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Abstract: Wire electrical discharge machining (WEDM), widely used to fabricate micro and precision
parts in manufacturing industry, is a nontraditional machining method using discharge energy which
is transformed into thermal energy to efficiently remove materials. A great amount of research
has been conducted based on pulse characteristics. However, the spark image-based approach has
little research reported. This paper proposes a discharge spark image-based approach. A model
is introduced to predict the discharge status using spark image features through a synchronous
high-speed image and waveform acquisition system. First, the relationship between the spark image
features (e.g., area, energy, energy density, distribution, etc.) and discharge status is explored by a set
of experiments). Traditional methods have claimed that pulse waveform of “short” status is related
to the status of non-machining while through our research, it is concluded that this is not always
true by conducting experiments based on the spark images. Second, a deep learning model based
on Convolution neural network (CNN) and Gated recurrent unit (GRU) is proposed to predict the
discharge status. A time series of spark image features extracted by CNN form a 3D feature space
is used to predict the discharge status through GRU. Moreover, a quantitative labeling method of
machining state is proposed to improve the stability of the model. Due the effective features and the
quantitative labeling method, the proposed approach achieves better predict result comparing with
the single GRU model.

Keywords: wire electrical discharge machining (WEDM); deep learning; spark analysis; convolution
neural network (CNN); gated recurrent unit (GRU)

1. Introduction

Wire electrical discharge machining (WEDM) is a non-conventional machining method
used to remove material through the high temperature produced by a series of repetitive
electrical discharge of small duration and huge current density between the wire tool and
work piece [1–4]. Due to the minute amount of spark erosion, WEDM is usually used in
the machining of micro and precision parks. For example, Ahmed et al. [5] conducted
the experiment on the manufacture of high-aspect-ratio thin structures of micrometer
thickness (117–500 µm) from D2 steel through WEDM. In order to produce microchannels
with desired/target geometry and acceptable surface quality, Saleh et al. [6] carried out
the results of an investigation on the capacity of WEDM to produce microchannels in the
nickel-based alloy, Monel 400. WEDM is one of typical kind of EDM, they are developed
by using the phenomenon of spark erosion, and a lot of research has been carried out
in various aspects relating to improving performance measures, optimizing the process
variables, and monitoring and controlling the sparking process [4,7].
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Since the advent of EDM, a great deal of research had been focused on its mechanism
from the perspective of energy. In essence, EDM is a process of energy conversion which
mainly turns electric energy into thermal energy. The conservation of energy and charge is
the basis of analyzing spark discharge phenomenon [8]. Ablyaz et al. [9] developed the
mathematical modeling of quality parameters of EDM cut surfaces based the physics of
EDM process, i.e., the transformation of electrical energy of spark discharge between the
tool and the workpieces into thermal energy resulting in removing the material. Through
reviewing previous research, Shabgard et al. [3] demonstrated that the fraction of heat
going into the electrodes is a function of input parameters of the process. Based on pulse
classification and a thermal model, Dekeyser et al. [10] designed an expert system for
WEDM to improve the level of machine autonomy. By using a simple empirical concept,
Gostimirovic et al. [11] found that the thermal state defined in the discharge zone was
directly influenced by the discharge current and pulse duration as well it determined the
machining characteristics of EDM predominantly. To predict the shape of crater, MRR and
TWR, a two-dimensional axi-symmetric numerical finite element method (FEM) model of
single spark EDM process had been investigated based on more realistic assumptions such
as Gaussian distribution of heat flux, time and energy dependent spark radius, etc. [12]. In
order to simulate and analysis the crater for various plasma flushing efficiency during wire
electrical discharge turning (WEDT), FEM was proposed by Giridharan et al. [13] and the
model predicted erosion energy to form a crater with an average absolute error of 17.86%
which was still not precise enough. On one hand, the model based on mathematics and
physics induced large deviations from actual practice because of inevitable assumptions
made in the physical modeling of the process. On the other hand, the EDM process was
highly complex and stochastic in nature, and involved many subjects such as electric, mag-
netic, thermal, dynamic, etc. Consequently, it was quite difficult to model the EDM process
due to non-linear relationship between input process and output performance parameters.

EDM aims to achieve higher machining productivity with a desired accuracy and
surface finish. Therefore, the present problem must be considered to be a multi-objective
optimization problem [14]. In fact, many studies about process performance can be catego-
rized as modeling and optimization. During the process of machining superelastic shape
memory nitinol (Ni5.8Ti), Chaudhari et al. [15] used a heat-transfer search algorithm to
efficiently predict and optimize the WEDM process parameters. Yuan et al. [16] developed
an intelligent integrated architecture based on Gaussian process regression (GPR) models,
multi-objective genetic algorithm (MOGA) and clustering for the WEDM-HS process opti-
mization. A drawback of GPR method is that optimization iterative process is a nonlinear
problem which may cause the difficulties of model convergence. An ANN model can be ap-
plied to replace the complex mathematical approximation of the relationship between input
process parameters and output response during WEDM process [17,18]. The first model of
the ANN was given by McCulloch and Pitts, and the ANN model was preliminary used to
predict the process performance in the WEDM process [19]. So far, ANN techniques and
heuristic algorithms have been used to model and optimize process parameter settings of
EDM in a lot of studies [20–22]. Sidhu et al. [23] used ANN to predict residual stress during
EDM of Al/SiC metal matrix composites after finding out the significant factors by the
analysis of variance(ANOVA) method. Upadhyay et al. [24] attempted to directly use ANN
model to find the significant factors which impacted the MRR of the micro-EDM process
with additives in the dielectric fluid. Sagbas et al. [25] combined Taugchi method and
BPNN model to effectively help engineers to determine the optimum process parameters
during EDM. In the investigation of MRR and SR in WEDM process for cementation alloy
steel, Shakeri et al. [26] also formulated comparison of experimental tests with regression
and ANN models in order to determine the settings of pulse current, frequency of pulse,
wire speed, and servo speed for estimation of MRR and SR. Based on their results, BPNN
yielded better prediction. ANFIS combines fuzzy logic and neural networks organically
and makes a fuzzy system more systematic and less dependent upon expert knowledge.
Also, an interval type-2 fuzzy-integrated AHP-ARAS method is designed to select the best
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WEDM parameter settings as well compute the weightage of the criteria by applying the
ARAS ranking method and AHP method, respectively [27]. Suganthi et al. [28] carried
out the comparative experiments about ANN model and ANFIS model and revealed the
fact that ANFIS outperformed to ANN in terms of modeling and prediction accuracy.
Sarkheyli et al. [29] proposed a hybrid technique anchored in ANFIS and modified genetic
algorithm (MGA) to train a model to predict the SR and MRR in WEDM process. Recently,
Naresh et al. [22] also have concluded that ANFIS model gave more exact and effective
soft computing method when compared to ANN model for superior prediction of WEDM
process responses like MRR and SR of Nitinol alloy. In addition, Somashekhar et al. [30]
combined ANN and genetic algorithm (GA) in optimizing the MRR in micro-EDM that the
back-propagation network data along with the GA can successfully synthesize optimum
input condition to maximize the MRR. Ong et al. [31] developed a small mean-squared
error (MSE) model of radial basis function neural network to predict the MRR and EWR of
the EDM process. Ming et al. [32] conducted cutting parameter optimization in the WEDM
process by integrating ANN, and wolf pack algorithm based on the strategy of the leader
(LWPA). It was found that the ANN-LWPA integration system has some advantages on
reducing the value of fitness functions by comparison with the experimental regression
model, ANN model, and conventional LWPA result. Furthermore, Yan et al. successively
developed a servo control system based on fuzzy rule-based control strategy and adjusting
strategy, as well a hierarchical adaptive control system based on the estimation of work-
piece height on-line by using ANN to reduce the wire breakage and improve the machining
stability and speed compared to the commonly used gap voltage control system [33,34].

From previous research about modeling and optimization for WEDM (or EMD),
classical approaches such as Taguchi, ANN, etc. or their hybrid methods such as ANN-
LWPA, GPR-MOGA, etc. are basically used, which studied performance in terms of
electrical characteristics such as pulse current and wire speed. However, their research
lacks a visual perspective which contains useful and important information in the WEDM
process, such as images of sparks and wire vibrations.

In recent years, some novel research has emerged. Zhang et al. [35] first proposed a hy-
brid technique of WEDM which employs assisted ultrasonic vibration (USV) and magnetic
field (MF) to improve the machine performance. Then they implemented theoretical and
experimental study to illustrate its improving mechanism and gained the high MRR (44.0%)
and the low SR (30.5%) performance as a result [36]. Recently, Ablyaz et al. [37] found that
a 118% increase in MRR and an enhancement (613.6%) in the micro-hardness under the
influence of magnetic field during the EDM process of AL-SiC metal Matrix Composite.
Through analysis of the influence between pulse type and process performance indicators,
it showed that MRR and TWR values increased as the number of normal pulses grew
while the TWR decreased in the condition of increasing in arcs and delayed pulses [38].
Moreover, it was found that cutting rate and surface roughness were affected significantly
by input parameters (Ton, Toff, SV, WF) during WEDM process of Ni-27Cu-3.15Al-2Fe-
1.5Mn, and the empirical relations between them were concluded by Aggarwal et al. [39].
Gurupavan et al. [40] proposed a machine vision system which can provide wire electrode
status and workpiece surface texture information in WEDM of aluminum silicon nitride
(AlSi3N4) composite material via acquire the images of wire electrode and machined sur-
face specimens using the machine vision system. Sanchez et al. [41] presented computer
simulation software for the analysis of error of WEDM trapper-cutting which observably
reduced experimental work. In order to address the problem about limitation of existing
servo systems in machining semiconductors by WEDM, Liu et al. [42] developed a new
servo system based on current pulse probability detection. Zhang et al. [43] used Wavelet
moment analysis (WMA), Hu moment analysis (HMA), fractal dimension analysis (FDA),
local geometric characteristics (LGC), and global geometric characteristics (GGC) to extract
the waveform image features and reduce image dimension, and then based on SVM and
regression, developed a two-stage classification method for discharge pulse discrimination
and classification which to monitor discharge pulse on-line in WEDM-HS process. The rea-
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son is that high frequency discharge and micro-energy discharge may seriously complicate
obstruction discharge signal distortion [44].

The above mentioned approaches showed good performance in some cases; however,
they have limitations like low efficiency, instability, and even system breakdown [45],
due to the following reasons: (1) voltage and current signals are accompanied with non-
stationarity, nonlinearity, and internal coupling characteristics; (2) conventional method
conducts a hysteretic control due to the discharge state changes so fast that the controlling
strategy resulting from the historical state is not always suitable for the current state.

Different from the previous research, this paper presents a novel approach and per-
spective to predict the discharge status through spark images captured by high-speed
camera. Considering the spark phenomenon in WEDM, spark images from a high-speed
camera are collected and a series of experimental analyses are conducted. In the papers
reviewed above, most research only focused on the relationship between processing technic
and electrical parameters. However, they ignored the essential phenomenon in the process
of WEMD (or EDM): the generation of electric spark. Although some research gradually
begins to apply ANN [46] and other intelligent algorithms to the research of control system
and on-line prediction [47,48], there is still high potential for improvement. In other words,
the methods based on electrical parameters and traditional intelligent algorithms encounter
a bottleneck effect due to the limitations we have mentioned above. With the increase of
computing power, artificial neural network is more effective than traditional methods in
image feature extraction and sequence feature extraction [49]. Recently, Zhang et al. [50]
presented a novel and intelligent pulse classification method using different recurrent
neural networks (RNNs) and the result verified that RNN performed well in the sequence
recognition task during EDM process. Also, Lee et al. [51] combined a CNN and RNN to
extract time-dependent and time-independent features during the chemical mechanical
planarization process. Bustillo et al. [52] found that Adaboost ensembles provided the
highest accuracy and were more easily optimized than artificial neural networks during
the optimization of a friction-drilling process. In addition, Chen et al. [53] claimed that ex-
tracting signal characteristic was fairly time consuming so that they proposed a multi-scale
CNN and LSTM model to apply to bearing fault diagnosis. This new study found that
deep learning method performs better than traditional methods such as empirical mode
decomposition, fast Fourier transform, discrete wavelet transform, etc. Considering the
essential phenomena of spark during the process of WEDM and the advantages of new
methods of image processing and deep learning, this paper proposes a new spark image
identification method based on convolution neural network (CNN) and GRU to predict
the discharge status. Through CNN, the features of spark images can be extracted by a
series of convolution kernels. In order to train the deep learning network, the relationship
between spark images and discharge status is achieved by mapping the voltage–current
state (through their waveform areas and their power) to the spark images.

In the past studies, discrete values are basically used to define the processing state—
such as open circuit, short circuit, processing, and other states. Since the discrete processing
state is generally obtained through the threshold method, it is very sensitive to the boundary
value. Therefore, this approach can cause unstable of the state and increase the probability
of misjudgment. In order to overcome this problem, this paper proposes a continuous
quantity to define the processing state—that is, the area of voltage waveform, the area of
current waveform, and the continuous quantity of power are used to define the processing
state. On one hand, using continuous value to evaluate machining state can greatly improve
the stability of model. On the other hand, using the processing state of continuous value as
the label is conducive to the design of the later neural network model, which can transform
the classification task into a regression task, and avoid the problem of difficult convergence
caused by the frequent jump of discrete label value under the condition of approximate
characteristic input.

Since the frames in the collected spark image sequence are related to each other, a
current frame may retain a part of information about its previous frame. The remaining
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information of a frame becomes interference when a single frame is used as the input
of the network model. In view of this, this paper proposes two models named “Se-
quence2Sequence” and “Image2Sequence” to predict the discharge status by the spark
images. Both models take information about the current and past frames as input. Under
these circumstances, the information of the past frame will reflect the motion trajectory and
motion state of the spark, which is important to reflect the processing state.

Therefore, the definition of continuous labeling and two kinds of network models
proposed in this paper are important work for determining the law between spark image
and machining state. The spark image is the most essential and direct phenomenon in the
process of WEDM, and the law between spark images and the processing state is conducive
to the exploration of higher precision processing technology and lower cost of multi-station
real-time control system.

This paper is organized as follows. In Section 2, it introduces the working principle
of WEDM, the main characteristics of spark image, the principle of RNN, CNN and the
dynamic time warping (DTW) algorithm. In Section 3, it introduces the synchronous
acquisition and preprocessing of voltage data, current data and image data. Section 4
is about experimental setup. In Section 5, the experimental data is analyzed statistically
based on the theory in Section 2. In Section 5, the data is trained based on the two different
RNN models, and the results are analyzed and discussed. Finally, a conclusion of the work
is provided.

2. Spark Feature Analysis under WEDM
2.1. Spark Feature

Figure 1 shows the image of spark during processing. Let H, W denote the height and
width of the spark image, respectively. Point (x0, y0) denotes the spark center. p(x0, y0)
denotes the pixel value of the point (x0, y0). According to the characteristics of spark, eight
kinds of features were defined as follows, and the representation information is given in
the Table 1.

Table 1. Features and representation information.

Features Representation Information

Area Represents the area of the spark in the image. To some extent, it reflects the amount of erosion in processing.

Energy Represents the energy of the spark in the image. It is closely related to processing parameters such as current
and voltage.

Energy
density

Reflects the concentration of energy. It is the amount of energy per unit area which is closely related to the
processing state of processing center.

Spark area
distribution Represents the area distribution of processing region. It is closely related to wire direction

Spark energy
distribution Represents the Energy distribution of processing region. It is closely related to wire direction.

Spark
number

Represents the numbers of the spark. It reflects the morphological characteristics of spark process, such as the
gathering spark generated by the discharge and the dissipating spark generated by the open circuit.

HU
moment

Represents other geometric features of the spark region in the image which are invariant to rotation,
translation, scale, and so on.

As the working ranges of the response variables varies both in units and magnitude,
normalization of data is crucial. Each response data is normalized into dimensionless values
to make them comparable with each other. Various feature extraction and normalization
methods are given as follows.
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2.2. Spark Feature

Let M(x, y) denotes the threshold image of the spark image, then the threshold
function is

M(x, y) =
{

1, P(x, y) > 0
0, otherwise

(1)

where P(x, y) denotes the pixel value of the point (x, y).
The area of spark (S) can be counted by the formula

S =
W

∑
x=1

H

∑
y=1

M(x, y) (2)

Then the normalized area (Sn) can be calculated as

Sn =
S

H ∗W
(3)

where H, W denote the height and width of the spark image, respectively.

2.2.1. Energy (E)

According to the previous study [54], the Gaussian distribution of heat input proposed
by Patel et al. has been used to approximate the heat from the plasma. The heat flux qw(r)
at radius r is given by the following formula [13].

qw(r) = q0e
−4.5( r

Rpc )
2

(4)

where Rpc is spark radius (µm) at the work surface, and the maximum heat flux q0 can be
calculated [13] as

q0 =
4.56FcVI

πRpc2 (5)

where Fc is the fraction of total EDM spark power going to the cathode; V is discharge
voltage (V); I is discharge current (A).

Ikai et al. [55] have derived a semiempirical equation of spark radius (Rpc) namely
“equivalent heat input radius” as a function of discharge current (I) and spark on time (Td),
which is more realistic as compared to other approaches. The spark radius Rpc is shown as

Rpc = 2040I0.43Td
0.44 (6)
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In this paper, the function of spark radius and energy is defined as

E =
W

∑
x=1

H

∑
y=1

P(x, y) f (d) =
W

∑
x=1

H

∑
y=1

P(x, y)

(x− x0)
2 + (y− y0)

2 (7)

where point (x0, y0) denotes the spark center of spark image, and f (d) is a function of
distance (d) between spark point to spark center. They are calculated as

f (d) = d−2 (8)

d =

√
(x− x0)

2 + (y− y0)
2 (9)

Normalized energy (En):

K =
W

∑
x′=1

H

∑
y′=1

255 f (d) =
W

∑
x′=1

H

∑
y′=1

255

(x′ − x0)
2 + (y′ − y0)

2 (10)

En =
E
K

=
W

∑
x=1

H

∑
y=1

P(x, y)[(x− x0)
2 + (y− y0)

2]
−1

W
∑

x′=1

H
∑

y′=1

255
(x′−x0)

2+(y′−y0)
2

(11)

where K denotes the total energy when the spark image is white i.e., P(x, y) is 255 in
Equation (7).

2.2.2. Spark Energy Density (ESR)

ESR =
En

Sn
(12)

where En and Sn are calculated by Equations (3) and (11), respectively. Through Equation
(12), it is found that ESR reflects the concentration of energy.

2.2.3. Spark Area Distribution (SDk)

As shown in Figure 2, the spark image is divided into four parts. According to
Equation (2), the spark area of each part can be calculated as follows.

SD1 =
W−1

∑
x=x0

y0−1

∑
y=0

M(x, y) (13)

SD2 =
x0−1

∑
x=0

y0

∑
y=0

M(x, y) (14)

SD3 =
x0

∑
x=0

H−1

∑
y=y0+1

M(x, y) (15)

SD4 =
W−1

∑
x=x0+1

H−1

∑
y=y0

M(x, y) (16)
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Figure 2. Spark area distribution (SDk).

2.2.4. Spark Energy Distribution (EDk)

Similarly to the calculations of spark area distribution, the spark energy distributions
can be calculated based on Equation (7).

ED1 =
W−1

∑
x=x0

y0−1

∑
y=0

P(x, y)

(x− x0)
2 + (y− y0)

2 (17)

ED2 =
x0−1

∑
x=0

y0

∑
y=0

P(x, y)

(x− x0)
2 + (y− y0)

2 (18)

ED3 =
x0

∑
x=0

H−1

∑
y=y0+1

P(x, y)

(x− x0)
2 + (y− y0)

2 (19)

ED4 =
W−1

∑
x=x0+1

H−1

∑
y=y0

P(x, y)

(x− x0)
2 + (y− y0)

2 (20)

EDk reflects the direction of the explosion and indirectly reflects the distribution of the
erosion of the workpiece.

2.2.5. HU Moment

Classical geometric moments mpq of an image Ixy are calculated with the equation

mpq =
M

∑
x=1

N

∑
y=1

xpyq Ixy (21)

Hu [56] first proposed seven invariant moments u1-u7 by using the normalized cen-
tral moments of second-order and third-order. HU moments are widely used to image
recognition along with a series of basic properties including the rotation, translation, scale
invariance [57,58].

2.3. Dynamic Time Warping

In the acquisition of time series data, electrical parameters and spark images are
different from multiple aspects—such as sample rate, physical property, the time shift
characteristics of the occurrence of phenomena, etc. Additionally, the unavoidable noise at
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the acquisition system also brings about time shifting between the two types of time series
data even if they describe the same discharge status. Consequently, it is not appropriate to
use Euclidean distance to measure the similarity of two types of time series. In every way,
Euclidean distance and its variants present several drawbacks, that make inappropriate
their use in certain applications [59].

(1) It compares only time series of the same length.
(2) It does not handle outliers or noise.
(3) It is very sensitive with respect to six signal transformations: shifting, uniform am-

plitude scaling, uniform time scaling, uniform bi-scaling, time warping, and non-
uniform amplitude scaling.

DTW has been proven a very effective similarity measure, since it minimizes the
effects of shifting and distortion in time [60]. In this study, the sampling rate of current and
voltage is different from that of spark image, and the data obtained by sampling is different
in length. DTW algorithm is used for similarity, and the following results are obtained as
Figure 3.
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2.4. Spark Feature

The relationship between discharge pulse and discharge states is investigated by lots
of previous research. The features of the spark image, which was provided previously,
contain essential and significant information about processing parameters and conditions
in WEDM such as current, power, wire direction, workpiece erosion. However, the spark
in a spark image does not disappear immediately and its morphological and motion
features also do not appear immediately. As a result, the relationship between spark image
feature and discharge states is not directly and entirely related rather than non-linear and
multi-frame corresponding.

2.4.1. Sequence to Sequence Model

According to the calculation method of the spark features, all of features extracted
by the spark frames form into a feature array like (Len,18,1), where Len is the number of
spark frames in a process. In Figure 4, the first model proposed in this paper is called as
“Sequence to sequence model” which is based on RNN and takes the feature array of serval
frames as input and the corresponding labels array as output. The output of RNN depends
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on several time step data. In other words, RNN can mine the relationship between frames
in the spark image or its feature sequence due to the memory function of its network
structure [61]. Hence, it can accurately predict the processing states through serval frames
of spark images.
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Given a sequence of inputs (x1, . . . , xT), a standard RNN computes a sequence of
outputs (y1, . . . , yT) by iterating the equation

ht = tanh(Whxxt + Whhht−1) (22)

where Whx and Whh denote the weight of input layer and hidden layer of RNN, respectively.
ht−1 denotes the output of hidden layer of RNN at the last time.

yt = Wyhht (23)

where Wyh denotes the weight of output layer and ht denotes the output of hidden layer of
RNN at the present.

The traditional RNN is proved to have the problem of vanishing gradient [62].
Gated recurrent unit (GRU) is an improvement of traditional RNN which has the

advantages of fewer parameters and learning about long-term dependence [63,64]. The
struct of GRU is given by Figure 5. Update gate is used to decide whether to pass previous
O/P (ht−1) to next cell (as ht) or not. Forget gate is nothing but additional mathematical
operations with a new set of weights (Wt). The variables in Figure 5 are updated by the
following formula:

zt = σ(Wz · [ht−1, xt]) (24)

rt = σ(Wr · [ht−1, xt]) (25)

h′t = tanh(W · [rt ∗ ht−1, xt]) (26)

ht = (1− zt) ∗ ht−1 + zt ∗ h′t (27)

where, xt is the input vector, ht is the output vector, h
′
t is candidate activation vector, zt is

update gate vector, rt is reset gate vector, W is parameter, σ is a sigmoid activation function
while tanh is a hyperbolic tangent activation function.
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2.4.2. Sequence to Sequence Model

In Figure 6, another model proposed in this article is called as “image to sequence”
model. It is combined CNN network with RNN network.

Micromachines 2021, 12, x  12 of 28 
 

 

Then, the output of CNN connects to RNN’s input in order to mining the relationship 

between each frames’ features. Because of difference in length between frames and dis-

charge states calculated by current and voltage, a connect part is useful and necessary to 

match these two unequal sequences. That is, after inputting the RNN’s output to the con-

nect part, the discharge states of WEDM are obtained by the finally output of the connect 

part. 

To sum up, the “image to sequence” model extract spatial features (the features of 

one spark frame) through using CNN, and then the temporal features (the features of ser-

val previous frames) are extracted by RNN. 

Above two models would be trained by the samples of experiments. All of samples 

were separated into the train, validation and the test sets. 

 

Figure 6. “Image to sequence” model. 

  

RNN Features

CNN Features

INPUT
(20 *1024)

HIDDEN_in
(20 48)

SLICE
(1*1 024)

GRU
W
R
B

OUTPUT
(20 *100)

HIDDEN_out
(20 48)

INPUT
(20 *100)

OUTPUT
(8*1 )

LINEAR1
(20 *1)

TRANSPOSE
(1*2 0)

LINEAR2
(1*8 )

TRANSPOSE
(8*1 )

Relu

INPUT
(20 *

512*512*1)

SLICE
(1*

512*512*1)

OUTPUT
(20 *1024)

INPUT(20frames)

RNN

CONNECT

OUTPUT

CNN

CONV
POOLING

RELU
BN

CONV
POOLING

RELU
BN

CONV
POOLING

RELU
BN

CONV
POOLING

RELU
BN

Figure 6. “Image to sequence” model.



Micromachines 2021, 12, 702 12 of 27

Different from the above “sequence to sequence” model, the features were extracted
by CNN, rather than extracted by the invariant calculation method provided at the first of
paper. CNN is widely used to image feature extraction [65]. In Figure 6, the basic block
of CNN contains convolutional layer, max pooling layer, ReLU active layer and batch
normalization layer. Mathematically, the computational process can be described as

Conv(I, K)x,y,c =
nH

∑
i=1

nW

∑
j=1

Ki,j,c Ix+i−1,y+j−1,c (28)

Maxpl(I, K)x,y,c = max
m=0,··· ,K0 H−1

max
n=0,··· ,K1W−1

(Ih+m,w+n,c) (29)

ReLU(x) = max(0, x) (30)

BN(x) =
x− E[x]√
Var[x] + ε

∗ γ + β (31)

where, I and K is the input image and kernel, and x is the input value of ReLU activation
function or Batch normalization function. In BN operation, ε is added in the denominator
for numerical stability and is arbitrarily small constant, and the parameters γ and β are
subsequently learned in the optimization process.

Then, the output of CNN connects to RNN’s input in order to mining the relation-
ship between each frames’ features. Because of difference in length between frames and
discharge states calculated by current and voltage, a connect part is useful and necessary
to match these two unequal sequences. That is, after inputting the RNN’s output to the
connect part, the discharge states of WEDM are obtained by the finally output of the
connect part.

To sum up, the “image to sequence” model extract spatial features (the features of one
spark frame) through using CNN, and then the temporal features (the features of serval
previous frames) are extracted by RNN.

Above two models would be trained by the samples of experiments. All of samples
were separated into the train, validation and the test sets.

3. Data Synchronous Acquisition and Preprocessing
3.1. Synchronous Acquisition of Spark Image and Voltage Data

The spark image is captured by the High-Speed camera MEMRECAM ACS-1 M60
which is manufactured by NAC Image Technology Inc., Tokyo, Japan. The voltage is measured
by NI USB-6366 device which is manufactured by National Instruments Inc., Texas City,
TX, USA. An acquisition and control for WEDM based on the LabVIEW tool is developed
to synchronize the acquisition of image and voltage data.

According to the synchronous software of High-Speed camera, the time from a soft-
ware trigger initiation to the start of shutter is shown below (as shown in Figure 7):
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LabVIEW generates the signal to make NI device to acquire the voltage and output an
external signal in order to control the High-Speed camera to capture a list of frames.
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At the same time, LabVIEW control MCU device to output square wave signal to
control WEDM movement such as generate pulse, servo movement, and so on.

After the acquisition and control system are established, the timing sequence of WEDM
control and data synchronous acquisition is shown in Figure 8. Under the condition of no
short circuit, the private server is given a constant value in the collection process. NI device
generates synchronous clock signal to the High-Speed camera and then output trigger
signal after waiting for the stable output of the clock signal.
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3.2. Spark Feature

The waveform data was filtered by median value and the image data was filtered by
background difference algorithm.

3.2.1. Waveform Data

The waveform data was filtered by the method of median. In detail, let rl represents
the filter left rank, and rr represents the filter right rank, then the result of xi the median yi
of {xi−rl, . . . , xi−1, xi, xi+1, . . . , xi+rr} which is a subset of input sequence.

In Figure 9, the red line represents to pulse waveform, while the green line represents
the area of wave during current voltage pulse duration.
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And the blue line represents to the power of wave corresponding to green line. The
power is calculated as

p =
rs+td

∑
t=rs

voltage(t) · current(t) (32)

where rs is the rising edge time, and td is the pulse duration.

3.2.2. Image Data

The image can be expressed as

Y = X + α + β (33)

where Y is the output image, X is the real spark image, α represents the internal noise
which includes camera noise and line noise, while β represents the external noise which
includes environmental disturbances and background objects.

The spark has the property of high brightness because of the high energy in the
discharge. Hence, in the process of acquiring image, the signal energy of the spark region
is much larger than that of the noise. At the same time, during the cutting process, the
background changes relatively little, and the ambient objects in the background under the
condition of low exposure time set by the high-speed camera, the signal energy is negligible
compared with the spark.

By background difference algorithm, the environmental disturbance and most of the
noise with small change can be removed. As shown in Figure 10, the difference image (Ybd)
is obtained by subtracting the background image (Y0) from the current frame (Yt).

Ybd = Yt −Y0 (34)
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Then, the residual random noise is removed by pixel brightness threshold and pixel in-
version.

X =

{
0, 0 ≤ Ybd < k
Ybd, Ybd ≥ k

(35)

Finally, the filter results are shown in Figure 11.
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4. Experiments and Analytics

A three-axis WEDM machine was used to conduct machining experiments. The work
piece was AISI 1045 carbon steel (Table 2), which was widely used in industrial production.
The other machining parameters in each experiment are shown in Table 3.

Table 2. Workpiece properties.

Workpiece Properties Value

Carbon, C 0.43–0.50%
Density 7.87 g/cm3

Hardness
Thermal conductivity

163 HB
51.9 W/mK

Table 3. Experiment conditions.

Trials Control
Parameters

Frequency
(kHz)

Power
(Level)

Cutting Speed
(step/s)

Wire
Direction Purpose

1 Compared 2 3 500 Down Find the best cam fps and
shutter time

2

Frequency

1 3 500 Down
Change frequency, occur open,

normal, arc, short
3 3 3 500 Down
4 4 3 500 Down
5 5 3 500 Down

6

Power

2 1 500 Down
Change power, occur open, normal,

arc, short
7 2 2 500 Down
8 2 4 500 Down
9 2 6 500 Down

10

Cutting
Speed

2 3 200 Down

Change speed, occur open, normal,
arc, short

11 2 3 300 Down
12 2 3 400 Down
13 2 3 500 Down
14 2 3 600 Down

15

Pump
Direction

2 3 500 Up

Change pump direction, occur open,
normal, arc, short

16 1 3 500 Up
17 3 3 500 Up
18 2 2 500 Up
19 2 4 500 Up
20 2 3 400 Up
21 2 3 600 Up



Micromachines 2021, 12, 702 16 of 27

Under the condition of Nyquist, the pulse data acquisition frequency was set to
200 kHz while the image data acquisition frequency was set to 5000 fps (see Table 4).
A total of 10,000 frames and 4,000,000 pulses were collected synchronously during the
machining process.

Table 4. Acquisition conditions.

Acquisition Conditions Value

Pulse sample frequency 2,000,000 Hz
Image sample frequency 5000 fps

Workpiece AISI 1045 carbon steel

The pulse frequency f is computed as

f =
1
T

(36)

where T is the pulse cycle.
If the pulse frequency is 5 kHz, it is calculated that the spark image data of 1 cycle

corresponds to the pulse data of 1 cycle, that is 1 spark frame corresponds to 400 pulse
points. The higher the image sampling rate, the more detail information is restored in a
pulse cycle. Through the experiments of high-speed camera, we found that the sampling
rate of 5 kHz is the best.

4.1. Analysis of Statistical of Experimental Data

Table 5 shows the statistical data of each experiment. For clearly showing, the curves
about energy, area and ESR of different factors have plotted by Figure 12.

Table 5. Statistical data.

Trials Energy
Distribution

Area
Distribution

E1+E2
E3+E4

1 38005.3 31755.8 33175.8 45947.9 558.0 385.5 256.6 534.8 0.805

2 18827.9 13348.1 19769.9 31254.4 233.9 124.1 734.3 705.6 0.631
3 26852.4 23716.8 35663.6 43684.5 246.6 122.9 529.5 840.6 0.637
4 20804.6 16697.8 25513.1 37261.5 162.0 121.4 375.3 528.6 0.597
5 20312.6 14901.6 20677.1 36413.5 145.3 64.6 319.3 545.0 0.617

6 4616.5 5378.5 19099.4 29740.8 47.6 19.3 616.1 1164.9 0.205
7 16415.4 12204.9 25470.1 50335.0 73.1 48.0 353.5 637.6 0.378
8 38046.9 27019.3 33910.0 54941.8 390.3 268.8 401.5 933.6 0.732
9 43115.0 33755.8 35175.8 49947.9 258.0 279.4 422.9 625.3 0.903

10 2210.0 1445.6 10002.9 11150.4 283.3 247.5 1406.0 973.9 0.173
11 4132.5 3245.6 7429.4 8865.6 548.4 356.3 1109.3 1026.5 0.453
12 40590.1 41708.5 36084.5 41746.6 200.8 165.4 533.1 625.4 1.057
13 42960.7 48778.7 82123.4 69625.1 265.3 141.6 637.4 554.3 0.605
14 58808.4 61857.2 26016.4 26288.1 324.7 231.1 666.9 702.2 2.307

15 58435.9 84406.6 109940.7 59632.9 348.2 381.3 790.3 442.6 0.842
16 55418.4 68259.8 50711.6 37577.6 698.4 796.0 626.9 360.4 1.401
17 47125.8 24401.0 19724.4 42737.0 386.0 185.5 206.1 302.5 1.145
18 51452.0 20110.3 10978.6 28841.8 562.0 240.5 164.9 151.4 1.797
19 55871.2 18679.2 15657.0 433663.1 409.3 179.1 495.0 558.4 1.263
20 43375.0 19750.0 10767.5 26125.0 326.3 216.3 211.3 342.5 1.711
21 66363.6 33506.5 18701.3 35454.5 619.5 309.1 309.1 294.8 1.844
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In Figure 12a, the total energy values of spark (Esum) are not much affected by pulse
frequency due to the fact that the total energy of electricity is related to duty ratio but rarely
related to frequency. The phenomenon of small fluctuation on the frequency curve are due
to the different probabilities of spark occurring at different frequencies. Hence, Esum will
fluctuate naturally. Additionally, it is speculated that under a certain processing frequency,
Esum can reach the maximum. However, it cannot be directly proved the fact because there
are not enough experiments on the influence of a single factor of frequency in this study.
Affected by the power of processing pulse, Esum also changes greatly. Under the condition
of maximum machining power, Esum is close to three times that of the original value. At
the same time, Esum is greatly affected by the cutting speed and shows a trend of rising first
and then falling, which indicates that within a certain range, increasing the cutting speed
will increase Esum. Nevertheless, too high cutting speed will lead to partially short or even
short circuit, and no spark will be generated, then Esum will also decrease.

Figure 12b shows the trend of the relationship between the total area values of spark
(Ssum) and each parameter. It can be seen that Ssum is negatively correlated with the pulse
frequency, that is, the higher the processing pulse frequency is, the smaller Ssum is. However,
the relationship between Ssum and machining power or cutting speed is uncertain. The
ratio of energy to area (ESR), which combines the relationship between Esum and Ssum,
focuses on reflecting the spark image information of the processing center, while ignoring
the diffused spark image information. In this way, ESR can mostly directly reflects the
processing state at the current moment. As shown in Figure 12c, ESR ends to increase with
the increase of the processing pulse frequency, or the processing pulse power, or the cutting
speed. This conclusion reflects that occurrence frequency and amplitude (brightness) of
spark discharge occurring at the center point both increase with the increase of the three
parameters mentioned above.

Furthermore, Figure 13a shows the ratio of the spark energy above and below the
workpiece (Eup:Edown) where ‘above’ is the position 1 and position 2 of distribution, that is
E1+E2. Similarly, Figure 13b shows the ratio of the spark area above and below the work-
piece (Sup:Sdown). The result showed that under the same circumstances of other processing
conditions (except direction of wire), Eup:Edown and Sup:Sdown are above 1 predominantly
for the up direction of wire while less than 1 for the down direction of wire. To sum up,
Eup > Edown and Sup > Sdown are true. By observing the experimental phenomenon, when
wire goes up, more sparks will explode on the top. This is mainly because the fragments of
exploded spark will be affected by the force of the wire. In details, Figure 13c,d showed
the distribution of the spark energy and area in each part under different wire direction.
Consequently, the energy and area of spark are evenly distributed on the left (position 2 or
position 3) and right (position 1 or position 4), no matter on the top or the bottom. To sum
up, the direction of wire can affect the distribution of the up and bottom rather than the
left and right.
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(d) area distribution.

In order to visualize a spark process during experiment, Figures 14 and 15 show the
details of image and statistical data. Here describes the process about spark in Figure 14.

At normal, the pulse is on open states and the spark image shows none of spark
which means all characteristic values are zero. When start to spark, the pulse changes into
processing status and the spark image shows one small spark point which the shape is
approximately a circle distributed in the processing center. It has a small area (Sn) but a
large amount of energy (En) i.e., energy ratio (ESR) is very high. In the next frames, the
number, area, energy, and average speed of spark show the characteristic of increasing
and then decreasing. In a spark process (50 frames) (Figure 14), the ESR is the first feature
to reach the peak because pulses of processing status are mainly in the previous period.
The number of ESR peaks is correlated with the number of processing pulses (Figure 14c).
Generally, the area of spark has a more stable trend because the spark that has occurred
has a steady dissipating process. Its peak always lags behind the peak of energy and leads
to a higher ESR when the spark occurs. This, in turn, supports the fact that the ESR peaked
in the first place. In terms of feature distribution, the energy and area values of the four
quadrants mainly are affected by the direction of wire. A composite image of 50 frames
of spark images captured during the machining process is shown in Figure 14b. The left
image in Figure 14b shows the brightness of spark while the right image shows the shape
and distribution of spark. In details, the pie chart is shown in Figure 14d.
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Figure 14. Single spark process (under the condition of trial 1): (a) image time series of machining process (50 frames);
(b,c) combine image with normalization or binarization; (d) pulse waveform and spark features; (e) energy and area distribution.
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Figure 15. Multiple sparks process (under the condition of trial 1): (a) image time series of machining process (180 frames);
(b,c) combine image with normalization or binarization; (d) pulse waveform and spark features; (e) energy and area distribution.

4.2. Training Results and Discussion

Figures 16 and 17 show the predict result and train result of both models, respectively.
In Figure 16a, it is found that RNN could predict discharge states to some extent, but the
result was unsatisfactory. No matter how to adjust the length of input or the layers of RNN,
the result could not improve at all. The training loss of “sequence to sequence” model is
shown in Figure 17a. It is obvious that the loss is unstable though it has a trend to descend.
The model occurred this result due to the input dataset which has the main features, but
they are not enough to restore the ordinary spark image data. Hence, the advantage of
the model is fast training while the disadvantage is that the precision of prediction is not
high. Figure 17b is the loss of “image to sequence” model. It shows some vibration and
a gradual downward trend. Figure 16b,d show the tracking of prediction. The dataset of
testing includes the training dataset (frame 3000 to 15,000) and testing dataset (frame 1
to 3000). The predict tracking of training dataset showed in Figure 16c works well. It is
clearly found that it can tail after the label. Meanwhile, the number of peak and the value
of peak nearly equal to the label. When it turns to the testing dataset, it also remained the
result of peak number equaling.

Compare to the “sequence to sequence” model, the “image to sequence” model
extracts the features automatically. To sum up, the “image to sequence” model has slow
training speed but high prediction accuracy while the “sequence to sequence” model
trains the model fast accompany with low prediction accuracy. The mean of precision of
the whole dataset is 95% in “image to sequence” model, while it is 90% in “sequence to
sequence” model.
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(c) prediction tracking 2; (d) prediction tracking 3.
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Figure 17. Train result (under the condition of trial 1): (a) loss of “sequence to sequence” model; (b) loss of “image to
sequence” model.

5. Conclusions

The motivation of this paper is to analyze the spark image of wire electrical discharge
machining using image processing and machine learning technology. First, the relation-
ship between spark images and discharge status is studied by image feature extraction
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through traditional algorithms. It is concluded that the spark image features are related
to the discharge status. To predict the discharge status by spark image, a CNN-GRU is
proposed, which extracts the image feature by CNN and predict the discharge status by
GRU. Experimental results show that the proposed model performs better comparing to
the GRU model. The contributions of this paper are as follows:

Firstly, different from the traditional research perspective, this paper proposes a new
perspective to study the machining state of WEDM, that is, to predict the machining state
by WEDM image. It is found that during the process of machining, the pulse waveform
of “short” status may not represent the status of non-machining. Hence, it is difficult
to recognize the “short” and “short discharge” by the electrical parameters. However,
the spark image can provide obvious evidence to recognize them. Because the spark
images have the certain morphological and kinematic characteristics, and they are direct
phenomena of the machining process so that they can represent the status. Additionally, the
above spark images’ characteristics are more regular than pulse waveform’s characteristics.
By using traditional image feature extraction method, the regularities between image and
spark are obtained through experimental analysis. They are summarized as follows:

In the machining process, the power of the discharge pulse directly affects the sum of
the spark energy (Esum) calculated from the image. Meanwhile, within a certain range, the
higher the cutting speed is, the greater the Esum will be. However, too fast cutting speed
will lead to short circuit and the Esum will decrease consequently.

The spark area of the image (Ssum) is negatively correlated with the discharge fre-
quency, and its relationship with the discharge power and cutting speed is not correlated.
The energy density (ESR) of spark image focuses on the machining center points, so it can
directly reflect the processing state. Within a certain range of cutting speed, its value is
positively correlated with discharge frequency, power, and cutting speed. The spark distri-
butions (includes area and energy) of the image are mainly related to the wire direction.

Secondly, this paper is among the first to present an approach to define the discharge
status by using continuous quantity. The advantages of this approach are: (1) it improves
the stability; (2) ease in converging the model. It is beneficial to design the deep learning
model to explore the relationship between discharge status and spark images.

Thirdly, the proposed model named “sequence to sequence” was used to explore the
relationship between spark characteristics and discharge status. Further, the proposed
model named “image to sequence” was trained to extract the features of spark image by
CNN and identify the discharge status by GRU. Experimental results show that spark
images can accurately predict and track the machining status. The precision of the whole
dataset is 95% in “image to sequence” model and is 90% in “sequence to sequence” model.

In this paper, the regularities between the spark image and the discharge state are
studied by the statistical analysis and deep learning model. In the future work, the “image
to sequence” model and method presented in this paper can be further improved in the
aspect of accuracy, stability and speed. Future research directions could be conducted
as follows: on-line monitoring discharge state and closed-loop control system of WEDM
based spark images. This paper also provides a spark image-based solution for monitoring
the discharge state of multi-groove WEDM.
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Nomenclature

W Width of the spark image
H Height and width of the spark image
qw Heat flux of spark
q0 Maximum heat flux q0 of spark
Rpc Equivalent heat input radius
Fc Fraction of total EDM spark power
V Discharge voltage (V)
I Discharge current (A)
S Spark area (units)
Sup Spark area above the workpiece (units)
Sdown Spark area below the workpiece (units)
Ssum Total area values of spark images (units)
E Spark energy (units)
Eup Spark energy above the workpiece (units)
Edown Spark energy below the workpiece (units)
Esum Total energy values (units)
ESR Spark energy density (-)
SDk Spark area distribution (units)
EDk Spark energy distribution (units)
mpq Classical geometric moments of an image
Ixy Pixel value of spark image
SR Surface roughness (µm)
SV Spark gap voltage (V)
Ton Pulse on time (µs)
Toff Pulse off time (µs)
WF Wire-speed feed (m/s)
MRR Material removal rate (mm/s)
TWR Tool electrode wear rate (-)
SR Surface roughness (µm)
tanh Hyperbolic tangent activation function
Conv Convolutional layer
Maxpl Max pooling layer
ReLU ReLU active layer
BN Batch normalization layer
WEDM Wire electrical discharge machining
EDM Electro/Electrical discharge machining
WEDT Wire electrical discharge turning
CNN Convolution neural network
RNN Recurrent neural network
GRU Gated recurrent unit
LSTM Long short-term memory
DTW Dynamic time warping
FEM Finite element modeling
WEDT Wire electrical discharge turning
GRP Gaussian process regression
MOGA Multi-objective genetic algorithm
ANN Artificial neural network
ANFIS Adaptive neuro-fuzzy inference system
ARAS Additive ratio assessment
AHP Analytical hierarchy process
BPNN Neural network with back propagation algorithm
GA Genetic algorithm
MSE Mean-squared error
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LWPA Strategy of the leader
USV Ultrasonic vibration
MF Magnetic field
WMA Wavelet moment analysis
HMA Hu moment analysis
FDA Fractal dimension analysis
GC Local geometric characteristics
GGC Global geometric characteristics
SVM Support vector machine
ANOVA Analysis of variance
NI National Instruments
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