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Abstract: A heavy workload is required for sample collection for urban land use classification,
and researchers are in urgent need of sampling strategies as a guide to achieve more effective work.
In this paper, we make use of an urban land use survey to obtain a complete sample set of a city,
test the impact of different training and validation sample sizes on the accuracy, and summarize
the sampling strategy. The following conclusions are drawn based on our systematic analysis in
Shenzhen. (1) For the best classification accuracy, the number of training samples should be no
less than 40% of the total number of parcels or no less than 5500 parcels. For the best labor cost
performance, the number should be no less than 7% or no less than 900. (2) The accuracy evaluation
is stable and reliable and requires validation sample numbers of no less than 10% of the total or no
less than 1200. (3) Samples with a purity of 60–90% are preferred, and the classification effectiveness
is better in samples with a purity greater than 90% under the same number. (4) If spatial equilibrium
sampling cannot be carried out, sampling areas with complex land use patterns should be preferred.

Keywords: land use classification; field survey; samples; parcel segmentation; machine learning;
land use mapping

1. Introduction

Urbanization has greatly changed our living environments, and more than half of the global
population resides in urban areas [1]. China has undergone the fastest urbanization worldwide over the
past three decades, and its artificial impervious area ranked first in 2015 [2]. For better urban planning,
spatial governance, and sustainable development of urbanized areas in China, more up-to-date,
detailed, and accurate land use classification is critically important.

Thus far, detailed urban land use classification in China has been performed only through
field surveys [3,4]. Currently, only a few major cities, such as Shenzhen, Wuhan, and Chongqing,
have detailed urban land use classifications at the entire city level [3,5–7]. This is an important task for
the Third Terrestrial Survey of China [8].
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Field surveys are time consuming and laborious, and researchers have long been committed
to improving the efficiency of land use classification through remote sensing technology [9–20].
Gong and his colleagues were among the earliest researchers to use spatial-context information in
addition to spectral data from satellite images to map urban land use categories, and their algorithms
have been adopted in mapping global settlement areas [21]. However, because of the limitation of
physical property measurements, the above-mentioned methods involving only spectral, texture,
and structural features face challenges in effectively differentiating among residential, industrial,
commercial, and service types of land uses.

In 2000, Zhang et al. proposed conducting urban land use classification by integrating GIS and
remote sensing data [22]. In 2007, Goodchild noted that volunteered geographic information (VGI) can
be used as a new data source for urban land use classification [23]. Information from OpenStreetMap
(OSM), point of interest (POI), and social data, such as traffic trace data of individuals, taxis, and public
transportation, can all be applicable to urban land use mapping [24–30]. VGI can be used as an
important supplement to remotely sensed data in the detailed mapping of urban land use [31] and has
since become a new focus area of research [32–40]. The most influential work was the mapping of
essential urban land use categories (EULUC) in all cities in China by 70 researchers from more than
30 organizations [40].

Because it is impossible to determine the classification results simply through visual interpretation
of images, the difficulty and workload of sample collection are increasing exponentially, representing
a difficult challenge for most researchers. Researchers are in urgent need of sampling strategies
as a guide to achieve more effective classification with relatively low labor costs. In the field of
traditional land use/land cover, scholars have accumulated a large number of samples over a long time
and quantitatively analyzed the impact of the sample number and other conditions on classification
accuracy [41–45]. However, detailed urban land use classification is a new research focus; most studies
use a limited number of sample units to test experimental classification methods, and no research
results regarding the optimal sampling strategies have been reported [31,34,36,40,46–48].

In this study, we take advantage of the availability of an urban land use map of Shenzhen city that
has been generated through a field survey of the entire city. By converting the map into a parcel-based
land use map, we obtain a complete sample set for experiments with various sample sizes. Based on
this map, we evaluated the impact of the sample size and land use mix of samples on the resulting
classification accuracy.

2. Study Site and Method

2.1. Study Area and Data

Shenzhen is the most rapidly developing city in China. In 1979, Shenzhen was essentially a rural
county bordering Hong Kong (Figure 1). By 2019, Shenzhen had more than 13 million permanent
residents, and its per capita gross domestic product (GDP) ranked first in China [49–51]. Due to the
high diversity and high precision of urban land use, complex land use types exist, such as villages
surrounded by city blocks, golf courses, and large entertainment facilities. The high level of complexity
and high land use intensity in Shenzhen provide a good opportunity for detailed urban land use
classification experiments.
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Figure 1. The study area.

2.2. Technical Process

Figure 2 shows a flowchart outlining the methodology used in this study, including the following
four major procedures: first, parcel segmentation with road networks, water, and impervious layers;
second, collection of training and validation samples; third, multisource feature extraction; and fourth,
classification and mapping. All datasets used in this study are summarized in Table 1.
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Table 1. Research data.

Data Type Name Year Content Resolution Usage

Remote
Sensing

Sentinel 2A/B 2018 Spectral data 10 m Feature extraction
Luojia 1 2018 Night light 130 m Feature extraction

VGI
OSM 2018 Centerline Multiple-scale Parcel segmentation

Gaode Map 2018 POI Multiple-scale Feature extraction

Tencent social big data 2018 Tencent mobile-phone
locating-request 1000 m Feature extraction

Field
Survey

Urban land use survey 2018 Urban land use parcel Submeter Sample collection
National geographical

condition survey 2015 Centerline, road level, width,
water area Submeter Parcel segmentation

Road survey 2018 Centerline, width Submeter Parcel segmentation
Building survey 2018 Building base map and height Submeter Feature extraction

Extent of built-up area 2016 Built-up area Submeter Parcel segmentation

2.3. Detailed Urban Land Use Classification System

In 2007, China issued the first formal land use classification standard, which was revised in
2017. This standard includes residential land, commercial and service land, industrial and mining
storage land, public administration and public service land, and transportation land [52]. The city of
Shenzhen developed a local classification system to supplement the national system [53]. In this study,
based on the national and Shenzhen classification schemes, we develop the Shenzhen Urban Land
Use Classification system (SULUC), which includes 5 Level I classes and 18 Level II classes (Table 2).
The SULUC is basically consistent with the standard used in the Third Terrestrial Survey of China,
and some Level II classes are even more detailed.

Table 2. Descriptions of the Shenzhen Urban Land Use Classification system (SULUC).

Level I Level II Descriptions

01 Residential
0101 Urban residential (UR) Land used for residential housing and related facilities

0102 Urban village (UV) Original rural resident housing currently mostly
surrounded by city blocks

02 Commercial

0201 Business and finance (BF) Commercial and service land used for
business operations

0202 Recreational (Rec) Cinema, recreational land, tourism land with less than
65% coverage of green space

0203 Golf course (GC) Golf course and service housing and facilities

0204 Storage (Sto) Land used for stockpiling and temporary storage
for distribution

0205 Other commercial (OC) Retail, wholesale, production and sales, services, and
entertainment land

03 Industrial 0301 Industrial (Ind)
Land used for production, product processing,

manufacturing, machine repair, and other
related facilities

04 Transportation

0401 Road (Roa) Transportation land

0402 Stations (Sta) Land used for service facilities, such as stations, transfer
stations, parking facilities

0403 Airports (Air) Civil or military airports
0404 Harbor (Har) Land used for harbors or related facilities

05 Public service

0501 Governmental office, media,
and press (GO)

Land used for governmental offices, social organizations,
broadcasting, film making, and publishing agencies

0502 Instructional and
research (IR)

Land used for instruction, research, design, surveying,
testing, environmental assessment, extension, etc.

0503 Medical, health, and social
welfare (MH)

Land used for medical, healthcare, disease control,
recovering, emergent saving facilities, philanthropic

institution, etc.

0504 Sports and cultural
facilities (SC) Public stadiums and training facilities

0505 Parks and green space (PG) Parks, zoos, gardens, squares, and other green space
for recreation

0506 Public infrastructure (PI) Land used for public infrastructure



Remote Sens. 2020, 12, 1497 5 of 18

2.4. Parcel Segmentation

We used the road network from the 2018 special road survey to divide the Shenzhen area into
land parcels using the following major procedures: first, a road buffer was generated using the road
centerline and width; second, the road buffer zone was used to divide Shenzhen area into land parcels;
third, water surface data from the National Geographical Condition Survey were used to exclude
parcels of water; fourth, parcels within the built-up area were extracted, and the purpose of this step
was to exclude farmland, forestland, bare land, and other categories that do not belong to SULUC.
In fact, there were approximately 200 parcels that did not belong to SULUC in the built-up area,
accounting for approximately 2% of the total number of parcels, which had little impact on the overall
accuracy of classification. The land parcels were divided into 12,965 land parcels (Figure 3).Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 20 
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The average size of a parcel was approximately 6 ha, which was approximately four times greater
than the land parcel size in the field survey. More than 100 parcels were superlarge land parcels
exceeding 50 ha. These superlarge parcels included villages in cities and large tracts of factories with
no obvious roads (Figure 4). These areas were located in the less developed part of the city, and using
the road network-based land partition method as a quick land partition strategy should be improved
in the future.
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2.5. Feature Extraction

We used the following five types of features in the parcel-level land use classification based on
Sentinel-2A/B images, Tencent mobile-phone locating-request (MPL) data, Luojia-1 nighttime light
images, Gaode POI data [40,54], and building surveys:

2.5.1. Multispectral Features from Sentinel-2A/B Imagery

We used the coconstellation Sentinel-2A/B images from January 1 to December 31, 2018, from the
Copernicus Open Access Hub to extract the multispectral features. We first calculated the normalized
difference vegetation index (NDVI) of each pixel. We further used the pixel-based maximum NDVI
values as a quality index to merge the whole-year images. Then, we calculated the mean and standard
deviations of the blue, green, red, and near-infrared bands, NDVI, and normalized difference water
index (NDWI) in each urban parcel.

2.5.2. Human Activity Features from Tencent MPL Data

We used the MPL dataset from November 1 to November 30, 2018, from Tencent, Inc. to track the
dynamics of the population distribution. MPL records are produced by retrieving the real-time locations
of active mobile-phone users as they use Tencent’s location-based services (LBS). We aggregated the
5 min MPL records per 8 h on weekdays and weekends, which represented the geographic pattern of the
human distribution during three temporal periods (12 a.m.–8 a.m., 8 a.m.–4 p.m., and 4 p.m.–12 a.m.).

2.5.3. Nighttime Light Features from Luojia-1 Nighttime Light Imagery

We used Luojia-1 nighttime light images acquired from June to December 2018, and the spatial
resolution of these images was 130 m. For each urban parcel, we calculated the mean value of the
digital number.

2.5.4. POI Features from Gaode

We used POI data from Gaode, Inc. in 2018. Each POI record consists of the name, location
coordinates, and POI type, such as catering, retailing, automobile, accommodation, recreation, public
facility, transportation, culture and media, and so forth. For each urban parcel, we calculated the total
number of all POI and the total number and proportion of each type of POI within that parcel.

2.5.5. Building Features from Survey Data

We used building survey data consisting of the base area, stories, and average story height of each
building in Shenzhen. We further aggregated these data into parcel levels to calculate the number of
stories, the sum of the building height, and the average building height.

The specific features are summarized in Table 3.

Table 3. Summary of the features used in the parcel-level mapping of SULUC.

Data Source Features

Sentinel-2A/B Mean and standard deviation of blue, green, red, near-infrared bands,
NDVI, and NDWI

Tencent-based MPL Mean of 8 h active population during weekdays and weekends
Luojia-1 nighttime light Mean of digital number values

Gaode-based POI Total number of all POI and total number and proportion of each type of
POI within each parcel

Building survey Number of stories, sum of building height, and averaged building height

2.6. Training and Validation Samples

Since the land survey data covering the entire city of Shenzhen are accessible, we possessed an
accurate reference dataset for training and validating the sample collection. Quality assurance of the
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field survey data was determined following a procedure of in situ photographing and by interviewing
the land managers to record the condition of the land use operation. The data were sample-verified
and quality-checked by a series of indoor processes to ensure that the results were consistent with field
survey standards. Therefore, the field surveyed land use served as a reliable source of reference in
this study.

Because parcels resulting from field surveys differ from parcels resulting from segmentation,
within each land parcel, we obtained the statistics of the areal proportion of different land use types
through a spatial intersect operation with the GIS software system. The land use category with the
largest proportion was assigned to the land parcel (Table 4). A sliver polygon removal operation was
applied to polygons less than 1000 m2 in area.

Table 4. Land use category extraction from the field survey.

UR BF Sto OC Ind Roa Sta IR PG PI Primary Land Use

Parcel
Code

F00003 0% 0% 0% 0% 7% 17% 0% 0% 76% 0% PG
F00025 14% 3% 3% 3% 63% 5% 4% 5% 0% 0% Ind
F00387 55% 0% 0% 0% 7% 17% 0% 0% 0% 21% UR

Through the above operation, we obtained a complete coverage reference land use dataset with
proportional records of different land use types. An advantage of this dataset is that all land parcels
can be used for training or validation. Therefore, we refer to this reference sample set as complete
samples, and the number of parcels in each category is shown in Figure 5. Under the complete samples,
the accuracy of the sample is equivalent to that of the field survey.
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Figure 5. Number distribution of parcels: (a) histogram of parcels with different categories; (b) histogram
of parcels with different purities.

The complete samples can reflect the land use mixing status. We used purity to quantify the land
mixed-use level of the parcel. The higher the purity of the parcel, the lower the mixing level of land use.
In the complete sample, we started with 100% purity and divided it into 10 groups according to each
10% decrease and combined 0–40% into one group. The number of each group is shown in Figure 5.

2.7. Classifier

Since 1996, machine learning has been widely used in the field of remote sensing classification.
Many scholars have found that machine learning can obtain results with a higher precision
than traditional parameter classifiers in processing complex data with a high-dimensional feature
space [47,55–58]. In particular, random forest (RF) is widely used by scholars. RF is a machine-learning
algorithm consisting of a large ensemble of regression trees that has shown great efficiency and
robustness in both computational cost and model performance [46–48]. We applied the training parcels
with the extracted features to produce a parcel-level mapping of urban land use classification in
Shenzhen with RF.
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3. Experimental Tests and Results

3.1. The Impact of the Sample Size

We set up two experiments. The first experiment tested the influence of different training sample
sizes on accuracy. From the complete sample, 30% of the stratified random sampling was used as
validation samples, and the remaining samples were used as training samples. The number of training
samples decreased by 1% each time, and each decrease repeated randomly sampled k times. The second
experiment tested the influence of the different validation sample sizes on the accuracy evaluation.
From the complete sample, 35% of the stratified random samples were used as training samples, and
the remaining samples were used as validation samples. The number of validation samples decreased
by 1% each time, and each decrease repeated randomly sampled k times. For k = 5, the accuracy of
each classification and the average accuracy are shown in Figure 6.

1 
 

 

Figure 6. Impact of the sample size on accuracy: (a) impact of different training sample sizes on the
classification accuracy; (b) impact of different validation sample sizes on the classification accuracy.

We define stable accuracy as a classification accuracy of the reduced samples no greater than
1% compared with that of all samples. Experiment One shows that the relationship between the
number of samples and accuracy follows the rule of stable classification with limited samples (Gong,
Liu, et al., 2019). The classification accuracy kept stable until the number of training samples was
reduced to 61% of all training samples (5540, accounting for 40% of all urban parcels). When the
number was reduced to 10% (908, approximately 7% of all urban parcels), the classification accuracy
began to significantly decline.

Experiment Two shows that as the number of validation samples decreases, the range of the
accuracy evaluation results increases. Considering the average accuracy as the measurement, when the
number of validation samples was reduced to 14% of all validation samples (1178, approximately 9%
of all urban parcels), the accuracy evaluation results were no longer stable.

In summary, to obtain stable and reliable classification results, the training samples need at least
40% of the total number of parcels or no less than 5500. At least 10% of the total number of parcels is
required for the validation samples or no less than 1200. If the labor force is insufficient, the high-cost
performance scheme requires the training samples to be at least 7% of all parcels or no less than 900.
In this situation, the maximum accuracy loss was not greater than 7%.

3.2. Impact of the Sample Purity

In this experiment, the influence of the sample purity on the classification accuracy was tested.
Currently, in most research concerning urban land use classification, the level of mixed land use is
not high, and the training samples always have high purity [31,39,40]. The mixed-use level of land in
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Shenzhen is high, and there are many low-purity parcels. Therefore, it is necessary to study whether it
is reasonable to select high-purity samples as training samples (Figure 7).

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 20 

 

3.2. Impact of the Sample Purity 225 
In this experiment, the influence of the sample purity on the classification accuracy was tested. 226 

Currently, in most research concerning urban land use classification, the level of mixed land use is 227 
not high, and the training samples always have high purity [31,39,40]. The mixed-use level of land in 228 
Shenzhen is high, and there are many low-purity parcels. Therefore, it is necessary to study whether 229 
it is reasonable to select high-purity samples as training samples (Figure 7). 230 

 231 

Figure 7. Sample numbers of different urban land use classifications with different purities. 232 

We selected seven categories of 11,034 parcels for the test. The specific categories included urban 233 
residential, urban village, business and finance, storage, other commercial, industrial, instructional 234 
and research, parks and green space. 235 

Among them, 30% of the stratified random sampling was used as validation samples, and the 236 
remaining samples were used as the mixed-purity [0,100%] sample set. Then, we divided the mixed-237 
purity set into high purity (≥90%), medium purity (60%–90%), and low purity (≤60%). Finally, we 238 
randomly selected the same number of training samples from the above four sets, and the results are 239 
shown in Figure 8. 240 

The experimental results show that under the same number of conditions, the classification 241 
accuracy of the mixed-purity samples was equal to that of the medium-purity samples and higher 242 
than that of the high-purity samples. The classification accuracy of the low-purity samples was the 243 
lowest. These results show that for a study area with a high land use mixing level, the 244 
representativeness of high-purity samples is not enough, which could lead to accuracy loss. The 245 
classification features of the low-purity samples are all mixed; thus, it is difficult for the classifier to 246 
learn effectively. The classification effect of the medium-purity samples is representative and can be 247 
used as the principle of sample collection. 248 

Figure 7. Sample numbers of different urban land use classifications with different purities.

We selected seven categories of 11,034 parcels for the test. The specific categories included urban
residential, urban village, business and finance, storage, other commercial, industrial, instructional
and research, parks and green space.

Among them, 30% of the stratified random sampling was used as validation samples, and
the remaining samples were used as the mixed-purity [0,100%] sample set. Then, we divided the
mixed-purity set into high purity (≥90%), medium purity (60–90%), and low purity (≤60%). Finally,
we randomly selected the same number of training samples from the above four sets, and the results
are shown in Figure 8.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 20 
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Figure 8. Overall accuracy of samples with different purities.

The experimental results show that under the same number of conditions, the classification
accuracy of the mixed-purity samples was equal to that of the medium-purity samples and higher than
that of the high-purity samples. The classification accuracy of the low-purity samples was the lowest.
These results show that for a study area with a high land use mixing level, the representativeness
of high-purity samples is not enough, which could lead to accuracy loss. The classification features
of the low-purity samples are all mixed; thus, it is difficult for the classifier to learn effectively.
The classification effect of the medium-purity samples is representative and can be used as the principle
of sample collection.
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3.3. Impact of the Sample Spatial Distribution

In this experiment, the influence of the sample space distribution on accuracy was tested.
We divided Shenzhen into three zones: the original special zone, former Bao’an, and former Longgang.
The original special zone included Luohu District, Futian District, Nanshan District, and Yantian
District. Former Bao’an included current Bao’an District, Longhua District, and Guangming District.
Former Longgang included the current Longgang District, Pingshan District, and Dapeng District.
The same numbers of training and validation samples were randomly selected from the three regions
for the cross experiment, and the accuracy was calculated with the training samples from the original
special zone, former Bao’an, former Longgang, and the validation samples from the three regions
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Figure 9. Classification accuracy of the sample migration experiments: (a) original special zone;
(b) former Bao’an District; (c) former Longgang District.

The experimental results show that land use in different areas in a single city also has heterogeneity
and that an uneven spatial distribution of samples could cause accuracy loss. In this experiment,
the original special zone was the old special economic zone, which has good planning control and
orderly land development. Former Bao’an is a labor-intensive industrial agglomeration area with
inefficient and extensive land use. Former Longgang is restricted by ecological protection due to
location factors, and its density is relatively low. There are differences in the representativeness of the
three samples, and the classification accuracy of other areas is significantly reduced.

From the perspective of sample migration capacity, the more diverse the regional urban land use
model, the stronger the migration capacity. In former Bao’an, Guangming is a relatively less developed
area of Shenzhen, and Bao’an Qianhai center is the most important economic center. Therefore, multiple
internal development stages coexist in former Bao’an, land use is extremely complex, and the migration
capacity is strong. Due to the high level of overall urban development, the original special zone has
low representativeness and a weak migration capacity.

3.4. Mapping of SULUC in Shenzhen

At the beginning, local professional urban land use surveyors were invited to choose training
samples from the complete sample set according to their knowledge and experience. They generated
1163 high-purity samples. Four-fold cross-validation was adopted to optimize the land use classifier
and the classifier was applied to the complete sample set for accuracy assessment. The overall accuracy
for the Level I categories was 62%, and 55% for Level II categories. Then, we took the best sampling
strategy in terms of the above-mentioned experiments and selected 5028 samples of medium purity
as the training samples. Its frequency distribution was similar to that of the complete sample set
(Figure 10). Using the same parcels, features, and classifier, the overall accuracy for Level I categories
reached 76%, and that for Level II categories reached 71% (Tables 5 and 6). The accuracy was improved
by approximately 15% under the optimal sampling strategy, shown in Figure 11.
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Figure 10. Frequency distribution of training samples and the complete sample set.
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Regarding Level I categories, major discrepancies were clustered in residential and industrial
land, and the misclassification of other land use types to residential and industrial land accounted for
over 50% of each of the misclassified categories. Regarding Level II categories, major discrepancies
were clustered in the urban residential, industrial, and parks and green space land. For example,
urban residential land was primarily misclassified as industrial land, industrial land was primarily
misclassified as urban villages, and parks and green space land was primarily misclassified as urban
residential, industrial, and road areas.
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Table 5. Confusion matrix of SULUC Level I.

Level I Overall Accuracy = 75.94% Kappa = 66.24%

Residential Commercial Industrial Transportation Public Service Total PA (%) UA (%)

Residential 4748 23 259 40 48 5118 92.77% 76.59%
Commercial 376 415 326 28 58 1203 34.50% 88.30%

Industrial 459 10 2557 23 69 3118 82.01% 72.48%
Transportation 82 7 97 930 116 1232 75.49% 72.54%
Public service 534 15 289 261 1195 2294 52.09% 80.42%

Total 6199 470 3528 1282 1486 12965

Table 6. Confusion matrix of SULUC Level II.

Level II Overall Accuracy = 70.91% Kappa = 64.33%

UR UV BF Rec GC Sto OC Ind Roa Sta Air Har GO IR MH SC PG PI Total PA UA

Residential
UR 2469 155 7 0 0 0 4 204 33 0 0 1 0 4 0 0 17 0 2894 85.31% 68.07%
UV 173 1854 0 0 0 0 1 186 8 0 0 0 0 1 0 0 1 0 2224 83.36% 77.31%

Commercial

BF 142 9 153 0 0 0 2 118 15 0 0 0 0 1 0 0 4 0 444 34.46% 86.44%
Rec 1 0 0 7 0 0 0 0 1 0 0 0 0 0 0 0 1 0 10 70.00% 100.00%
GC 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 12 0 19 36.84% 100.00%
Sto 4 2 0 0 0 43 0 101 4 0 0 0 0 0 0 0 1 0 155 27.74% 97.73%
OC 120 58 6 0 0 1 160 210 14 0 0 0 0 1 0 0 5 0 575 27.83% 90.40%

Industrial Ind 149 212 4 0 0 0 3 2706 28 0 0 0 0 7 0 0 9 0 3118 86.79% 65.82%

Transportation

Roa 53 5 1 0 0 0 0 74 801 0 0 2 0 1 0 0 28 1 966 82.92% 63.02%
Sta 21 6 1 0 0 0 2 53 23 11 0 1 0 1 0 0 14 0 133 8.27% 100.00%
Air 0 0 0 0 0 0 0 5 0 0 24 0 0 0 0 0 1 0 30 80.00% 100.00%
Har 0 0 0 0 0 0 0 6 2 0 0 95 0 0 0 0 0 0 103 92.23% 95.96%

Public service

GO 77 13 3 0 0 0 0 46 4 0 0 0 66 2 0 0 2 0 213 30.99% 100.00%
IR 117 32 1 0 0 0 1 70 11 0 0 0 0 188 0 0 4 0 424 44.34% 81.74%

MH 26 6 1 0 0 0 0 14 4 0 0 0 0 2 24 0 0 0 77 31.17% 100.00%
SC 17 3 0 0 0 0 1 24 6 0 0 0 0 6 0 12 3 0 72 16.67% 100.00%
PG 237 42 0 0 0 0 3 259 309 0 0 0 0 15 0 0 502 0 1367 36.72% 82.70%
PI 21 1 0 0 0 0 0 35 8 0 0 0 0 1 0 0 3 72 141 51.06% 98.63%

Total 3627 2398 177 7 7 44 177 4111 1271 11 24 99 66 230 24 12 607 73 12965
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We compared the difference between the mapping of SULUC and land surveys in terms of the
urban land use structure (Figure 12). Most commercial and public services lands are not correctly
classified and are basically misclassified as residential and industrial, which is critical for improving
accuracy in the future.
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Figure 12. Comparison of the urban land use structure between the mapping of SULUC (upper) and
complete samples (bottom).

From the perspective of the feature contribution rate, the most important feature is building
height information, followed by POI and Sentinel 2A/B multispectral information (Figure 13). In the
MPL data, the Luojia-1 nighttime light feature contribution rate is very low, mainly because the
original spatial resolution of these data is low, which is not suitable for high-resolution urban land use
classification tasks.
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4. Discussion

Mixed land use is a big obstacle to improving classification accuracy. Current results show that
misclassifications of low-purity parcels were much more than those of high-purity parcels. The lower
the purity of the parcel, the worse the classification accuracy (Figure 14). The reasons are as follows:

1. Due to the high scarcity of land, commercial, transportation, and public facilities in high-density
cities such as Shenzhen often exist in the form of nonindependent land occupation. In this
case, the features mentioned above may not be sufficiently significant compared with those in
other cities.

2. There is more and more three-dimensional utilization of land use. For example, a business center
generated by urban renewal could have a commercial center on its low floors and high-quality
housing on the top floors; thus, this center is both commercial and urban residential. Additionally,
government agencies could rent some commercial buildings for office space, and in this situation,
the building is both for commercial use and public service use. In the above cases, it is unreasonable
to assign only one category to a parcel. A possible solution is to assign multiple categories to a
parcel through a probability method.
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Figure 14. Number of misclassifications and classification accuracy of parcels with different purities.

The methodology of the parcel segmentation and feature extraction can be improved:

1. The segmentation of parcels is not detailed enough. Because road segmentation technology is not
suitable for the underdeveloped areas of the road network in the city, this results in superlarge
parcels which contain multiple land use categories. In the future, image segmentation can be
introduced to segment the superlarge parcels generated by road segmentation.

2. The POI information collection from commercial companies is biased, resulting in unsatisfactory
classification results. In the future, POI information from official electronic maps can be combined
with POI information from commercial institutions to enhance the classification accuracy.

Given the opportunity that Shenzhen has a complete set of ground truth of land use samples,
it makes it possible to design a series of experimental tests to investigate the impact of sample quantity
and quality on detailed land use classification performance. We have further checked the availability
of data in different cities around the world. The multispectral and nighttime light remote sensing data
used in this paper can be obtained globally. Global road network data can also be accessible through
OpenStreetMap. However, the major challenge of this study was to collect sufficient land use samples.
Fortunately, Shenzhen has just conducted an urban land use survey, and we could obtain its complete
sample set from the survey results. Similar research can be conducted in other cities in China after the
completion of the Third Nationwide Land Survey of China. In other areas, the cadastral data could be
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considered as a source of samples in similar experiments to demonstrate whether the conclusions are
representative throughout the world.

5. Conclusions

In the process of detailed urban land use classification based on multisource remote sensing,
VGI, and machine learning, we studied how to improve the classification accuracy by optimizing
the number and purity of the samples and summarized the optimal sampling strategy. The main
conclusions are as follows:

1. Quantity strategy. To acquire the best classification accuracy in a single city, it is necessary to
collect training samples of no less than 40% of the total number of urban parcels or no less than
5500 in number. If limited labor is available for sample selection, it is recommended to collect no
less than 7% of the total parcels of training samples or no less than 900 samples. Further reduction
in the number could cause a significant loss of accuracy. To ensure the stability and reliability of
the accuracy evaluation results, it is necessary to collect no less than 10% of the total parcels of
validation samples or no less than 1200. Notably, if the principle of stratified random sampling is
followed, the impact of the number of validation samples on the accuracy evaluation is limited.
Even if the number of validation samples is reduced to 1% of the total, the maximum accuracy
evaluation loss is not greater than 8%.

2. Purity strategy. Using only high-purity samples could cause a certain loss of accuracy. It means
that there is no need to collect only high-purity parcels as training samples. The better strategy is
to prioritize using samples with a purity between 60% and 90%. It is worth noting that random
sampling without considering purity can also obtain ideal accuracy results, but there are great
difficulties in identifying low-purity mixed land, which could require more work.

3. Spatial distribution strategy. The spatial distribution of the samples should be as balanced as
possible, as unbalanced sampling will cause a significant accuracy loss even if in a single city.
The samples have the ability to migrate. When spatial equilibrium sampling is not allowed,
priority should be given to areas with complex land use patterns, which can provide better
classification results.
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