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Abstract
Purpose Surgical annotation promotes effective communication between medical personnel during surgical procedures.
However, existing approaches to 2D annotations are mostly static with respect to a display. In this work, we propose a method
to achieve 3D annotations that anchor rigidly and stably to target structures upon camera movement in a transnasal endoscopic
surgery setting.
Methods This is accomplished through intra-operative endoscope tracking and monocular depth estimation. A virtual endo-
scopic environment is utilized to train a supervised depth estimation network. An adversarial network transfers the style from
the real endoscopic view to a synthetic-like view for input into the depth estimation network, wherein framewise depth can
be obtained in real time.
Results (1) Accuracy: Framewise depth was predicted from images captured from within a nasal airway phantom and
compared with ground truth, achieving a SSIM value of 0.8310 ± 0.0655. (2) Stability: mean absolute error (MAE) between
reference and predicted depth of a target point was 1.1330 ± 0.9957 mm.
Conclusion Both the accuracy and stability evaluations demonstrated the feasibility and practicality of our proposed method
for achieving 3D annotations.

Keywords Augmented reality · Surgical annotation · Monocular depth estimation · Domain transfer learning · Transnasal
surgery

Introduction

Any surgical procedure involves the collaboration between
different personnel like surgeons and nurses. Effective com-
munication is paramount to ensuring a smooth surgical
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workflow. In particular, communication can be achieved by
graphical annotations drawn on a display device when the
use of an endoscope is involved. In this manner, any tar-
get structures inside the field of view can be annotated with
information and instantly shared among related personnel.
Advantages brought by surgical annotation are not limited to
within an operation theatre. As it enables real-time graphical
communication, beneficiaries include everyone involved in
the procedure such as teachers, students andmedical trainees.
Examples of annotation include a multi-institutional coop-
eration during adrenalectomy through video conferencing
[1], and an experimental illustration of intention sharing by
visualizing eye gazes of separated collaborators [2]. Both
examples involved graphical annotations to facilitate effec-
tive communication. Nevertheless, these approaches only
applied 2D annotations on static endoscopic views. Anno-
tations failed to anchor rigidly with respect to the patient
anatomy upon camera movement [3].
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In this work, we aim to achieve 3D annotation in which
annotations made in an endoscopic view would anchor in
a stable and accurate way to the target surface during cam-
era movement with the aid of endoscope pose tracking by
an EM sensor and monocular depth estimation. Not only do
annotations anchor to the surgical scene during cameramove-
ment, size change with respect to endoscopic view as the
camera approaches the annotated target may provide view-
ers with improved depth perception. To elaborate, achieving
3D annotation is essentially implementing augmented real-
ity (AR). The 3D annotation is instantiated in a virtual 3D
world and later registered to the real-world surgical field.
By augmenting the exposed surgical view with intra- or pre-
operatively obtained images or 3D models [4], AR applied
in surgeries allow overlay of subsurface critical structures
and pre-operatively planned trajectories that include depth
information. Subsequently, it may reduce the risk of com-
plications, increase surgical efficiency and aid with surgical
training [5].

As a proof of concept, we selected nasal surgery for
the implementation of 3D annotation. AR systems are the
most useful when the target surgical sites have little defor-
mation and movement [6], making the nasal cavity and
paranasal sinuses a suitable candidate for AR implementa-
tion. Additionally, due to its proximity to the brain, many
critical structures can be overlaid in the endoscopic view.
To achieve AR in nasal surgeries, researchers and compa-
nies tend towards sensor-based approaches utilizing external
equipment. The endoscope and the target anatomy are usu-
ally tracked by medical graded optical or EM trackers. The
Scopis� Hybrid Navigation is a commercial example that
combines optical and EM sensing to achieve AR. Next,
pre-operative (pre-op) 3D models are usually obtained from
computed tomography (CT) scans, which is then registered
to the sensor-based tracking system reference frame by rigid
registration, enabling overlay of pre-operatively obtained
models onto the real anatomy in the surgical scene.

Provided that we adopt the above approach to achieve
3D annotation, depth information observed by the camera
would be based on the registered pre-op 3Dmodel. However,
observed depth in this context may not be representative of
the real surface during surgery, especially in the nasal cavity
where soft mucosal linings are not clearly observable in CT
scans. It is also notable that the quality of a 3D reconstruc-
tion from CT scans is highly dependent on scanning quality,
reconstruction software and human operation [6].

One of the possible alternatives to obtain depth is to
resort to traditional vision-based approaches such as stereo
or monocular visual Simultaneous Localization and Map-
ping (vSLAM). vSLAM outputs camera trajectory and a 3D
structure of an environment without any prior knowledge
of the environment or the use of any active sensors. Using
vSLAM, visual input can be taken advantage of to perform

tracking and mapping. Depth can be obtained from vision
in real-time, which may be more representative than depth
based on a registered pre-op model. Real-time stereo recon-
struction has been performed previously for laparoscopic
surgery [7]; however, stereo vision is difficult to implement
in nasal surgeries due to constraints on the endoscope size.
Depth estimation through monocular endoscopes has also
been demonstrated, for example, by tracking and matching
video frame feature points for both endoscope tracking and
point cloud reconstruction in the nasal airway of a cadaver
head [8] and through ORBSLAM [9] approaches for track-
ing laparoscope pose and mapping the surgical scene [10].
However, feature-based tracking is prone to failure inside
the nasal cavity owing to the lack of texture and the apparent
repetition of patterns [11].

In view of the rapid development in deep learning-based
monocular depth estimation, there lies a great opportunity
in surgical AR to exploit vision-based depth. Novel exam-
ples giving promising estimation results include DORN [12]
and DenseDepth [13]. Supervised learning methods such as
DORN require an endoscopic image dataset with ground
truth depth labels for training.During the application phase of
the trained neural network, the estimated depth output is gen-
erated from colour image input. Unfortunately, there does not
exist a large, readily available labelled dataset for the nasal
airway. It is also impractical to collect ground truth depth data
inside the nasal airway using active sensors. To address this
limitation, some researchers [14,15] have attempted to train
their depth estimation networks in a self-supervised manner
such that no depth labelling is required prior to network train-
ing. Nonetheless, both employed a structure from motion
(SfM) algorithm to obtain sparse depth before the training
phase. Consequently, depth estimation output highly depends
on the accuracy and quality of SfM output. Implicit domain
adaptation that translates synthetic colon endoscopic images
to depth maps by using pix2pix [16] has also recently been
proposed. Other than paired simulated data, unlabelled real
colon images were also involved in the training phase such
that the trained model may produce more accurate depth pre-
dictions in patient data [17].

Adopting a similar approach used in prior art [18], we train
a supervised depth estimation network in a virtual environ-
ment and utilize it to predict depth of real endoscopic image.
Prior to depth estimation, a real-to-virtual image style trans-
fer using cycle generative adversarial network (cycleGAN)
[19] is performed. With adversarial learning, domain adap-
tation between the real domain and the synthetic domain is
accomplished. Previously, cycleGAN-like architectures has
been used to adapt real bronchoscopy images to virtual style
images [20]. Real-to-virtual adaptation was also used for
colonoscopy using a generative adversarial network (GAN)
architecture [21]. Through this approach, preparation of an
unlimited amount of absolute ground truth depth becomes
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Fig. 1 Overview of preparation
process for ground truth depth
maps, synthetic endoscopic
images and real endoscopic
images for depth estimation and
image style transfer training

possible, while depth prediction can be implemented on real-
to-virtual-adapted real endoscopic images. Time and labour
cost for data preparation through this approach would be
minimal. In addition, real-to-virtual domain adaptation can
remove patient-specific texture details that may vary widely
between patients, potentially making the depth estimation
network generalizable across patients
[21].

Apart from aiming at generating depth that is more rep-
resentative of a surface so as to increase 3D annotation
accuracy, we are also concerned with its stability. There-
fore, a brief stability evaluation of our proposed system
is included towards to end of this study. Additionally,
datasets used in training and testing are provided for research
purposes.1 Major contributions of this study are listed
below:

1. The applicationofmonocular depth estimation is extended
beyond offline 3D reconstruction of surgical scenes, into
applicationswith real-time augmented reality for surgical
guidance.

2. A supervised depth estimation network is trained entirely
in a virtual environment and used to predict depth
from endoscopic images in real-time by implementing
cycleGAN-based real-to-virtual style transfer.

3. Predicteddepth is quantitatively evaluated against ground
truth depth in a nasal airway phantom. Accuracy of
augmented 3D annotations are evaluated, while overall
system stability is quantitatively assessed.

1 https://www.iris.mech.hku.hk/surgical-planning.

Methodology

Data preparation for deep neural network (DNN)
training

The goal of our method is to train a supervised depth
estimation network in a virtual environment and utilize it
to predict real endoscopic image depth. In doing so, syn-
thetic endoscopic images and the corresponding ground truth
depth maps were generated in a virtual world space using
Unity3D.Anoverviewof the data preparationprocess is illus-
trated in Fig. 1. A virtual camera was set up with intrinsic
parameters obtained from camera calibration of an Olym-
pus rhinolaryngoscope (ENF-VH). Not only did we match
intrinsic parameters of the real and virtual endoscopes, but
we also attached two point light sources near the virtual cam-
era that exhibit realistic inverse square intensity fall-off in
relation to distance from the source. Next, an anatomically
accurate nasal airway model was imported into the virtual
environment. The model was obtained from a CT scan of
a cadaver head, followed by 3D segmentation and model
editing. The model surface was assigned a uniform light-red
colour to emulate the nasal mucosal lining, however, not-
ing that patient-specific textures such as vascular patterns
were absent. Depth estimation network trained in this man-
ner is hypothesized to have improved generalizability across
patients.

A dataset of 3600 synthetic endoscopic images and the
corresponding ground truth depth maps were captured from
the virtual camera while being moved inside the virtual nasal
airway model along a pre-defined pathway. Ground truth
depth maps were stored as greyscale images. Depth observed
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by the virtual camera was set to span a range of 0.01–25 mm.
As we adopted a GAN-based unpaired image-to-image style
transfer network, real endoscopic images and synthetic endo-
scopic images prepared do not necessarily correspond with
one another. Therefore, 3000 real endoscopic images were
directly captured inside a 3D-printed nasal airway phantom.
The phantom was based on a segmented anatomically accu-
rate nasal airway model and 3D-printed in a material with
shore hardness value of 70.

Real-to-virtual image style transfer

Our aim for real-to-virtual image style transfer is to learn a
mapping G : X → Y , where the domain variance between
real RGB image x ∈ X and synthetic-style RGB image
y ∈ Y is bridged. As a result, a depth estimation network
trained on synthetic endoscopic images can be deployed on
real RGB endoscopic images. To obtain the mapping model,
a GAN-based unpaired image-to-image translation method
called cycleGAN [19] is applied. It consists of two transla-
tors G , F to learn the mapping functions G : X → Y and
F : Y → X . Two adversarial discriminators Dx and Dy are
trained to differentiate the style-transferred images from the
domain images. The goal of discriminator Dx is to distin-
guish {x} and F{(y)} which is style-transferred to style of
X by translator F and vice versa for Dy and G. Dx and Dy

are both PatchGAN [16] classifiers. Transformer G is thus
encouraged to translate X into outputs indistinguishable from
domain Y . In other words, G is enforced by Dy to produce

synthetic-like images from real RGB images. The loss func-
tion combines adversarial loss [22] and cycle consistent loss
[19].

Depth estimation

The architecture of our depth estimationmodel is an encoder–
decoder network DenseDepth presented in [13]. The encoder
part is a pretrained DenseNet-161 network for extracting
features from our RGB images and representing them as
a feature map. The decoder part contains blocks of con-
volutional and up-sampling layers to transform the feature
map into the desired depth output. The same spatial shape
of the encoder layers is skip-connected into the decoder to
improve the prediction performance and produce sharper
depth estimations. The loss function to train our network is
a combination of depth loss and structural similarity (SSIM)
loss. The aimof themodel is to learn themapping between the
synthetic endoscopic image dataset and the corresponding
ground truth depth value such that it can accurately predict
the depth value in real endoscopic images.

System integration in the virtual scene to achieve 3D
annotation

After the training phase of both depth estimation and image
style transfer networks, system integration was performed
to achieve 3D annotation using Unity3D as an interface
for visualization (Fig. 2). First, a six-degree-of-freedom

Fig. 2 Integration of image style transfer and depth estimation networks to achieve real-time 3D annotation. Based on (i) predicted depth, (ii)
camera intrinsic parameters and (iii) camera pose from EM sensor, annotations can be anchored to the anatomical surface in a stable manner
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(DoF) electromagnetic (EM) sensor (Aurora, NDI Medical,
Canada) was attached to the tip of the endoscope. Using
Tsai’s method [23], hand–eye calibration was employed to
find the transformation cTs, a description of the sensor frame
relative to the camera frame. To reduce error propagation in
the case of imperfect hand–eye calibration, the EM sensor
was attached to the endoscope tip at approximately 2 mm
from the camera’s optical axis. By directly streaming sensor
pose in EM frame emTs into Unity3D, pose of the camera tip
with respect to virtual world wTc was assigned as the virtual
camera pose:

wTc = emTs · cTs
−1 (1)

Next, RGB video frames were streamed from the endo-
scope during observation of the 3D-printed nasal airway
phantom, which was static relative to the EM tracking field.
Before passing video frames to i) Unity3D for visualization
and ii) real-to-virtual image style transfer network, image
undistortionwas applied as a data pre-processing step.Undis-
torted frames passed to (i) may then accurately be overlaid
with any virtual object, which would be observed by a virtual
camera that was distortion-free by default.

Style-transferred image frames processed in (ii) were
further relayed to the depth estimation network for gen-
erating framewise depth maps. Depth at each pixel was
stored as a normalized float number in a range between 0
(far) and 1 (near), which was then converted into a depth
range of 0.01–25 mm in the virtual environment, matching
the depth range of the image set used for depth estimation
training.

While RGB frames were displayed in the Unity3D view
in real time, a pixel (u, v)was selected by the cursor to begin
annotation. Given the camera intrinsic matrix K and depth
value d at (u, v) retrieved from a predicted depth map, an
annotation element in the form of a simple spherical object
with a position pc = [

xc yc zc
]
T in camera coordinates was

placed in virtual game world, where

pc =
⎡

⎣
xc
yc
zc

⎤

⎦ = K−1 · d ·
⎡

⎣
u
v

1

⎤

⎦ (2)

which was further expressed as pw in virtual world coordi-
nates:

[
pw
1

]
=

⎡

⎢⎢
⎣

xw

yw
zw
1

⎤

⎥⎥
⎦ = wTc ·

[
pc
1

]
= emTs · cTs

−1 ·
[
pc
1

]
(3)

Experiments

Implementation of DNNs

Image style transfer training Before the training phase, real
endoscopic images and synthetic endoscopic images pre-
pared with the pipeline described in “Data preparation for
deep neural network (DNN) training” section were resized
to 288×256 pixels. The translators consisted of 2 convolution
layers with stride of 0.5, 9 residual blocks [24] and another
convolution layer that outputs a feature map. For the discrim-
inators, 70×70 PatchGANs [16] were employed. The entire
network was trained for 200 epochs with a batch size of 1.
Adam [25] optimizer with initial learning rate of 0.0002 was
applied. Weight parameter λ in [19] was set to be 10.

Depth estimation training The depth network was first
trained with NYUDepth v2 [26] dataset as a pretraining step
to obtain optimal layer weights for depth estimation. The net-
work was trained with Adam [25] optimizer, initial learning
rate 0.0001 and batch size of 4 for 20 epochs. To train the
network for our purpose, synthetic endoscopic images and
the corresponding depth maps were used as a subsequent
fine-tune training with 50 epochs. Images were resized to
640×480 pixels prior to fine-tune training. Weight parame-
ter λ in [13] was set to be 0.1. The proposed framework was
implemented on a computer with an AMDRyzen Threadrip-
per 3960XCPU, 64GBRAMand twoNVIDIAGTX 1080Ti
GPU.

Evaluation dataset preparation

To evaluate depth estimation accuracy, a testing dataset con-
sisting of 2400RGB image frames captured by the endoscope
during observation of the 3D-printed nasal airway phantom
was prepared. Simultaneously, corresponding ground truth
depth maps were generated in the following manner:

1. By equation (1), the endoscope pose in the EM frame was
assigned as the virtual camera pose in real time.

2. Having the anatomically accurate nasal airway model,
six non-co-planar anatomical positions {xi } on the model
were recorded in model frame.

3. With a 6-DoF EM probe, the corresponding six anatomi-
cal positions {yi } on the 3D-printed nasal airway phantom
statically placed in EM tracking field were recorded.

4. To find the transformation matrix emTm that registers the
nasal airway model to the 3D-printed phantom, where
emTm = (

R t
0 0 0 1

)
, for R being the rotational matrix and

t being the translational vector, R and t were solved by
minimizing the least-squares error

∑N
i=1 ||Rxi +t− yi ||2,

which in our case N = 6, solved using singular value
decomposition (SVD) method proposed in [27].
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5. When importing the nasal airway model into the virtual
scene, emTm was applied to it. As both the phantom and
endoscope were registered to the virtual world, ground
truth depth maps could be collected, while real RGB
frames were being captured.

Annotation stability evaluation

Stability of an AR system can be described by the synchro-
nization of virtual object and real object movement on a
display during camera motion. A measure to maximize sta-
bility is tominimize latency discrepancy between all live data
streams, namely i) EM sensor pose, ii) endoscopic video
stream and iii) depth predicted. While (iii) has a higher
latency than (i) and (ii), synchronization can be achieved by
manually adding delay on streams (i) and (ii) accordingly.

Another way to describe stability is consistency in depth
predicted. Prediction made by supervised monocular depth
estimation often flickers due to independent per-frame pro-
cessing [28]. In our system, although depth is only assigned
to a sphere annotation when the curser is clicked at a pixel,
depth consistency between frames is still relevantwhen depth
is continuously read, and sphere annotations are consecu-
tively made as the pressed cursor is dragged.

Through the registration method described in “Evalua-
tion dataset preparation” section, the nasal airwaymodel was
registered to the phantom statically placed in the EM track-
ing volume. To evaluate consistency, a virtual sphere was
placed on the airway wall at a point with absolute location
known. The endoscope was then directed at this sphere and
moved in a forward–backward direction such that depth from
sphere to camera varies with time. This depth value can be

directly obtained in the virtual world as this is the distance
between virtual camera and virtual sphere, which we define
as the “reference depth”. Simultaneously, pixel coordinates
of this sphere appearing in the Unity3D viewport was contin-
uously captured and relayed to the depth estimation network.
The corresponding predicted depth was obtained, which we
define as the “predicted depth”. The reference depth and pre-
dicted depth were then captured and plotted against time. In
total, five trials were conducted, each lasting for 30-60 sec-
onds. The endoscope speed was kept below 3 mm/s, and the
data sampling rate was 50 Hz.

Result and discussion

Result of depth estimation and 3D annotation
implementation

Qualitative comparison between predicted depth and corre-
sponding ground truth depth maps collected with the method
described in “Implementation of DNNs” section is shown in
Fig. 3. In order to quantify our depth estimation accuracy by
comparing ground truth depth and predicted depth, normal-

ized root mean square error (NRMSE)
√∑

i (xi−yi )2

n (xmax −
xmin)

−1 and SSIM proposed in [29] were calculated. Simi-
larity is indicated by a NRMSE close to 0 and a SSIM close
to 1, where SSIM spans between -1 and 1. Depth prediction
accuracy is shown in Table 1, which is juxtaposed to quoted
prediction results of two existingmethods that adopted a sim-
ilar depth estimation workflow for colonoscopy [21] and that
used dictionary learning (DiL) trained on CT colonoscopy
images [30]. To illustrate real-time capability of our method,

Fig. 3 Qualitative results of
predicted depth with comparison
to ground truth depth
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Table 1 Depth prediction
results: comparison between our
method and state-of-the-art

Method NRMSE SSIM

DiL [30] 0.50 0.32

Mahmood et al. [21] 0.23 0.77

Our method 0.3224 ± 0.0773 0.8310 ± 0.0655

Fig. 4 Plot depicting one trial of the depth consistency evaluation. Reference depth and predicted depth were captured during forwards-backwards
movement of the endoscope in the nasal phantom airway. The endoscope speed was kept below 3 mm/s, and sampling rate was 50 Hz

a supplementary video2 showing 3D annotation implemen-
tation can be referred to.

As compared to state-of-the-art shown in Table 1, Mah-
mood et al. [21] and our proposed method was significantly
more accurate than the DiL implementation [30]. This could
be attributed to the fact that their work did not incorporate
a virtual camera model with point light sources exhibiting
realistic inverse square intensity fall-off, which is believed to
be a crucial element to consider in depth estimation. Despite
achieving the best estimation accuracy in terms of SSIM,
Fig. 3 illustrates that our method will produce poorer depth
estimation results when the endoscope is closer to the nasal
mucosa. This is in part likely due to light intensity satura-
tion when moving the endoscope closer to a surface, where
edges and depth information of narrow passages tend to
be lost, yielding an average depth biased towards a high
proximity value. We believe that there is still room for
improvement such that the predicted depth can be applied to
not only performing 3D annotation, but also robotic control
that demands higher depth accuracy and precision. Future
work may include a thorough endoscope photometric cali-
bration to further match light properties of the virtual camera
light with that of the endoscope.

Quantitative result of system stability

Stability in terms of geometric consistency was evaluated
with the method described in “Annotation stability evalua-
tion” section. Average mean absolute error (MAE) between

2 https://youtu.be/kCi1ux-Q1FQ.

reference depth and predicted depth of all five trials was
1.1330 ± 0.9957 mm (or 5.5%-8.5% of the full 25 mm
observable depth range of the virtual camera). While indicat-
ing a high accuracy, a low precision is revealed by a standard
deviation being comparable to the MAE. The results showed
rapid fluctuation of the predicted depth due to independent
per-frame processing as described in Luo et al [28]. This kind
of geometric inconsistency in a temporal context can also be
observed in Fig. 4, which depicts the entire data logging pro-
cess of one of the five trials. The predicted depth exhibited
drastically more fluctuations than the reference depth. A pos-
sible remedial measure is to carry out a coupled estimation
of both camera pose and depth, which is one of our aims in
future work.

Although fluctuation in the predicted depth exists, the
scale of predicted depth matches relatively well with the ref-
erence depth as shown in Fig. 4. A possible explanation is
that the travel distance of the endoscope inside the nasal air-
way is relatively small compared to other anatomical sites
like the colon, where scale drift is often observed in monoc-
ular depth estimation. In addition, our method design has
indirectly minimized scale drift of the predicted depth. The
depth prediction network we employed has a deterministic
mapping which would likely output inaccurate results when
inputs deviate from training data to a large extent. However,
images are style-transferred to virtual-like images before
being inputted into the depth estimation network. As long as
virtual-like images resemble synthetic endoscopic images,
predicted depth maps should be fairly coherent and consis-
tent with respect to geometric scale.
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Conclusion

In this work, we proposed a method to achieve real-time
3D annotation in a transnasal setting. Framewise depth is
predicted from real-to-virtual domain transferred endoscopic
images captured fromwithin a nasal airway phantom, achiev-
ing a SSIM value of 0.8310 ± 0.0655. 3D annotation was
achieved by integrating the EM-tracked endoscope pose with
real-time predicted depth based on camera frames. Both the
accuracy and stability evaluations demonstrated the feasibil-
ity and practicality of our proposed method. Although our
current work involves only a phantom for evaluation, we
believe this preliminary work provides a capable proof of
concept for future development towards a more generaliz-
able system. By creating cadaver and patient nasal airway
video datasets alongside CT images for generation of virtual
models, future work will focus on proving system generaliz-
ability across patients. Additionally, geometric inconsistency
in the predicted depthwill be addressed, potentially by adopt-
ing a self-supervised network that includes both depth and
pose prediction, which may simultaneously be a more end-
to-end estimation network with improved efficiency. With
estimated poses, we also intend to explore the possibility
to combine EM-acquired poses and poses estimated from
monocular images such that stability of a surgical AR sys-
tem could be improved.
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