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Abstract—General image super-resolution techniques have dif-
ficulties in recovering detailed face structures when applying to
low resolution face images. Recent deep learning based methods
tailored for face images have achieved improved performance
by jointly trained with additional task such as face parsing
and landmark prediction. However, multi-task learning requires
extra manually labeled data. Besides, most of the existing works
can only generate relatively low resolution face images (e.g.,
128 x 128), and their applications are therefore limited. In this
paper, we introduce a novel SPatial Attention Residual Network
(SPARNet) built on our newly proposed Face Attention Units
(FAUs) for face super-resolution. Specifically, we introduce a
spatial attention mechanism to the vanilla residual blocks. This
enables the convolutional layers to adaptively bootstrap features
related to the key face structures and pay less attention to
those less feature-rich regions. This makes the training more
effective and efficient as the key face structures only account
for a very small portion of the face image. Visualization of the
attention maps shows that our spatial attention network can
capture the key face structures well even for very low resolution
faces (e.g., 16 x 16). Quantitative comparisons on various Kkinds
of metrics (including PSNR, SSIM, identity similarity, and
landmark detection) demonstrate the superiority of our method
over current state-of-the-arts. We further extend SPARNet with
multi-scale discriminators, named as SPARNetHD, to produce
high resolution results (i.e., 512x512). We show that SPARNetHD
trained with synthetic data cannot only produce high quality and
high resolution outputs for synthetically degraded face images,
but also show good generalization ability to real world low quality
face images. Codes are available at https://github.com/chaofengc/
Face-SPARNet.

Index Terms—Face Super-Resolution, Spatial Attention, Gen-
erative Adversarial Networks

I. INTRODUCTION

Face super-resolution (SR), also known as face hallucina-
tion, refers to generating high resolution (HR) face images
from the corresponding low resolution (LR) inputs. Since
there exist many low resolution face images (e.g., faces in
surveillance videos ) and face analysis algorithms (e.g., face
recognition) often perform poorly on such images, there is a
growing interest in face SR.

Different from general image SR, face SR places its em-
phasis on the recovery of the key face structures (i.e., shapes
of face components and face outline). These structures only
account for a very small portion of the image, but are often
more difficult to recover as they exhibit larger pixel variations.
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Fig. 1: Super-resolution result produced by SPARNetHD for
an old photo of Marie Curie from Solvay conference 1927.
Please zoom in to see details.

Training a deep neural network with the commonly used mean
square error (MSE) loss, which weights pixels equally, is not
very effective in recovering these “sparse” structures. Previous
works [1], [2], [3] proposed incorporating additional task,
such as face parsing and landmark detection, to assist the
training of face SR networks. [1], [3] also used predicted
face priors to help face SR. Although joint training with these
additional tasks helps enhance the importance of the key face
structures, there are two major drawbacks, namely (1) extra
effort is needed to label the data for the additional task, and
(2) predicting face prior from LR inputs is itself also a difficult
problem.

On the other hand, if we subdivide a face image into
many small regions and consider each region as an indi-
vidual sample, the unbalanced distribution between regions
containing key face structures (referred to as hard regions) and
those not containing key face structures (referred to as easy
regions) will resemble the imbalance between foreground and
background samples in object detection. This suggests that we
may adopt some techniques similar to bootstrapping or online
hard example mining (OHEM) [4] in object detection to solve
our face SR problem.

In this paper, we introduce a carefully designed Face
Attention Unit (FAU) to construct a SPatial Attention Residual
Network (SPARNet) for face SR. The key idea is to bootstrap
features related to the key face structures using a 2D spatial
attention map. Instead of hard selection, the spatial attention
map assigns a score between 0 and 1 to each spatial location
of the feature map. This allows learning the prediction of
the spatial attention map through gradient descent. Spatial
attention maps in different FAUs of the network can learn
to focus on different face structures. For example, attention


https://github.com/chaofengc/Face-SPARNet
https://github.com/chaofengc/Face-SPARNet

IEEE TRANSACTIONS ON IMAGE PROCESSING

ILr-vp

Downscale

i«—Feature Extraction —+i«——

- Feature Branch .’ Attention Branch Convolution Layer

Real ?
> > = > > P rake?

~Upscale-

Inr

Fig. 2: Architecture of the proposed SPatial Attention Residual Network (SPARNet).

maps in deeper layers focus more on coarse structures such as
eyes and mouth, while those in shallower layers focus more
on detailed textures such as hairs. Considering that most of the
existing face SR methods can only produce 128 x 128 outputs,
we further extend SPARNet, referred to as SPARNetHD, to
generate high resolution outputs (i.e., 512 x 512). Specifically,
we enlarge the output resolution of SPARNet from 128 x 128
to 512 x 512 and adopt a multi-scale discriminator loss similar
to Pix2PixHD [5] to generate more realistic textures. Experi-
ments show that SPARNetHD trained with synthetic LR data
is pretty robust with natural LR inputs, while models without
the proposed spatial attention mechanism produce undesirable
artifacts. We show an example result of SPARNetHD on an old
photo in Fig. 1. We can see that SPARNetHD can restore key
face components very well and also generate high resolution
and realistic textures.

The key contributions of this paper can be summarized as
follows:

1) We propose an efficient framework named SPARNet
for face super-resolution. Without relying on any extra
supervisions (e.g., face parsing maps and landmarks), it
achieves state-of-the-art performance on various kinds
of metrics, including PSNR, SSIM, identity similarity,
and landmark detection.

2) We show that the proposed FAU, the basic building
block of SPARNet, can bootstrap the key face structures
(i.e., face components and face outline) and significantly
improve the performance of face super-resolution.

3) By repeating FAUs in SPARNet, the spatial attention
maps in different FAUs can learn to focus on different
face structures and further improve the performance of
SPARNet.

4) We introduce SPARNetHD to generate high resolution
face images (i.e., 512 x 512), and the model trained with
synthetic data works equally well on natural LR images.

II. RELATED WORKS

In this section, we briefly review the literature on face super-
resolution and recent attention neural networks.

A. Face Super-Resolution

Face hallucination was pioneered by Baker and Kanade [6],
who showed that it is possible to perform high magnification
SR for images of a specific category (e.g., face and text). Since
then many methods were proposed to improve the performance

of face hallucination. They can be roughly classified into sub-
space based methods [7], [8], [9], [10], [ 1] and component
based methods [12], [13], [!4]. Sub-space based methods
usually rely on Principle Component Analysis (PCA), which
requires precisely aligned faces. Component based methods
require detecting facial landmarks, which is difficult for LR
face images. Both kinds of methods fail to produce satisfactory
results for face SR with a high upscale factor.

Recently, deep convolutional neural networks (CNNs) have
brought remarkable progress to face SR. Zhu er al. [15]
proposed a cascaded two-branch network to optimize face
hallucination and dense correspondence field estimation in a
unified framework. Yu et al. exploited generative adversarial
networks (GAN) [16] to directly super-resolve the LR inputs.
They further improved their model to handle unaligned faces
[17], noisy faces [18], and faces with different attributes [19].
Instead of directly inferring HR face images, Huang et al.
proposed to predict wavelet coefficients from LR images to
reconstruct HR images. Latest works employed extra face
prior supervisions, such as face parsing maps [1], landmark
heatmaps [2], [3], and identity information [20], to train their
networks. Kim et al. [21] proposed a facial attention loss
which focuses the network on the landmark region. Ma et
al. [22] introduced an iterative method which predicts SR
results and landmarks iteratively. Although extra supervisions
help to improve the performance, there are two shortcomings,
namely (1) extra effort is needed to label the data, and (2) it
is an indirect way to direct the SR network towards the key
face structures. Different from these methods, our SPARNet
learns to predict spatial attention maps to bootstrap key face
structures and other feature-rich regions.

B. Attention Networks

Attention mechanism has been widely used in high level
vision tasks, such as image classification [23], [24], [25], [26],
image captioning [27], [28], and visual question answering
[29], [30]. The key idea is to reweight features using a score
map to emphasize important features and suppress less useful
ones [24]. Wang et al. [25] introduced a trunk-and-mask
attention mechanism to a residual network for image classifi-
cation. He et al. [24] proposed the Squeeze-and-Excitation net-
work which employs a channel-wise attention mechanism and
demonstrates significant performance improvements. Woo et
al. proposed a convolutional block attention module (CBAM)
which sequentially infers attention maps along the channel and
spatial dimensions separately. Attention mechanism has also



IEEE TRANSACTIONS ON IMAGE PROCESSING

been employed in image generation tasks recently. Zhang et
al. [31] combined channel attention with a very deep residual
network for image SR. Cao et al. [32] proposed an attention
aware face SR framework based on reinforcement learning,
which sequentially attends to, crops out, and super-resolves a
patch.

Although closely related, our work is different from [31]
and [32] in several aspects. First, attention mechanisms in
high level tasks often employ pooling for extracting semantic
information. For face SR, however, this may result the loss
of important low and middle level features such as edges and
shapes. In contrast, our attention mechanism is designed to
take advantages of multi-scale features. Second, unlike [31]
which utilizes channel attention, our work considers spatial
attention which facilitates region based attention of the key
face components. Third, unlike [32] which takes a patch based
approach, we generate spatial attention maps for the entire
face. This allows our network to have a global view of the
face structures and benefit from the contextual information.

C. High Resolution Image Generation with GAN.

Recently, GAN has demonstrated to be very effective in
generating HR images. Wang et al. [5] proposed Pix2PixHD
and used a multi-scale generator and discriminator architecture
for HR image generation. Karras et al. [33], [34] proposed a
new progressive training methodology for GAN to generate
HR face images from random input vectors, and improved
the quality of synthesized faces in [35]. Park er al. [36]
proposed the spatially-adaptive normalization layer for gen-
erating photo-realistic images given an input semantic layout.
We follow the idea of Pix2PixHD and use a multi-scale dis-
criminator to generate high resolution results. Different from
Pix2PixHD, our SPARNetHD does not require progressive
training from LR to HR images, and our results are much
better than Pix2PixHD with the help of the proposed spatial
attention mechanism.

III. SPARNET FOR FACE SR
A. Overview

As shown in Fig. 2, our SPARNet consists of three modules,
namely the downscale module, the feature extraction module,
and the upscale module. Each of these modules is composed of
a stack of FAUSs (see I1I-B for details). Let I} € R3XH xW'
Igp € R¥*HXW and Typ € R¥*HXW denote the LR face
image (i.e., input), the super-resolved image (i.e., output),
and the ground truth HR image respectively. Ipp is first
upsampled to the same spatial dimension as Igpr through
bicubic interpolation, denoted as I r_yp € R3>*H*W which
is then fed to SPARNet to produce Iggr. Given a training set
with V pairs of LR-HR images, {I} », I} R}z‘]\;’ we optimize
SPARNet by minimizing the pixel-level Ls loss given by

N
1 i i
Lpiz(©) = NZ |FsparIip—vp:©) = Iyglls, (D)

i=1
where Fspar and © denote SPARNet and its network pa-
rameters respectively.
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Fig. 3: Face Attention Unit

B. Face Attention Unit

Based on the observation that some face parts (e.g., key
face components like eyes, eyebrows, nose, and mouth) are
more important than the others (e.g., shading of the cheek) in
face SR, we propose a spatial attention mechanism to make
our network focus more on the important and informative
features. The key question is how to produce the attention
map and how to integrate it with the convolutional layers.
First, we believe the spatial attention mechanism should not
only have a high level view of the face but should also focus
on low level structures. Note that a high level view helps
the network to learn how faces look, while a low level view
makes the network learn local details better. Hence, it would
be desirable for the spatial attention mechanism to be able to
learn from multi-scale features. Second, residual blocks have
demonstrated great success in both general SR task [31], [37],
[38] and face SR task [1], [2]. It should therefore be beneficial
to integrate spatial attention mechanism with residual blocks.

Based on the above discussion, we propose a Face Atten-
tion Unit (FAU) which extends the original residual block
by introducing a spatial attention branch (see Fig. 3). By
stacking FAUs together, important features for face SR are
continuously enhanced. Denote the feature input of the j-th
indexed FAU as x;_; € RE-1>H;-1xWj-1 the attention map
a; € RHXWi js computed as

£; = Freat(x;-1), 2)
o = o(Fau(f)), 3)

where f; € R >*H;xWi s the output of the feature branch
Fteat> Fatt denotes the attention branch, and o is the sigmoid
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function. Finally, the output of the j-th indexed FAU is given
by
X; =X5-1 + Otj X fj, (4)

“

where ” denotes element-wise multiplication. Details of
Freat and Faye are given in the next two paragraphs.
Attention Branch As discussed above, the attention branch
should extract multi-scale features. We adopt the hourglass
block followed by an extra Conv layer to generate the attention
map. The hourglass block is known to be capable of capturing
information at multiple scales [39]. It has also shown great
performance in face analysis tasks, such as face alignment [40]
and face parsing [1]. The kernel size and filter number for
all Conv layers in the hourglass block are 3 x 3 and 64
respectively.

Feature Branch After experimenting with several variants
of residual blocks [38], [41], we finally choose the pre-
activation Residual Unit with PReLU [42] as our feature
branch. Although previous general image SR work [38] argued
that networks without batch normalization perform better,
we find that pre-activation structure shows slightly better
performance with batch normalization. We use PReLU as the
activation function after batch normalization to avoid “dead
features” caused by zero gradients in ReLU, and it shows more
stable performance [43]. For the residual blocks in downscale
and upscale module, we slightly modify the original residual
branch using scale Conv (see Fig. 4), and (4) becomes

X; = Focate(Xj—1) + a; @ £, @)

where Fg.qie denotes the scale Conv layer. Downscale Conv
is a normal Conv layer with stride 2, and upscale Conv is a
nearest-neighbor upsampling layer with a normal Conv layer
which helps avoid checkerboard artifacts [44].

=il

. Downscale Conv - Upscale Conv

Fig. 4: Scale Residual Block

Feature Branch Feature Branch

C. Multi-scale Discriminator Network

We extend our SPARNet to SPARNetHD to generate high
resolution and more realistic SR images. SPARNetHD in-
creases the channel number of SPARNet and adopt multi-
scale discriminators similar to Pix2PixHD [5]. We refer to
the discriminators as Dq, Dy, and D3, which are used to
discriminate SR images at three different scales, namely
512 x 512, 256 x 256, and 128 x 128, respectively, from
the ground truth downsampled to the same resolutions. Using
multiple discriminators at different scales can help to improve
the quality of the SR images.

The loss functions used in training SPARNetHD are com-
posed of the following four components:

(1) Pixel loss. We use L1-norm as the pixel level loss between
Isrp and Ipp. It mainly helps to constrain the low level
information in the outputs especially color, and is defined as

N
1 i i
Cﬁm = NZHISR_IHRHD (6)
=1
Isg = G p_vp), (7)

where G denotes the SPARNetHD generator.
(2) Adversarial loss. 1t is the critical loss which helps to make
the outputs sharper and generate more realistic textures such
as hair. The loss functions of the generator and discriminator
are formulated as

N 3

1 i
L&an g = ~ Z Z —Dy(Isg), (®)
i=1 k=1
1 LS ‘
EZ:AN_D =N Z Z max (0,1 — Di(Ijr)) )
i=1 k=1

+max(0, 1+ Di(I§g))],

where the outputs of Dy, are scalars which indicates whether
the input images are real (> 1) or fake (< —1).

(3) Feature matching loss. This is the feature space loss of the
discriminators [5]. It helps to stabilize the training of GAN.
Let f,ljk be the feature map of the [-th layer in Dy, Ly be
the total number of layers in Dy, and M, ,lc be the number of
elements in lek. The feature matching loss is then formulated
as

5, (I g)l1, (10)

ZZZ

zlklll

A £, (T5R) —

(4) Perceptual loss. Different from feature matching loss,
perceptual loss [37] is the feature space loss of the pretrained
VGGI19 network [45]. It helps to constrain the high level
semantics in the outputs. We follow the notation of Eq. 10
and denote the perceptual loss as

N Lvca

-ty 3L

i=1 =1 VGG

~fvoaun)li-

(1)

”f\l/GG(I,ZSR)

Finally, the loss functions are defined as

ﬁg = )‘pinZix + AadvﬁgAN_G + )‘fmﬁ?m + )‘pcz)ﬁgcw
(12)

Lh=LEan s (13)

where L% and £}, are minimized iteratively to train G and D,
and Apiz, Aadv, Afm, and Apcp are the weights for each loss
item respectively.

The reason why we use more complicated loss functions to
train SPARNetHD is to generate results with high perceptual
quality. As pointed out by [46], distortion and perceptual
quality are at odds with each other. Methods trained with only
Ly in Eq. 1 always lead to better PSNR and SSIM scores, but
over-smoothed results with bad perceptual quality. Therefore,
we train SPARNet with £,;; to make fair comparison on
distortion metrics (i.e., PSNR and SSIM scores) with previous
works.
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D. Training Details

For SPARNet, we set the batch size as 64, and fix the
learning rate at 2 x 10~%. We use Adam [47] to optimize
the model with 8, = 0.9 and By = 0.99. For SPARNetHD,
we empirically set Az = 100, Aggw = 1, Apy, = 10, and
Apep = 1. The learning rates of G and D are 1 x 10~ and
4 x 10~* respectively. We use Adam to optimize both G' and
D with 8y = 0.5 and 3> = 0.99. The batch size is set to 2.
Our models are implemented in PyTorch and run on a Tesla
K40 GPU.

IV. EXPERIMENTS

In this section, we conduct experiments for SPARNet and
SPARNetHD respectively. First, we analyze the effectiveness
of the proposed spatial attention mechanism in SPARNet,
and compare SPARNet with previous face SR methods and
general SR methods with different evaluation metrics using
the same training data. Second, we evaluate the performance
of SPARNetHD on real LR faces trained on synthetic datasets.

A. Analysis of SPARNet

1) Datasets and Evaluation Metrics: Training Data We

use CelebA [48] to train SPARNet. We first detect faces using
MTCNN [49], and crop out the face regions roughly without
any pre-alignment operation. Next, we select images larger
than 128 x 128, resize them to 128 x 128 through bicubic
interpolation, and use them as the HR training set. The LR
training set is obtained by downsampling the HR images
to 16 x 16. This results in roughly 179K image pairs. To
avoid overfitting, we carry out data augmentation by random
horizontal flipping, image rescaling (between 1.0 and 1.3), and
image rotation (90°, 180° and 270°).
Testing Data Following previous works [1], [15], [50], we use
the test set of Helen [51] for evaluation of image quality and
landmark detection. For identity similarity evaluation, we use
the same test set as in [20], which is specifically designed to
preserve identity in face SR. This dataset contains randomly
selected images of 1,000 identities from UMD-Face [52].

Following the practice of image super-resolution, the

Peak Signal-to-Noise Ratio (PSNR) and Structure SIMilarity
(SSIM) index calculated on the luminance channel are used
as the primary quantitative evaluation metrics. Since two
most important applications of face SR are alignment and
identification of LR faces, we adopt two further metrics,
namely landmark detection and identity similarity, to evaluate
face SR performance.
Landmark Detection As mentioned before, structure recovery
is very important in face SR. Similar to [I], [2], we use
landmark detection accuracy for evaluation. Specifically, we
use a popular landmark detection model, FAN' [40], which
is pre-trained on HR faces, to detect landmarks on SR and
HR faces. Following [40], we use the area under the curve
(AUC) of the normalized mean error (NME) to quantify the
performance.

Uhttps://github.com/1adrianb/face-alignment
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(a) Image Quality (b) Landmark Detection
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(c) Visualization of the PSNR (left) and SSIM (right) error maps. The
heatmaps for Baseline and SPARNet are the average 2D PSNR/SSIM error
maps (larger value indicates larger error), and the improvement heatmaps show
the error reduction (larger value indicates more error reduction).

Fig. 5: Quantitative comparison between Baseline, SPARNet-
V1 and SPARNet on the Helen test set.

Identity Similarity Identity similarity measures how well
identity information is preserved in a super-resolved face.
Same as [20], we first extract identity feature vectors for the
SR and HR faces using a pre-trained SphereFace model® [53],
and then compute the identity similarity as the cosine distance
between the two feature vectors.

2) Ablation Study: We compare the following three variants
of our model:

o Baseline: residual SR network without any spatial atten-
tion branches.

e SPARNet-VN: To evaluate the effectiveness of using
multiple FAU blocks, we keep the feature branch un-
changed and vary the numbers of attention branch used in
SPARNet *. Considering that decoder parts are supposed
to be more sensitive to spatial attention, we gradually
increase the number of attention branches from the back-
end. We denote models with N spatial attention branches
as SPARNet-VN, where N € {1,2,4,8,16}.

e SPARNet-SM: To demonstrate that it is crucial for the
attention mechanism to learn from multi-scale features,
we vary the numbers of downsample/upsample blocks
to change the smallest size (scale) of feature maps in
the bottleneck. We denote SPARNet with M x M size
of feature maps in the bottleneck of attention branch as
SPARNet-SM, where M € {2,4,8,16} and smaller M
indicates more scales of features are used.

e SPARNet: the full model used in this work,
SPARNet-V16-S4.

Effectiveness of Spatial Attention To evaluate the effective-
ness of the proposed spatial attention mechanism, we compare

Le.,

Zhttps://github.com/clcarwin/sphereface_pytorch

3Reducing the numbers of entire FAU would make the network shallower
which would definitely make the results worse, therefore we only vary the
number of attention branch
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the results of SPARNet-V1 and SPARNet with that of the
Baseline model. Fig 5(a) shows that, with the proposed spatial
attention mechanism, we can generate results with better
image quality in terms of both PSNR and SSIM scores. This
is expected as the spatial attention mechanism enables our
network to focus on and better recover the key face struc-
tures. To visualize the improvement brought by the attention
mechanism, we align the faces to a fixed template based on
five key facial landmarks (i.e. two eye centers, nose, and two
mouth corners), calculate 2D PSNR and SSIM error maps4 for
each image, and average the error maps over the whole test
set. It can be observed from Fig. 5(c) that pixels corresponding
to key face structures are most difficult to recover (i.e., with
larger errors), and as expected, most of the improvement
happens around them. Furthermore, we compare the landmark
detection results on the super-resolved images. Better recovery
of key face structures should lead to higher landmark detection
accuracy. It can be seen in Fig. 5(b) that SPARNet achieves
better landmark detection accuracy (58.51% AUC) than the
Baseline (56.23% AUC). This demonstrates the benefit of the
spatial attention mechanism. Fig. 6 shows some SR results
on the Helen test set. It can be observed that SPARNet can
produce sharper and clearer face structures than the Baseline,
especially for the eyes.

Number of FAUs By comparing the results of SPARNet-V1
with that of SPARNet in Fig. 5, we can see that SPARNet,
which is composed entirely of FAUs, performs better than
SPARNet-V1, which has only one FAU at the end. Although
the attention map of SPARNet-V1 can focus on the key face
structures, some noises also show up on the face region and
cause some distraction (see Fig. 6 bottom left). This suggests
that bootstrapping the key face structures using a single FAU
may be sub-optimal. On the other hand, the sequence of FAUSs
in SPARNet allow the attention maps to gradually focus on
different key face structures at different stages. For instances,
one can see the attention map of the second last FAU focuses
cleanly on the outline of the key face structures, and that of
the last FAU focuses on the general face region (see Fig. 6
bottom right). In Fig. 7(a), we show more results comparison
of SPARNet-V V. It can be observed that the evaluation PSNR
scores of SPARNet-VN show a positive correlation with NV,
which demonstrates the effectiveness of stacking multiple
FAUs.

Multiscale features in FAU The results of SPARNet-SM are
shown in Fig. 7(b). We can see that models with more scales
(i.e., smaller M) generally perform better, but the improve-
ment declines when M becomes smaller. The performance
of SPARNet-S4 is similar to SPARNet-S2. Therefore, we
set M = 4 for SPARNet to balance the performance and
computation cost.

B. Comparisons of SPARNet against Other Methods
We compare SPARNet with state-of-the-art general image
SR method RCAN [31], latest attention network for image

4The PSNR error is calculated by mean square error, and the SSIM error
is calculated by subtracting the SSIM score from 1.
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Fig. 6: Results on the Helen test set. Top: HR photo and SR
results; bottom: spatial attention map in FAU of SPARNet-V1
(left) and last three FAUs of SPARNet (right).
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Fig. 7: Ablation study of SPARNet-VN and SPARNet-SM
on Helen testset. We set M = 4 when training SPARNet-V N,
and NV = 16 for SPARNet-SM.

classification CBAM [26], and other face SR methods, includ-
ing URDGN [54], Wavelet-SRNet [50], Attention-FH [32],
FSRNet [1], SICNN [20], PFSRNet [21] and DICNet [22].
When comparing with RCAN and CBAM, we replace our
FAU with the corresponding attention module (borrowed from
public released codes) and keep network depth the same for
a fair comparison. All models are trained using the same
dataset except for FSRNet and SICNN. Note that FSRNet only
provides test code and SICNN relies on a much larger pre-
aligned training set.

1) Overall Results: Quantitative comparison with other
state-of-the-art methods on the Helen test set is shown in
Table 1. SPARNet clearly outperforms both generic SR meth-
ods and face SR methods in terms of both PSNR and SSIM
scores. With the spatial attention mechanism, SPARNet can
better recover important face structures. One can observe from
Fig. 8 that while most of the other methods fail to recover
the eyes and nose, and the shapes are blurry, SPARNet can
generate sharper results with shapes close to the ground truth
HR images.

2) Detailed Comparisons: Attention Mechanisms Among
all the methods under comparison, only RCAN, CBAM, and
Attention-FH have an attention mechanism. RCAN is designed
for generic SR task. It applies a channel attention mechanism
in the feature space. Although channel attention has been
shown to be beneficial to general SR task, spatial structures are
more important in very low resolution face super-resolution.
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TABLE I: Quantitative comparison on the Helen (first 3 rows) and UMD (last row) test sets with a 16 x 16 input size and an
upscale factor of 8x. The AUCs are calculated under a threshold of 10%. The results of FSRNet* are generated using the test

model provided by its authors.

\ Method | Bicubic RCAN CBAM URDGN Wavelet Att-FH  FSRNet* | Baseline SPARNet |
PSNR 23.52 26.40 26.46 25.17 26.42 25.10 24.97 26.38 26.59
SSIM 0.6408 0.7648 0.7666 0.7140 0.7711 0.7188 0.7091 0.7639 0.7716

AUC(< 10%) 4.42% 56.53%  56.83% 41.78% 58.44%  46.63% 40.42% 56.23% 58.51%
Identity ‘ 0.1851 0.5373 0.5378 0.3981 0.5147 0.4731 0.4765 0.5302 0.5546

b
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®
Wavelet [50]
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Fig. 8: Qualitative comparison with state-of-the-art methods. The resolution of the input is 16 x 16 and the upscale factor is

8x%.

This explains why RCAN does not show big improvement
over the Baseline in terms of PSNR score (26.40 vs 26.38).
Attention-FH adopts a patch level attention and cannot recover
details (see Fig 8(g)). CBAM also employs a spatial attention.
However, it is manipulated to extract semantic information
through pooling operations which cause loss of shape and
edge details. We compare the SR results and spatial attention
maps generated by SPARNet and CBAM in Fig 9. We can
see that the attention maps produced by CBAM are blurry and
not able to outline important details such as eyes and mouth,
whereas the attention maps of SPARNet, thanks to the multi-
scale feature based approach, provide more detailed structure
information. Accordingly, the mouth and nose generated by
SPARNet are sharper and clearer than that of CBAM.
Comparison with FSRNet [1] Since FSRNet only provides
test code, the results of FSRNet reported in Table I are not
obtained using the same training set as the others. To make
a fair comparison, we retrain and test our model on the
same dataset used by FSRNet (18K images from CelebA),
and show the results in Table II. Although FSRNet uses
face parsing map as an additional supervision, SPARNet still
outperforms FSRNet in terms of PSNR and SSIM scores. This
demonstrates the superiority of the proposed spatial attention
mechanism.

Comparison with Wavelet-SRNet [50] Wavelet-SRNet shows
closest performance to SPARNet in terms of SSIM score.

CBAM SPARNet

(a) SR results of CBAM and SPARNet.

.'@umn

(b) Attention maps of CBAM (top) and SPARNet (bottom).

Fig. 9: SR results and attention maps of CBAM and SPARNet.

TABLE 1II: Comparison between FSRNet and SPARNet on
CelebA.

Method
PSNR/SSIM

FSRNet
26.31/0.7522

SPARNet
26.68/0.7741

Nonetheless, SPARNet requires much less parameters and is
more computational efficient and flexible than Wavelet-SRNet.
The performance and efficiency comparison between Wavelet-
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Fig. 10: Performance and efficiency comparison between
Wavelet-SRNet and SPARNet under different upscale factors.

SRNet and SPARNet is summarized in Fig. 10. Wavelet-SRNet
has 4™ parallel subnets with an upscale factor of 2”. This
implies the network parameters increase quadratically with
the upscale factor. Besides, it requires different input size for
each upscale factor. Because the output size is usually fixed,
a smaller upscale factor needs a larger size of input when
training the network. Since a larger input means more con-
volution operations and requires higher computational power,
the GFLOPs of Wavelet-SRNet increase dramatically when the
upscale factor is small. In contrast, SPARNet uses the same
architecture for different upscale factors, and achieves better
performance without increasing its computational complexity.
Comparison with landmark based methods We compare
SPARNet with two recent landmark based methods PESRNet’
[21] and DICNet® [22]. To get the best results of the com-
pared method, we directly use their public models instead of
retraining them since both of them are trained on CelebA, the
same as SPARNet. We evaluate the performance on the Helen
test dataset provided by DICNet because our test images are
cropped in a different way and DICNet performs bad on it. The
quantitative results and visual examples are shown in Table III
and Fig. 11 respectively. As we can observe from Table III,
SPARNet shows the best PSNR and SSIM scores in the test
dataset. The visual results in Fig. 11 indicate that SPARNet can
recover the key face components, especially the eyes, better
than DICNet even without any extra landmark information.
We hypothesize that this is because it is too difficult to detect
accurate landmarks for low resolution face images, and the
multi-stage iterative process in DICNet amplifies the error. As
for PFSRNet, we found it performs badly when test faces are
not aligned. Since detecting landmarks from 16 x 16 LR face is
by itself a difficult task, we find the practical value of PFSRNet
is limited compared with DICNet and our SPARNet. We also
show the computation complexity in Table III. Compared with
state-of-the-art method DICNet, our method produces better
results with much less parameters. Moreover, our SPARNet is
faster than DICNet which is an iterative framework. Compared
with PFSRNet, our method achieves much better performance
with similar computation complexity.

Comparison with Different Upscale Factors We also trained
models with 4, and 16x upscale factors. The 4x model was
trained from scratch, whereas the 16 x model was initialized
with the pre-trained 8 x model. We show the results of 4 x and
16 upscale factors in Table IV. It can be seen that SPARNet

Shttps://github.com/DeokyunKim/Progressive- Face- Super-Resolution
Ohttps://github.com/Maclory/Deep-Iterative- Collaboration

TABLE III: Quantitative comparison on the Helen test dataset
provided by DICNet [22].

Methods PFSRNet [21] | DICNet [22] SPARNet
PSNR 24.13 26.73 26.97
SSIM 0.6688 0.7955 0.8026

Params (M) 8.97 22.80 9.86

Time (s) 0.045 0.065 0.051

PFSRNet LR

DICNet

SPARNEet

l’
r

Fig. 11: Visual comparison between PFSRNet, DICNet, and
SPARNet on Helen test dataset provided by DICNet. All
results are generated by public models trained on CelebA. PF-
SRNet generates bad results for unaligned test faces. SPARNet
generates better key face components than DICNet especially
in the eyes.

achieves state-of-the-art results for both 4x and 16x upscale
factors, especially for the 16x upscale factor.

TABLE IV: Image quality comparison on Helen with upscale
factors 4x and 16x

[ [Scale[Bicubic RCAN CBAM Wavelet [ SPARNet |

PSNR Ax 2743 30.73 30.76  30.67 30.83
SSIM 0.8049 0.8857 0.8861 0.8888 | 0.8872
PSNR 16 2022 20.71 20.75 2244 22.85
SSIM 0.5180 0.6360 0.6375 0.6314 | 0.6426

3) Landmark Detection Results: As mentioned previously,
the proposed spatial attention mechanism helps recover im-
portant face structures. Landmark detection can be exploited
to evaluate such an ability. From Table I, we can see that
SPARNet achieves the best performance in landmark detec-
tion. Wavelet-SRNet’s performance is similar to SPARNet, but
SPARNet is more efficient (refer to Fig. 10) and shows much
better performance (in terms of PSNR/SSIM scores) for the
16x upscale factor (refer to Table IV).

4) Identity Similarity Results: We first evaluate the models
in Table I on the UMD-Face test set. Note that these models are
trained on CelebA without pre-alignment. SPARNet achieves
the best performance. We also notice that GAN based methods
such as URDGN are worse than non-GAN based methods.
This is because GAN based methods target at producing
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realistic textures but they do not care whether the generated
textures are consistent with the HR images. Therefore, they
may generate textures which look sharper but disturb the
identity information. To further explore how well SPARNet
can preserve identity information, we retrain our model using
the same dataset as SICNN to allow a fair comparison. We
denote this model as SPARNet*. From Table V, we can see
that SPARNet* shows better performance than SICNN even
without using any explicit identity supervision. This proves
that the proposed spatial attention mechanism is beneficial to
preserving identity information in face SR.

TABLE V: Comparison of identity similarity between SICNN
and SPARNet*. (SPARNet* is trained with the same dataset
as SICNN.)

[ Method
[ Identity Similarity |

[ SICNN [20] | SPARNet™ |
05978 | 0.6272 |

C. Evaluation of SPARNetHD

Different from SPARNet which aims to hallucinate very low
resolution faces (i.e., 16 x 16) that are difficult to recognize,
the extended SPARNetHD tries to deal with real world low
resolution faces. Typical application scenarios include old
photos and unclear faces shot by low-end devices. These LR
faces usually do not have fixed upscale factors and are usually
noisy and blurry. Hence, we need a different degradation
model for data synthesis. We also need high resolution datasets
in order to get high resolution outputs.

1) Degradation Model: According to previous works [55],
[56] and common practice in single image SR framework, we
generate the LR image I from the HR image I;, using the
following degradation model:

I} = ((Un *ky) s +1s)sPECG, s (14)

where * represents the convolution operation between [;, and
a blur kernel k, with parameter p. | is the downsampling
operation with a scale factor s. ns; denotes the additive white
Gaussian noise (AWGN) with a noise level 4. (-)speq,
indicates the JPEG compression operation with quality factor
q. The hyper parameters g, s, d,q are randomly selected for
each HR image Ij, and I} is generated online. We set the
hyper parameters as

e k, is the blur kernel. We randomly choose one of the
following four kernels: Gaussian Blur (3 < o < 15),
Average Blur (3 < p < 15), Median Blur (3 < p < 15),
Motion Blur (5 < o < 25);

e | is the downsample operation. The scale factor s is
randomly selected in [15, 125];

e Ny is addictive white gaussian noise (AWGN) with 0 <
0 <0.1 x 255;

o JPEG, is the JPEG operation. The compression level
is randomly chosen from [60, 85], in which higher means

stronger compression level.

After obtaining I}, Irr_yp = (I]) 15 serves as the LR input
of SPARNetHD.

2) Datasets and Evaluation Metrics: Training data We
adopt the FFHQ [34] dataset for training. This dataset consists
of 70,000 high-quality images at a size of 1024 x 1024 crawled
from the internet. All images are automatically cropped and
aligned. We resize the images to 512 x 512 with bilinear
downsampling as the ground-truth HR images, and synthesize
the LR inputs online with Eq. 14.

Synthetic Test Data We use the test partition of CelebAHQ
dataset [33] as synthetic test data. CelebAHQ contains 30, 000
HR faces in total which are split into a training set (24,183
images), a validation set (2,993 images), and a test set (2, 824
images). We generate the LR dataset with Eq. 14, denoted as
CelebAHQ-Test.

Natural Test Data We collect 1,020 faces smaller than 48 x
48 from CelebA. We also collect some old photos from the
internet for testing. All images are cropped and aligned in
the same manner as FFHQ, and then resized to 512 x 512
using bicubic upsampling. We merge all these images together
and create a new dataset containing 1,051 natural LR faces,
denoted as CelebA-TestN.

Evaluation Metrics For CelebAHQ-Test, we use LPIPS
(Learned Perceptual Image Patch Similarity) [57] as our eval-
uation metric because it can better represent the visual quality
of HR images than PSNR and SSIM. For CelebA-TestN, since
there are no ground truth HR images, we use FID (Fréchet
Inception Distance) [58] to measure the similarity between the
SR results and reference datasets containing HR face images.
We use the HR version of CelebAHQ-Test as the reference
dataset.

3) Ablation Study of Loss Functions: To verify the effec-
tiveness of different loss terms in Eq. 12, we conduct an
ablation study by removing each of them separately. Same
as SPARNetHD, all models are trained for 100k iterations
which take about 3 days on a single GPU. The comparison
results are shown in Table VI and Fig. 12. We can observe that
Lpiz has the least influence on the final performance because
it mainly affects the subtle low level details. Comparing the
results of second column and third column, the skin color
of SPARNetHD (w/o L,;;) is mixed with slight background
green color compared with full SPARNetHD in the first row,
and teeth shape is less natural w/o L,;, in the second row
(please zoom in to see the details). From the 4th column,
we can see that the network fails to generate sharp edges
and realistic details without adversarial loss, and these greatly
degrade the quantitative performance. In the 5th column, we
can observe that the generated details are less realistic and
there are some noise-like artifacts near the hair in the first
row. This is mainly because the GAN network trained without
L is less stable. In the last column, we can see obvious
shape distortions in the eyes and lips since £, mainly helps
to constrain mid-level and high-level semantics.

4) Comparison with Other Methods: We conduct exper-
iments to compare SPARNetHD with other methods on
CelebAHQ-Test and CelebA-TestN. Since very few previous
face SR methods can produce high resolution outputs, we
mainly compare SPARNetHD with general SR methods and
GAN based image-to-image translation methods which pro-
vide public codes and can be used to generate high resolution
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Fig. 12: Ablation study of losses used in SPARNetHD on the synthetic dataset CelebAHQ-Test (first row) and real dataseet

CelebA-TestN (second row). Better zoom in to see the details.

(a) Synthetic LR (b) ESRGAN (c) Pix2PixHD

(d) SFTGAN (e) Ours

Fig. 13: Visual comparison between results produced by SPARNetHD and other methods on the synthetic dataset CelebAHQ-

Test. Better zoom in to see the details.

outputs. Specifically, we compare SPARNetHD with state-
of-the-art SR method ESRGAN [59], parsing map based
SR method SFTGAN [60], high resolution image translation
method Pix2PixHD [5], and blind face restoration method
based on a reference image GFRNet [55]. We retrain ESR-
GAN, SFTGAN and Pix2PixHD. We use existing face parsing
model to generate face parsing map for SFTGAN. As for
GFRNet, we only carry out a visual comparison with the
results reported in the original paper because it needs reference
images for training and testing.

Table VI gives a quantitative comparison on CelebAHQ-
Test and CelebA-TestN. We can observe that SPARNetHD
outperforms the other methods on both datasets. Pix2PixHD
performs better than ESRGAN because of the multi-scale
discriminators. The fact that the results of SPARNetHD are
much better than that of Pix2PixHD demonstrates the effec-
tiveness of the proposed attention mechanism, which is the key
difference between SPARNetHD and Pix2PixHD. SFTGAN
shows slightly better performance than Pix2PixHD with the

TABLE VI: Quantitative comparison on CelebAHQ-Test and
CelebA-TestN. Note for w/o Lgan™: because Ly, depends
on the discriminator, we also remove it when Lgan is not
used.

Methods [ CelebAHQ-Test (LPIPS]) | CelebA-TestN (FID])
ESRGAN [50] 0.49 60.67
SFTGAN [60] 0.36 37.76
Pix2PixHD [5] 0.36 43.1
SPARNetHD 0.29 27.16
Wlo Lopiz 031 30.63
wlo Laan® 0.38 39.75
wio L fp, 0.32 33.52
Wl Lpep 0.31 32.97

help of face parsing maps. This shows the advantage of
taking parsing map as additional supervision. Nevertheless,
the proposed SPARNetHD outperforms SFTGAN by a large
margin. This is because parsing map can only provide coarse
semantic level guidance, while the proposed spatial attention
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(a) Real LR (b) ESRGAN

(c) Pix2PixHD

(d) SFTGAN (e) Ours

Fig. 14: Visual comparison between results produced by SPARNetHD and other methods on real LR dataset CelebA-TestN.

Better zoom in to see the details.

mechanism cannot only provide coarse semantic guidance but
also give low level texture guidance.

The qualitative results in Fig. 13 and Fig 14 are consistent
with the observations in Table VI. Fig. 13 shows the results
on the synthetic test dataset CelebAHQ-Test. We can see that
ESRGAN fails to generate realistic faces. While the results
of Pix2PixHD look much better, undesirable artifacts show
up in the right eyes. SFTGAN does not have such problem,
but it cannot generate detailed textures, especially in the
hair and teeth. In contrast, SPARNetHD can restore key face
components as well as the texture details in the hair and teeth.
Similar phenomenon can also be observed in Fig. 14, which
shows the results on natural LR faces. While the competitive
methods generate many artifacts for real LR faces, our results
are much more robust and natural. This illustrates the good
generalization ability of SPARNetHD.

We also compare SPARNetHD with a recent blind face
restoration method GFRNet. GFRNet takes a LR image and
a HR image of the same person as input to restore the LR
image. We show some qualitative results on natural LR faces in
Fig. 15. It can be observed that SPARNetHD generates much
better texture details than GFRNet even without utilizing any
additional information in the training stage.

V. CONCLUSION

We propose a SPatial Attention Residual Networks (SPAR-
Net) for very low resolution face super-resolution. SPARNet
is composed by stacking Face Attention Units (FAUs), which
extend vanilla residual block with a spatial attention branch.
The spatial attention mechanism allows the network to pay
less attention on the less feature-rich regions. This makes
the training of SPARNet more effective and efficient. Ex-
tensive experiments with various kinds of metrics illustrate
the advantages of SPARNet over current state-of-the-arts. We
further extend SPARNet to SPARNetHD with more channel

5

(a) Real LR (b) GFRNet (c) Ours

Fig. 15: Visual comparison between results produced by
SPARNetHD and GFRNet. Better zoom in to see the details.

numbers and multi-scale discriminator networks. SPARNetHD
trained on synthetic datasets is able to generate realistic and
high resolution outputs (i.e., 512 x 512) for LR face images.
Quantitative and qualitative comparisons with other methods
indicate that the proposed spatial attention mechanism is
beneficial to restore texture details of LR face images. We
also demonstrate that SPARNetHD can generalize well to real
world LR faces, making it highly practical and applicable.
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