F was enriched with stroma/EMT
phenotype that could also lead to immune suppressive, but not
reversed by immune inhibitors.

SFM subtype was an independent predictor of CRC
We examined SFM subtypes with survival to test its prognostic
value. We first performed prognostic analysis in each dataset
independently regardless of treatment (chemotherapy or radio-
therapy) or AJCC stage. Interestingly, we saw significant associa-
tion between SFM subtypes and DFS or OS (Fig. 4a–d), which was
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more remarkable after three datasets were combined (P < 0.0001,
Supplementary Fig. 4a). Further, we assigned samples based on
chemotherapy information. SFM subtypes still maintained sig-
nificant association with DFS irrespective of chemotherapy
(Supplementary Fig. 4b, c). The prognostic value of SFM subtypes
were still significant in AJCC stage II and III patients, respectively,
but not for stage I and IV patients probably because of the small
sample size of stage I and IV patients (Supplementary Fig. 4d–g).
Altogether, this suggested that SFM-E and SFM-F had worse
prognosis likewise. We combined SFM-E and SFM-F as a single
high-risk group versus the remaining four to confirm this. The
binary classifier displayed strong prognostic value as expected (P
< 0.0001, Supplementary Fig. 4h). In addition, we divided patents
based on chemoradiotherapy information available. SFM subtypes
showed significant prognostic value in non-chemoradiotherapy
patients (P < 0.0001), but not in chemoradiotherapy patients (P=

0.11, Supplementary Fig. 4i, j). Then we performed similar analysis
using the binary classifier. Interestingly, high-risk group had worse
prognosis in non-chemoradiotherapy cases (P < 0.0001), but not
for chemoradiotherapy cases (P= 0.095; Supplementary Fig. 4k, l).
Although the result was not significant might because of small
number of samples with chemoradiotherapy information, we saw
a trend that chemoradiotherapy could improve DFS in SFM-E and
SFM-F subtypes. As the Oncotype DX recurrence score has been
regarded as a prognostic classifier in colon cancer35,36, we
evaluated its prognostic value within combined datasets. This
score did have prognostic value in all AJCC stage cases (P <
0.0001) or only stage II and III cases (P= 0.00018; Fig. 4e, f). Then
we compared the proportions of subtypes between SFM subtypes
and Oncotype DX classifier. We found that 77% of high-risk cases
and 75% of intermediate-risk cases identified by Oncotype DX
classifier could be classified into SFM high-risk group (SFM-E-F; Fig.
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4g, h). This suggested that the SFM subtype had robust prognostic
value. In addition, in univariate Cox regression analysis, most of
the classifiers had at least one subtype that had significant
difference (Supplementary Fig. 4m). However, when performed
multivariate Cox regression analysis for each molecular subtype
adjusted by age, gender, and AJCC stage, only SFM, CMS, CCS
subtypes still had significant differences (Supplementary Fig. 4n).
CCS3 subtype (P= 0.0002, HR= 11.32, 95% CI= 3.14–40.84) had
strongest prognostic value followed by SFM-F (P= 0.0001, HR=
2.48, 95% CI= 1.51–3.96) and SFM-E (P= 0.0031, HR= 1.89, 95%
CI= 1.24–2.89).

Distinct gut microbiome patterns among SFM subtypes
We performed the PathSeq algorithm in TCGA cohort. We
acquired relative abundance value of 1093 microbes at the
species level in 415 cases annotated with CRC subtypes and found
that almost SFM subtypes harbored distinct bacterial communities
(Fig. 5). Supplementary Table 10 displayed the top 15 highly
enriched genera in each SFM subtype. The highest enriched
bacterial species in SFM-A were Micrococcus luteus and Propioni-
bacterium acnes. Bacterial species that highly enriched in SFM-A
had lower enrichment in SFM-D, including Staphylococcus aureus,
Pseudomonas mendocina, and Acinetobacter baumannii, etc. SFM-B
was highly enriched with Escherichia coli. In addition, SFM-C had
high enrichment for Bacteroides thetaiotaomicron, Fusobacterium
nucleatum, and Bacteroides fragilis. SFM-D was enriched for
Microbacterium testaceum, Rhodopseudomonas palustris, etc. And
SFM-F displayed high enrichment for Corynebacterium aurimuco-
sum and Pseudomonas putida. However, compared to other SFM
subtypes, we did not see significantly enriched genera in SFM-E.

DISCUSSION
CRC is a disease with high heterogeneity just like other tumor
types. The possible sources of heterogeneity of CRC derive from
many aspects, such as genetic alterations, diversity of TME cell
populations, and even the specific complex microbial community
of gut. Increasing evidence indicated that TME has made great
contribution to the development and progression of CRC. Gene
expression profiles that can distinguish TME probably help to
explain the heterogeneity of tumors. FOLFIRI and FOLFOX have
been recommended as first-line backbone chemotherapy of
mCRC by the Europe Society for Medical Oncology guidelines37.
Although FOLFIRI or FOLFOX can significantly extend the median
OS to >15 months, there are nearly 50% patients are not
responsive38. Therefore, screening out those potentially respon-
sive patients is also urgent. In this study, we took the advantages
of comprehensive datasets to explore the heterogeneity of CRC,
trying to identify CRC subtypes that are distinguished among TME
and drug-response sensitivity, and helpfully, contributing to the
precise treatment of CRC.
We firstly built a SFM gene signature that not only could

discriminate TME, but also was associated with FOLFIRI resistance.
Although the importance of TME has been addressed, none
published gene signatures for CRC classification focused on either
TME-associated genes or combination of TME and cytotoxic
treatment. We found that SFM signature had limited overlap with
previous gene signatures, while SFM subtypes displayed large
overlaps with these gene signature-derived subtypes. The
potential reason might be that the SFM signature were derived
from (i) transcription of sorted cell populations which were more
discriminative for TME than those signatures; and (ii) transcription
associated FOLFIRI response. This indicated that SFM was unique
and specific which encouraged us to test if SFM could help to
identify CRC subtypes. The large overlaps between SFM subtypes
and previous reported molecular subtypes might because that
since these molecular subtypes were focused on CRC using the

same datasets, the main potential subtypes based on transcription
pattern would not change too much, such as stromal predominate
subtype. Indeed, the SFM subtype was well-captured of the
transcription signals derived from TME which made it possibly
comparable with other subtypes even though it was limitedly
overlapped with other gene signatures. Future investigation is
needed to confirm the specific biological functions of SFM genes.
We chose K-means to perform the classification because it is a
straightforward clustering algorithm, which can compute faster
than hierarchical clustering when there are numbers of variables.
In addition, K-means is easy to produce tighter clusters than
hierarchical clustering39. Finally, we identified six SFM-based
subtypes with distinctive molecular and clinical relevance (Fig. 6).
Specifically, we identified the SFM-C subtype that was highly

enriched for MSI tumors with BRAF mutation, CIMP+, hypermuta-
tion, and proximal colon phenotypes. This was in line with
previous report about the association among these character-
istics40. On the contrary, tumors classified as SFM-A-B-D-E showed
CIN+, MSS, and non-hypermutant features. We found mutation
status of 53 CRC driver genes were significant different among
SFM subtypes, which might reflect CRC intrinsic traits. Moreover,
the association between previous existed gene signatures with
SFM subtypes also uncovered underlying biological traits behind
SFM subtypes. For instance, we observed significant association of
serrated precursor neoplasia with SFM-C-E-F. This was consistent
with previous report that sessile serrated polyps correlated with
MSI tumors41. As SFM-E and SFM-F were not enriched for MSI
tumors, we speculated that these two subtypes were associated
with traditional serrated polyps41. Further pathological investiga-
tions about these correlations would be acquired. In terms of cell
origins, our findings also indicated that SFM-B-E-F were derived
from colon crypt base as these subtypes harbored hallmarks of
colon crypt base cells. This means these subtypes might capture
distinct colonic epithelial cell differentiation-associated pathways
compared to other SFM subtypes. In terms of SFM-E and SFM-F,
we saw significant enrichment for EMT and stem-like features. Our
survival analysis indicated that these two subtypes had shorter
DFS compared to the rest SFM subtypes. This was in line with
previous investigations that stem/serrated/mesenchymal CRC
subtype had poor prognosis16,17. In addition, large overlaps of
high-risk cases between Oncotype DX and SFM subtypes also
implied the prognostic value of SFM subtypes. To compare the
prognostic value of previous CRC classifiers, we performed
univariate and multivariate Cox regression analysis. Among these
nine classifiers, including AJCC stage and SFM subtypes, seven of
them had sub-classifiers that were significant in the univariate
regression model. However, when adjusted by age, gender, and
AJCC stage, only SFM, CMS, and CCS subtypes were still significant
which meant that these three molecular classifiers had strong
prognostic value in CRC.
The heterogeneity of CRC might also determine the sensitivity

of chemotherapy. Sadanandam et al. have reported that stem-like
subtype tumors responded to FOLFIRI14. This was consisted with
our results that SFM-E and SFM-F were enriched for stem-like
tumors and responsive to FOLFIRI. Given that we have shown that
SFM-E and -F generally had shorter survival than the remaining
subtypes, our analysis on combined datasets (GSE104645 and
GSE72970) indicated that SFM-A/B had worse survival after treated
with FOLFIRI or FOLFOX regimens, while SFM-D/E/F have
improved their survival. This means that FOLFIRI or FOLFOX might
be more suitable for SFM-D, -E, and -F subtypes. Moreover,
although SFM-C displayed nonresponsive to FOLFIRI and FOLFOX,
which was also consistent with previous studies suggesting MSI
tumors barely responded to fluorouracil-based therapy42, it had
better survival in this combined dataset probably because of the
enrichment of MSI phenotype, which has been proofed to have
relative better survival43. Regardless of SFM subtypes, the
response rate of FOLFIRI and FOLFOX were 48% and 47%,
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respectively in the aggregated datasets (FDR < 0.2). This was
consistent with the previous report that nearly half of CRC were
responsive to these two treatments38. In addition, SFM-A and SFM-
B displayed high sensitivity of VEGF/EGFR inhibitors. Importantly,
as for cetuximab, our results suggested that these subtypes were
enriched for overexpression of ERBB3, EREG, BTC, and AREG. These
biomarkers have been proved to be involved in EGFR-associated
pathways blockade31–33. Although the sensitivity of most samples
for gefitinib and vandetanib could not be accurately evaluated
(FDR < 0.2) across SFM subtypes, we saw SFM-C subtype was
responsive to these two inhibitors. FOLFIRI or FOLFOX have been
approved to be used as the standard chemotherapy treatments
plus avastin or cetuximab, while our results indicated that not all
CRCs are suitable for these combined regimens.
Moreover, increasing evidence suggested that MSI tumors were

responsive to immunotherapy of anti-PD1/PDL19,10. SFM-C dis-
played higher mutation burden with MSI phenotype. Our results
also indicated that SFM-C and SFM-F were immune suppressive as
these two subtypes had higher proportions of exhausted T cells
and MDSCs and IFN-γresponse rate. Both of them were highly
expressed of CD274 and CTLA4. Since SFM-F exhibited higher
IPRES score, which meant that SFM-F had features of “non-
responder” of immunotherapy. These results indicated that both
of MSI and high stroma/EMT microenvironment could lead to
immune suppression, while MSI-induced immune suppression
could easily be blocked by checkpoint inhibitors, but not for
stroma/EMT-induced immune suppression. This might be reason
why part of patients with high checkpoint markers did not
response to checkpoint inhibitors.
So far, the association of CRC molecular subtypes with gut

microbiome has not been clearly elucidated. The first time to
describe the association of bacterial signatures with CRC
molecular subtypes was reported by Burns et al.44. We found

distinctive bacterial communities across SFM subtypes by map-
ping TCGA CRC nonhuman RNA-sequencing reads to bacterial
reference sequences. Notably, SFM-C with MSI tumor showed high
relative abundance of F. nucleatum, which has been proved to be
associated with CRC development and progression45,46. F.
nucleatum also has strong association with immune response of
CRC, particularly by recruiting T cells. Our results were also in line
with previous reports that F. nucleatum was associated with CIMP+,
MSI CRC subtype47, both of which were features of SFM-C. E. coli
was significantly enriched in SFM-B. E. coli has been regarded as
commensal bacterial in gut microbiota, but some of its stains
might also contribute to tumor development by inducing chronic
inflammation or producing toxins48. P. acnes, enriched for SFM-A
has shown association with prostate cancer49. P. acnes can induce
prostatic inflammation in prostate cancer glands. As the biological
functions of these distinctive gut microbes have not been clearly
elucidated, the gap between these gut microbes and CRC should
be bridged by performing more experimental studies and clinical
trials.
The limitations should be acknowledged for this research.

Firstly, this study is retrospective, the SFM subtypes classification
should be further identified in large prospective clinical trials.
Secondly, when performing multivariate Cox regression analysis,
not all of the clinical factors were included, such as tumor grade
and number of positive nodes as these information was not
publicly available. Thus, SFM subtypes as independent prognostic
factor needs to be further confirmed. Thirdly, we predicted drug
response using previous gene signatures, since these information
are not available in the included datasets. Therefore, drug
sensitivity among SFM subtypes should be confirmed using more
comprehensive data in the future. Fourthly, the SFM gene
signature was initially correlated with FOLFIRI response, while
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we saw SFM subtypes can also predict EGFR inhibitors response,
which could not be well interpreted based on our current analysis.
In conclusion, we build a new classifier of CRC into six molecular

subtypes, using SFM signature that can discriminate TME and is
associated with drug response. This gene signature can partially
explain the heterogeneity of CRC. The SFM subtypes would help to
improve precision treatment of CRC.

METHODS
CRC data collection and candidate gene selection
The publicly available datasets used in this study were accessed from the
Gene Expression Omnibus (GEO) and TCGA. Among these datasets, three
datasets (GSE39395, GSE39396, and GSE62080) were used for SFM
signature construction. Four datasets were used for CRC classification
using SFM, including GSE39582, five GEO batch, TCGA, and Renji cohort.
Five GEO batch consisted of five GEO datasets, including GSE14333,
GSE17536, GSE17537, GSE33113, and GSE37892. Four scRNA-seq data were
used for SFM validation, including GSE81861 for CRC, GSE103322 for
HNSCC, GSE72056 for melanoma, and GSE75688 for BRCA. In addition,
some aggregated datasets were used for drug-response exploration,
including (i) combined GSE19860, GSE28702, and GSE69657 for FOLFOX
response; (ii) GSE104645 and GSE72970 for FOLFOX or FOLFIRI response;
and (iii) GSE5851 and PRJEB34338 for cetuximab response.
For GEO datasets, we first performed the robust multi-array average

method within “affy” R package to normalize each dataset50. Three
datasets named GSE39395, GSE39396, and GSE62080 were then used to do
differential expression analysis to construct a SFM signature, in which
genes could discriminate TME and were associated FOLFIRI sensitivity. In
GSE39395 and GSE39396 (ref. 51), FACS was used to separate cell
subpopulations from eight and six samples, respectively (CD45+Epcam−

for immune cells, CD45−Epcam+ for tumor epithelial cells and CD45−Ep-
cam− for stomal cells in GSE39395; CD45+EPCAM−CD31−FAP− for immune
cells, CD45−EPCAM+CD31−FAP− tumor epithelial cells, CD45−EP-
CAM−CD31+FAP− endothelial cells, and CD45−EPCAM−CD31−FAP+ for
CAFs in GSE39396). GSE62080 contained transcriptomic data from nine
FOLFIRI responders and 12 nonresponders52. We did differential expression
analysis using limma R package53 between each two of the cell
populations in GSE39395 and GSE39396, respectively. For instance, in
GSE39395, there were three cell populations, including immune cells,

tumor epithelial cells, and stomal cells, we thus did differential expression
analysis for three times, including immune cells versus tumor epithelial
cells, immune cells versus stromal cells, and tumor epithelial cells versus
stromal cells. Similar strategies were applied to GSE39396. As for
GSE62080, differential expression analysis was directly performed between
FOLFIRI responders and nonresponders. Each time for differential
expression analysis, candidate genes were identified as differentially
expressed when P value was <0.05 and |logFC| ≥ 1. Further, we selected
out differentially expressed genes within each of these three datasets.
Finally, differential expressed genes among these three datasets were
overlapped, and further termed as SFM gene signature, as shown in Fig. 1a.
GSE39582 consisted of 566 CRC samples was used as a discovery

dataset23. To construct a large dataset for validation, we combined five
GEO datasets as a unit (GSE14333, GSE17536, GSE17537, GSE33113, and
GSE37892), referred to “five GEO batch” dataset54–57. Samples that
overlapped between GSE14333 and GSE17536 were excluded from
GSE14333. The ComBat method within “sva” R package was used for
batch correction58. By doing so, the first validation dataset (five GEO batch)
were composed of 609 CRC cases. In addition, we directly downloaded 577
TCGA CRC gene expression profiles from the synapse repository of CRC
provided by the CRCSC15. This level 3 TCGA data was used as the second
validation dataset. As for drug-associated datasets, we selected three GEO
datasets where samples were treated with FOLFOX: GSE19860, GSE28702,
and GSE69657, and combined these three datasets together after batch
correction59,60. This constructed a gene expression profile derived from 78
nonresponders and 64 responders of FOLFOX. In addition, another two
datasets in which samples were treated with FOLFIRI or FOLFOX:
GSE104645 and GSE72970 were also combined after batch correction61,62.
Finally, two datasets, GSE5851 and PRJEB34338 where samples were
treated with EGFR inhibitor, cetuximab, were also combined after batch
correction32,34. We also downloaded four scRNA-seq datasets for valida-
tion, including GSE81861 for CRC63, GSE103322 for HNSCC64, GSE72056 for
melanoma65, and GSE75688 for BRCA66. The annotated cell types
information are available from corresponding original papers. To account
for the influences of technical noise, we firstly performed missing data
imputation and data normalization to gene expression profiles. ScImpute
algorithm was used to impute missing gene expression with default
parameters and TPM, or raw counts value and gene lengths67. We used
“scater” R packages to normalize imputed raw counts68. As for HNSCC and
melanoma datasets which had far enough cells, tumors, and nonmalignant
cells types containing <50 cells were excluded for further analysis.
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Another total of 53 CRC samples were collected from Renji hospital. The
study protocol was approved by the ethics committee of Shanghai Jiao
Tong University School of Medicine. Written informed consent was
obtained from all patients. All samples were sequenced on an Illumina
HiSeq 4000 for 2 × 150-bp paired-end sequencing. Reads were mapped to
the human genome (GRCh38) using HISAT2 v2.10 (https://ccb.jhu.edu/
software/hisat2/), with the default options69. Count files of the aligned
sequencing reads were generated by the featurecount using the Gencode
version 22 gtf file (https://www.gencodegenes.org/human/)70. The read
counts from each sequenced sample were combined into a count file,
which was subsequently used for the downstream expression analysis.
Clinical data were directly downloaded from corresponding GEO

website or supplementary materials from associated literatures. Clinical
information for TCGA CRCs was downloaded from CRCSC in synapse
database and immune associated features were downloaded from a
recently public research71.

Identification of SFM subtypes using K-means clustering
algorithm
Based on the SFM, the identification of SFM subtypes was first performed
in discovery dataset (GSE39582) by applying K-means clustering algorithm
implemented in “factoextra” R package.
We identified the optimal number of clusters by gap statistics within the

predetermined number of clusters (k) varying from 3 to 8. Among these
clusters, k= 6 was selected with the best statistic in the discovery dataset.
Then we evaluated the similarity and expression differences among the
SFM subtypes with the cluster dendrogram and heatmap of the SFM,
respectively. To validate the robustness of SFM subtypes, we further
performed the same analysis in validation datasets (five GEO batch, TCGA,
and Renji cohort).
We used K-means clustering algorithm to do the clustering since it is one

of the simple and important clustering approach and statistically
deterministic without specifying initial centers72,73. It is an easier way to
classify dataset assuming k clusters. One of the advantages of K-means
algorithm is its higher computational speed for large variable when the
number of clusters is relative small. We applied K-means clustering
implemented in “factoextra” R package to gene expression profiles based
on SFM signature comprised of 250 unique genes. Several aspects were
considered to determine to cluster assignment in each dataset: (i) gap
statistics were reported for each cluster which compared the total within
intra-cluster variation for different values of k with their expected values
under null reference distribution of the data74. The estimate of the optimal
clusters will be the value that maximize the gap statistics which means that
the clustering structure is far away from the random uniform distribution
of points. Given that K-means clustering requires to pre-specify the
number of clusters, we set number of clusters varying from k= 3 to 8.
Generally, the output of clustering can be visualized using “fvix_gap_stat”
function in “factoextra” R package which can suggest the optimal number
of clusters marked as vertical dashed line. (ii) For a dataset that the optimal
number of clusters were not given by the function itself among k= 3 to k
= 8, we visualized the dendrogram of the clustering and drew the
heatmap showing the expression of SFM signature to facilitate the
selection of number of clusters. We further selected out the number of
clusters that (1) the height of dendrogram were good enough to
discriminate amongst clusters as indicated by a red horizontal dashed
line; (2) the gene expression profiles in the heatmap showed part of SFM
genes that were discriminative amongst clusters, which might be
subjective at this stage; and (3) additionally, as for a dataset with small
number of sample size, we generally selected smaller number of clusters
that also satisfied the principle above.

Enriched functions and pathways of SFM subtypes
To find to dysregulated signaling pathways among the SFM subtypes, we
first did differential expression analysis in each SFM subtype versus the rest
in discovery cohort and selected 2000 top up- and down-expressed genes
for further analysis in each SFM subtype23. These genes were then applied
in ClueGO and CluePedia apps75. These two plug-ins of Cytoscape are
open-source Java tools that can extract the non-redendant biological
information for a set of genes. In this study, we performed Ontology/
pathway analysis, including Gene Oncology (GO, BP, CC, MF, and immune
system process) and Kyoto Encyclopedia of Genes and Genomes (KEGG) in
Cytoscape 3.5.0 software.

NTP implementation and signature adaptation
NTP-based classification25 was performed on GenePattern (https://www.
genepattern.org/). NTP classification allows us to apply given signatures to
individual cases wherever these gene signatures are derived from.
Generally, these gene signatures consist of upregulated and down-
regulated genes to form a binary reference gene expression. NTP applies a
nearest neighbor method to calculate the similarity of gene expression
profile to a reference gene expression signature in each case. Then a null
distribution of similarity coefficients would be assessed by randomly sub-
sampling the gene space. Finally, a P value would be calculated when
comparing the similarity coefficient derived from the given gene signature
with the null distribution. The threshold selected for significance of each
case was Benjamini–Hochberg-corrected FDR < 0.2 (ref. 14).
We evaluated the association of SFM subtypes with a set of gene

signatures (Supplementary Table 5). The lists of gene signatures derived
from previously published papers are as following: intestinal stem cell
signature76, colon crypt signature77, serrated CRC signature27, EMT
signature78, FOLFIRI response signature79, and FOLFOX29 response
signature and VEFG/EGFR inhibitors signatures described by Schutte
et al.80, including avastin, cetuximab, afatinib, sapitinib, gefitinib, and
vandetanib.

Cells infiltration estimation
We used CIBERSORT algorithm to estimate the immune cell infiltration in
CRCs samples. This method used cell-specific gene signatures to
discriminate a total of 22 immune cell populations as described by
Newman et al.81. We additionally used microenvironment cell population
(MCP)-counter algorithm to estimate the proportions of stroma and
endothelial cells. This method can robustly quantify the abundance of
various immune and stromal cell populations based on transcriptomic data
for each sample82. The output of MCP-counter can be used to estimate the
relative infiltration of endothelial cells, fibroblasts, and another eight
immune cells populations. We performed MCP-counter analysis using
“MCPcounter” R package. Stromal fraction was estimated using “estimate”
R package.

Survival analysis
DFS and OS were regarded as the end points upon the clinical information
available in the datasets (RFS in GSE39582 and five GEO batch; RFS/OS in
TCGA). Survival analysis was performed based on the Kaplan–Meier
algorithm. The P value for the differences between SFM subtypes was
calculated using log-rank test. Univariate and multivariate Cox models
were constructed by cox proportion hazards regression. These analyses
were implemented in “survival” and “survminer” R packages.

Single sample gene set enrichment analysis
Gene set variation analysis (GSVA) is a nonparametric and unsupervised
method that can be used to evaluate gene set enrichment based on gene
expression profiles derived from microarrays or RNA-seq data83. GSVA can
evaluate the given pathway activity variation by transforming the gene by
sample matrix into a gene set by sample matrix. Therefore, it can easily
assess a pathway enrichment for individual case. Importantly, the GSVA
also provide a method called “single sample gene set enrichment analysis
(ssGSEA)”, which can compute a gene set enrichment score per sample as
the normalized difference in empirical cumulative distribution functions of
gene expression ranks inside and outside a given gene set. Single sample
gene set enrichment analysis (ssGSEA) was firstly described by Berbie
et al.84. In this study, we performed ssGSEA implemented in “GSVA” R
package and evaluated the EGFR gene set activity across the SFM subtypes
in three datasets (GSE39582, five GEO batch and TCGA and Renji cohort).
The EGFR gene set consisted of EGFR pathways-associated ligands or
receptors, including EGFR, ERBB3, EREG, BTC, HBEGF, AREG, and IRS2 as
previous papers reported31–33. Besides, we also performed similar analysis
for TGF-beta response85, exhausted T cells86, MDSCs86, hot tumor87, IFN-
gamma response88, IPRES signatures89, and SFM gene signature in four
single-cell datasets.

Oncotype DX
The 12-mRNA-based Oncotype DX colon cancer recurrence score assay
was built based on transcriptomic data from 1851 cases with stage II and
III colon cancer90. It has been recognized as an independent prognostic
factor in CRC. To confirm the prognostic value of SFM subtypes, we
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proposed to associate the SFM subtypes, Oncotype DX with DFS in
univariate and multivariate Cox regression models. To this end, we first
reproduced the Oncotype DX calculation in three datasets as described
by Clark-Langone et al.36. Cases with recurrence score (RS) < 30, 30 ≤
RS ≤ 41, or RS > 40 were regarded as low, intermediate or high risk of
recurrence, respectively. The association of Oncotype DX with DFS was
confirmed in all cases (P < 0.0001, Fig. 4e) or only stage II and III cases (P
= 0.00018, Fig. 4f).

Microbial detection using PathSeq algorithm
The PathSeq algorithm described by Kostic et al. can be used to identify
microbes according to deep sequencing data from RNA sequencing and
WGS in human tissue91,92. The human reads would be computationally
subtracted by mapping reads to human genome database after low-
quality, duplicate, and repetitive sequences were filtered. Then mapped
reads would be removed and unmapped reads that belong to nonhuman,
pathogen-derived reads would be subjected to further analysis. Followed
by the assignment of the unmapped reads to the acknowledged
sequenced whole bacterial reference genomes by a metagenomic analysis,
these unmapped reads would be taxonomically classified into bacterial,
viral, and fungal sequences. The relative abundance value for each
organism would be then computed using the reads mapping with >90%
sequence identity and >90% query coverage. Finally, the classification was
analyzed at the domain, phylum, genus, and species level. Following
PathSeq approach, we obtained the relative abundance of 1093 microbes
in 429 CRC samples, 415 of which were annotated with SFM subtypes
information and analyzed afterwards.

Statistical analysis
We performed two-tailed Students’s t test, Fisher’s exact test, χ2 test, and
Kruskal–Wallis test using R program (v.3.4.1). Cox regression hazard model
and Kaplan–Meier analyses were conducted using “survival” and “survmi-
ner” R packages, respectively. In all these tests, statistical significance was
set at 0.05. In the NTP algorithm, the results were regarded as significant if
the Benjamini–Hochberg FDR was <0.2.
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