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Abstract: Recent technological advancements in geomatics and mobile sensing have led to various
urban big data, such as Tencent street view (TSV) photographs; yet, the urban objects in the big
dataset have hitherto been inadequately exploited. This paper aims to propose a pedestrian analytics
approach named vectors of uncountable and countable objects for clustering and analysis (VUCCA)
for processing 530,000 TSV photographs of Hong Kong Island. First, VUCCA transductively adopts
two pre-trained deep models to TSV photographs for extracting pedestrians and surrounding pixels
into generalizable semantic vectors of features, including uncountable objects such as vegetation,
sky, paved pedestrian path, and guardrail and countable objects such as cars, trucks, pedestrians,
city animals, and traffic lights. Then, the extracted pedestrians are semantically clustered using the
vectors, e.g., for understanding where they usually stand. Third, pedestrians are semantically indexed
using relations and activities (e.g., walking behind a guardrail, road-crossing, carrying a backpack, or
walking a pet) for queries of unstructured photographic instances or natural language clauses. The
experiment results showed that the pedestrians detected in the TSV photographs were successfully
clustered into meaningful groups and indexed by the semantic vectors. The presented VUCCA
can enrich eye-level urban features into computational semantic vectors for pedestrians to enable
smart city research in urban geography, urban planning, real estate, transportation, conservation,
and other disciplines.

Keywords: urban informatics; big data; pedestrian activity; streetscape; Tencent street view (TSV);
deep learning; semantic segmentation; object detection; Hong Kong Island

1. Introduction

A city’s information infrastructure, which measures and extracts valuable data from
the multi-faceted urban systems, is the foundation for enabling smart solutions for urban
dwellers and defining public administration efficiency [1,2]. Urban data are evolving to
urban big data along with the advancement of information and communication technology
(ICT) infrastructure to improve resource allocation and supply, waste management, traffic
control, energy conservation, health, crime prevention, and environmental issues [3]. More
and more urban data are available from sensors, social media, and other interconnected
systems, yet with fewer and fewer errors, less noise, and lower costs [4]. Thus, the fast-
growing urban big data sets are seen as opportunities for smart cities [5]. For example,
street view photographs cover not only comprehensive urban landscapes but also rich, eye-
level urban features that can very well meet the four V’s of big data, i.e., volume, variety,
velocity, and veracity [6]. However, only a certain degree of integration and understanding
of big data and turning it into knowledge and smartness can lead to the realization of more
sustainable urban environments in smart cities [7].
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In the context of urban big data, artificial intelligence (AI) methods such as deep
learning and evolutionary computation are becoming popular for complementing the
conventional methods for extracting and enriching the semantics of urban data [8]. Example
applications include urban street cleanliness assessment [9], traffic speed prediction [10],
simulation of energy consumption for efficient decision-making [11], and exploring spatial-
temporal travel patterns [12]. However, a massive workload of manual annotation is often
required before training deep learning methods [13], so that some researchers dismiss AI
as too “artificial” [14]. For inferring pedestrians’ semantics and other urban objects, the
question that remains is to what extent the multi-faceted evidence can be extracted from
urban big data at a low cost for a smart city’s information infrastructure.

This study proposes a novel approach named VUCCA (extraction of uncountable and
countable objects for clustering and analysis) for analyzing the pedestrians in street-view
photographs. Pedestrians are an essential element that can reflect road utilization, urban
vitality, and citizens’ preferences. Although streets take up only a small portion of the urban
space, they are key to smart urban living and smart mobility for pedestrians. Previous
studies have made efforts in predicting the demographic makeup in neighborhoods [15],
quantifying greenery, sky view, and building view factors in high-density streets [16],
measuring human perceptions (e.g., depressing, lively, safe, wealthy, boring, and beautiful)
of the city [8,17,18], estimating the inhabitants’ daily exposure to green or blue spaces
for investigating correlations related to walking behavior [19] and mental health [20,21],
and volumes of pedestrians [22]. These studies make significant progress in translating
urban big data into specific knowledge about pedestrians. However, most of the studies
failed to make full use of street-view data by limiting their efforts within small-scale data
samples (not big data), bivariate analysis (not multifaceted), or the manually annotated
training data annotation (costly), or individual detection (not systematic) for supervised
learning. Thus, there is a lack of effort in unsupervised urban big data evidence, including
multi-faceted semantics and relations between pedestrians and other urban objects, for
smart city’s information infrastructure.

The VUCCA in this paper contributes in three ways. First, this study verifies that
transductive transferring the convolutional neural network (CNN) and regional CNN
(R-CNN) pre-trained elsewhere can be inexpensive and accurate, for processing both
countable and uncountable objects in urban big data. Secondly, the relationship between
urban objects such as pedestrians can be automatically clustered by a semantic vector
of multi-faceted features. Finally, the big-data-driven semantic vector can well support
indexing and queries in line with the urban information infrastructure that sheds new light
on smart city applications.

Our study is presented with the following structure. Section 2 demonstrates the results
and research gaps from a literature review. The proposed novel deep learning model is
presented in Section 3. Section 4 displays the results of semantic segmentation, object recog-
nition, and clustering. Discussion of results is found in Section 5, and Section 6 concludes.

2. Background
2.1. Urban Big Data and Street View Photography

Urban big data are immense, lively and created from physical and virtual entities,
including urban facilities, organizations, and individuals, by employing emerging ICT
infrastructure [23]. Big data at a city-scale can help people understand the dynamic status
of urban stock and flow objects, systems, and operations and assist in making agile stock,
flow and overall systems management decisions, thereby improving resources allocation,
cutting urban operation costs, and fostering a more sustainable living environment [24].
Four “V” features are taken to define ‘big’ data [6]: volume (data size is large), velocity (data
are created in real-time), variety (data comprises various types from different sources),
and veracity (data quality and value). Furthermore, urban big data also has unique
characteristics such as correlations, meaning that many types of urban data not only
interact with each other when mining social knowledge, but also have potentials to be
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interrelated to enrich the meanings of data themselves [25]. Making full use of urban
big data is part of the smart city vision for strengthening traditional urban governance
capacity to provide services, conserving depletable shared urban resources, and improving
the sustainable growth of cities [5]. Urban big data can uncover hidden relationships
beyond conventional approaches and convert such information into novel knowledge for
investigating urban growth and change [26]. Urban big data analytics for smart cities can
benefit various domains, including transportation and logistics, energy consumption and
resources, construction and buildings, public governance and environment, healthcare and
education, social welfare and the economy [3].

However, it is not easy to access large volumes of informative urban data for iden-
tifying the relationships that provide value-added urban management information [27].
Street view photographs seem to be an ideal choice, providing massive data for the visual
urban landscape with the advantages of high-level accessibility, resolution, and coverage.
At the same time, advances in ICT and data science have produced new approaches for
capturing behavioral and environmental information from image data, particularly at the
micro-scale street level [28]. For example, street views of map databases were applied to
identify specific areas for pedestrian access improvement [29], to assess damage caused
by hurricanes [30], to quantify green view indicators in an evaluation of urban greenery
quality [22], and to examine correlations between characteristics of built environment and
health outcomes in the U.S. [31]. Furthermore, street view image databases are immersive
360◦ panoramas initially generated to help users navigate cities as virtual visitors, along
urban streets, blocks, or indoors. Google, Tencent, Bing, and Baidu have launched their
own street view service platforms, which now provide considerable image resources for
urban studies [32]. With increasing availability of big data analytics such as deep neural
networks, analyzing the massive data in street view photographs has become feasible.
Street view data provides flexibility in extracting a wide variety of eye-level urban features.
However, a standard methodology for this is far from developed and much research is
required to optimize costs and outcomes of various approaches to multi-dimension and
economy-saving information retrieval algorithms.

2.2. Deep Learning-Based Urban Semantic Features

Deep learning is a kind of machine learning based on multi-layer artificial neural
networks for extracting more complex features from raw input [33]. For example, in an
image processing of street view, lower layers of neural networks may identify colors by
the pixel. In contrast, deep learning can recognize human-meaningful items, such as trees,
roads, and people. Deep learning flourished since 2009, due to the advances in hardware,
such as the graphics processing units (GPUs), which significantly speeds up the training
process and reduce the running times [34]. However, many deep learning methods work
well only when the training and test data come from the same feature space and the same
variable distribution, and need large training data sets. Therefore, in many real-world
cases, it is expensive or impossible to re-collect and re-label big data for solving problems
in specific domains.

Transfer learning that reuses pre-trained models for new domains or tasks has been
proved efficient and highly-accurate in general machine learning and deep learning [35].
For example, Wurm et al. [36] transferred a model trained on QuickBird to the datasets of
Sentinel-2 and TerraSAR-X to efficiently segment the slums. For deep transfer learning,
some deep models (e.g., Google Inception Model) have been pre-trained on the ImageNet
dataset for image classification tasks. They can be transferred to predict the results of
the new dataset [37]. Cira et al. [38] used hybrid segmentation models trained with high-
resolution remote sensing imagery to identify the secondary road network. Kang et al. [39]
categorized 13 tourist photo classifications by transfer a deep learning model to analyze
the regions of attraction. Šerić et al. [40] transferred a model for lost persons to help predict
their walking speed. Similar to image classification, natural language processing problems
can also be solved using models (e.g., Stanford’s GloVe Model) pre-trained on huge corpora
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of text documents [41]. Zhong [42] proposed an approach for capturing semantic features
in building-quality problems and automatic classification of the related complaints by
building-users, into predefined kinds, improving the efficiency of complaint handling in
the general building services management domain.

Several studies have employed deep transfer learning on the street view database.
The most common task using deep neural networks is pixel-level semantic segmentation,
which can extract multiple scene elements by classifying each pixel in massive street view
photographic data. For example, Middel et al. [26] employed a fully convolutional network
(FCN) to segment Google Street Views (GSV) images from three view directions (e.g., down,
up, lateral) into six classes (e.g., trees, sky, buildings) for producing maps of urban form and
composition. Similarly, Fu et al. [43], Lu et al. [20], and Gong et al. [16] applied the pyramid
scene parsing network (PSPNet) to predict scene parsing, which achieved 80.2% mean IoU
(intersection over union) over 150 object classes in Cityscapes. Chen et al. [44] assessed
pedestrian volume by deploying street view images and machine learning methods and
compared them with results from field observations, which was regarded as a large-scale
validation test and produced reasonable accuracy.

Apart from semantic segmentation, the diversity of urban objects and their relations
in street view photographs have also been studied using deep networks. For example, to
detect and ‘understand’ information from images, Dubey et al. [8] adopted two CNNs to
predict human perception (e.g., safe, lively, boring, wealthy, depressing, and beautiful)
based on objective observational urban appearance, using a global crowdsourced dataset
(including GSV). Zhang et al. [45] explored spatio-temporal urban mobility patterns by
training a deep CNN model for a street classification task—e.g., mapping each street to
a street view photograph—and then training another deep CNN model to predict taxi
trips along a street by fine-tuning the pre-trained model. Srivastava et al. [46] proposed a
multimodal approach with two CNNs to learn the features from two streams (e.g., overhead
imagery and ground-based street view images) to perform a classification of land use
categories. In order to reason about the connections between urban appearance and
socioeconomic outcomes, Gebru et al. [14] deployed CNN for car classification in GSV
images to determine make, model, body type, and year of each vehicle, which can be
used to estimate demographic statistics and voter preferences. Salvador et al. [47] used
pre-trained VGG-16 on a subset of street view images with ground truth data for measuring
inequalities by separating best-off from worst-off in different social, environmental, and
health outcomes., A pedestrian’s status can be even be detected by adopting deep neural
networks based on street view photographs. For instance, the new attention-based deep
neural network (HydraPlus-Net) with multi-directional feeds is developed to achieve fine-
grained pedestrian analysis tasks [48]. In addition, Li et al. [49] concentrated on searching
pedestrian in massive image databases by using natural language descriptions, which are
expected to significantly rely on video surveillance.

However, few studies try to understand high-order object relations in street view pho-
tographs without exogenous knowledge and then leveraging these relations as information
about co-occurrence and objects’ locations to feed into better automated domain reasoning.
This work takes the pedestrians as an example to reason physical activities of pedestrians
on sidewalks and streets for discovering more socioeconomic correlations and knowledge
for smart cities. This is an essential step in automatically detecting deeper socioeconomic
knowledge for smart city applications. Although Branson et al. [50] and Lin et al. [51] tried
to build a multitask network with the integration of re-identification and then predicted
pedestrian attributes, the transferability and scalability of pedestrian attributes were insuf-
ficient. Therefore, the challenge we take on, is to automatically understand and incorporate
key semantic and spatial relationships in TSV for reasoning street activities.

This study investigates big data-driven semantic vectors for processing a street view
database; we use the DeepLab V3 model to conduct pixel-level semantic segmentation [52],
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which performs better than PSPNet with an 81.3% mean IoU (see Figure 1; the tests were
conducted by the authors).

Precision = true positive/(true positive + false positive) (1)

Recall = true positive/(true positive + false negative) (2)

Figure 1. Illustrations of semantic segmentation by transferring two trained popular CNN models, where color indicates
the class labels as defined in Cordts et al. [53] 2006.

Another task is to detect objects at an instance level, while the R-CNN candidate
deep learning models are luminoth and YOLO. YOLO V3 is a well-used object detector
inspired by GoogLeNet, having 24 convolutional layers followed by two fully connected
layers [54]. However, segmenting each instance involves reasoning the scene composition
and instances relationships, which can be conducted through a sequential process [47].
Thus, this study uses an R-CNN in the luminoth toolkit, which shows a good performance
in object detection of street view photographs, as shown in Figure 2.
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3. Research Methods
3.1. Study Area and Data Collection

This study collected perspective street view photographs of Hong Kong Island, as
shown in Figure 3. Hong Kong is one of the most densely populated cities and has abundant
city elements for an exploration of semantically significant elemental relationships captured
in street view photographs. We prefer perspective photographs to panorama images for
transfer deep learning in this paper due to the compatibility with the popular training
datasets [53]. Tencent Map offered quality perspective TSV photographs and was selected
as the data source [56]. The input is a geographical boundary on the map, as shown in
Figure 3. The data to collect is a large set of perspective street view photographs within the
boundary. The computer for data collection and processing was a Windows 10 workstation
with dual Intel Xeon E5-2690 v4 (2.6 GHz, 28 cores), Nvidia Quadro P5000 GPU, and
64 GB memory.

Figure 3. Data collection process: (1) generate street network from OpenStreetMap; (2) extract coordinates of TSV panorama
photos; (3) segment panorama photos into TSV perspective photos.

The data collection process is shown in Figure 3. First, we extracted the street network
of Hong Kong Island as 6541 polyline street segments from OpenStreetMap database [57]
by using the Overpass Turbo API (application programming interface) to filter the ‘way’
entries [58]. The street segments are formatted in GeoJSON, and their reference systems
are translated from WGS84 (World Geodetic System 1984, EPSG:4326) to TSV’s GCJ-02
reference system using a Python library pygcj (ver. 0.0.1).

The second step is to extract the panorama coordinates. The available coordinates
were acquired along the polyline for each street segment through Tencent Map’s JavaScript
API (version 2.0). The coordinates’ reference standards were translated from China’s GCJ-
02 to WGS 84 (EPSG:4326) and Hong Kong Grid System 1980 (HKGS80, EPSG:2326). As
shown in Figure 3, 45,331 panorama coordinates were found on 4056 segments (536.33 km
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in total). A few coordinates circled in yellow were from backpacks or 360 cameras instead
of vehicle-borne cameras. The remaining 2485 segments were steps, corridors, private
roads, and hiking paths with no TSV service. The average density was 84.5 pts/km, or one
coordinate per 11.8 m. It should also be noted that there were some shared coordinates in
segment connections.

The third step is to extract the perspective photograph. For each TSV coordinate, twelve
shots of perspective photos—with a 30◦ angular gap between the heading directions—were
downloaded through the TSV static photograph API. The resolution was set to 960 × 480
to mimic the Cityscapes Dataset to transfer deep learning [53]. The download consumed
about ten days for transferring 541,095 photographs (50.3 GB on disk), or 99.47% of all
requests, while the remaining 0.53% responded with data errors. The camera time showed
that 99.9% of the photographs were taken between 9:00 to 15:59 within 21 days with
clear weather from March to June 2014. The coordinates and photographs’ reference
systems were translated from GCJ-02 back to WGS84 and Hong Kong Grid System 1980
(HKGS80, EPSG:2326).

3.2. The VUCCA Approach

We developed an automatic approach vectors of uncountable and countable objects
for clustering and analysis (VUCCA) to the processing of pedestrians in street view pho-
tographs to enrich smart city information infrastructure. The approach, as shown in
Figure 4, consists of three steps of automatic detection and analysis. The input data is per-
spective street view photographs, and the outputs include a data table of semantic features,
clusters, and urban object information. Step 1 includes semantic segmentation as well as
object detection. The semantic segmentation is the task of classifying the pixels to visual
fields of streetscape elements that are uncountable or difficult to count using a transfer
CNN model. The object recognition is the task of annotating the instances of countable
streetscape elements using a transfer R-CNN model. Step 2 is the unsupervised clustering
of deep transfer learning results to identify new relations and activities. Step 3 includes
validation and demonstrations of the relations and activities in the clustering results.

Figure 4. Three steps of the VUCCA approach for pedestrians in street views.



ISPRS Int. J. Geo-Inf. 2021, 10, 561 8 of 22

3.2.1. Semantic Feature Detection

The first step is automatic semantic feature extraction based on deep transfer learning.
As shown in Figure 5, this step consists of three tasks, i.e., semantic segmentation using
transfer CNN, object recognition using transfer R-CNN, and 360-view feature extraction.
The input to this step is the twelve perspective TSV photographs of a coordinate, while the
output is a list of semantic features describing the pedestrians and the environment such
as the ground and background.

Figure 5. Methods of semantic feature extraction based on transfer deep learning in Step 1.

First, the input images are processed by pre-trained CNN layers for extracting feature
maps. In the task of semantic segmentation, a deep CNN such as DeepLab’s ‘atrous
CNN’ [52] can propose the edges for partitioning the pixels. The semantic label of the
pixels can be classified by a fully connected (FC) layer such as a conditional random
field (CRF) and support vector machines (SVM). As a result, the pixel-level semantics
from the semantic segmentation can represent the uncountable or difficult to count street
elements. In this study, we adopted DeepLab (version 3) pre-trained on the Cityscapes
Dataset [53] because it is one of the best models evaluated on the open benchmarking
dataset, Cityscapes [59,60].

The second task is the object recognition for annotating the instances of countable
objects such as pedestrians. Other than the edges in semantic segmentation, a region of the
bounding box is required to propose for each object in this task. The deep transfer learning
model is a faster R-CNN model freely available in the Python package luminoth (version
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0.2.4) and pre-trained on the COCO dataset [55]. The transfer R-CNN model won first
place in the ECCV 2018 Joint COCO and Mapillary Recognition Challenge.

The third task consolidates the results of semantic segmentation and object detection
for each coordinate. As shown in Figure 6, the central 30◦ areas of the results were combined
to two images of 360◦ views, each in a resolution of 2664 × 480. The pedestrians can be
filtered using the ‘person’ label from the results of transfer R-CNN. For each pedestrian,
the distance and geolocation are triangulated by the camera’s location and the angle of dip
according to the middle bottom of the bounding box.

Figure 6. Extracting pedestrians, geolocations, and the surrounding semantic features, (a) results of transfer CNN and
R-CNN, (b) a pedestrian’s geolocation extracted by the bounding box, (c) the pixels of ground, background, and sides.

The pixels of the lower edge of the bounding box, as shown in Figure 6c, indicates the
ground, while the top edge represents the background. Ten categories of semantic features
representing ground and background can be filtered from the predictions of transfer CNN
(in Cityscapes), as listed in Table 1. A pedestrian’s ground features are the pixels of greenery
(F1), roadway (F2), sidewalk (F3), construction (F4), sky and terrain (F5), air-conditioned
vehicle (F6), vehicle (bike) (F7), street furniture (F8), pedestrian (F9), and others (F10).
Similarly, feature data can be extracted for background and sides. Apart from pedestrians
which are focused in this study, the semantic feature extraction also works well for other
ground objects like urban animals, vehicles, and light poles.

3.2.2. Unsupervised Clustering

To balance computation efficiency and effectiveness in capturing maximum infor-
mation about the input dataset, reducing the dataset’s number of features is necessary
before the clustering procedure. Semantic features are therefore pre-processed by principal
component analysis (PCA) [61,62]. PCA is an optimal linear reduction approach that trans-
forms high dimensional dataset to low dimensional data [63]. As PCA has the capacity to
remove correlated features, it can significantly speed up the training, reduce overfitting,
and improve visualization. Then, two unsupervised clustering algorithms are deployed to
infer new activities. Firstly, we apply k-means clustering to the unlabeled semantic features
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for finding centroids [64]. For each centroid, the algorithm finds the nearest features in
terms of Euclidean distance and assigns them to this centroid’s category. For each itera-
tion, the centroid is updated by calculating the average of all features attributed to that
category. The elbow method is used to determine the number of centroids by computing
within-cluster sum of squares for a low variation level. Additionally, hierarchical cluster-
ing with an agglomerative technique is employed to aggregate above centroid into more
specific clusters.

Table 1. Mapping semantic features from the results of transfer CNN.

Id Category of Features Pixel Labels in the Results of CNN

F1 Greenery Vegetation
F2 Roadway Road
F3 Sidewalk Sidewalk and guardrail
F4 Construction Building and wall
F5 Sky and terrain Sky and terrain
F6 Vehicle (hardtop) Car, bus, truck, and train
F7 Vehicle (bike) Motorcycle and bicycle
F8 Street furniture Pole, traffic light, and traffic sign
F9 Pedestrian Person and rider

F10 Others Others (pets, aircrafts, etc.)

3.2.3. Analytical Functions

The pedestrian query function provides the possibility of diverse citizen-centric ap-
plications like street monitoring, video surveillance, autonomous vehicles, and intelligent
robots. With its generally recognized characteristics of irregularities and ambiguities, it is
laborious to extract factual information from unstructured data and deliver a full range
of services. In this part of the research, we tried to acquire insight from unstructured and
semi-structured information by transforming them to be detectable through vectorization,
facilitating a search for the most similar pedestrians on the island.

Based on the pedestrians’ semantic vectors, semantic dissimilarities (and similarities)
can be defined for urban computing. For example, one can define mean absolute error
(MAE), root-mean-square error (RMSE), or cosine similarity to measure the relatedness or
distance between the vectors of 10 semantic features of two pedestrians, A and B.

MAE = (‖FA-FB‖1)/10 (3)

RMSE = (‖FA-FB‖2)/10 (4)

Similarity = cos(θ) = FA · FB/(‖ FA ‖2 · ‖ FB ‖2) (5)

where FA is the vector of features of pedestrian A, FB is that of B, ‖ X ‖1 is the L1-norm (or
Manhattan distance) of X, and ‖ X ‖2 is the L2-norm (or Euclidean distance). Regarding
the three vectors of ground, background, and sides, the above equations can be extended
to measure the overall relatedness or distance, e.g.,

MAEA, B = [MAE (Fg,A, Fg,B) + MAE (Fb,A, Fb,B) + MAE (Fs,A, Fs,B)]/3 (6)

The MAE distance metric and other metrics serve as the key to matching pedestrians’
features to identify a particular behavior or status. A particular query can be triggered by
an unstructured instance of pedestrians in photography, as well as from well-structured
semantic clauses.

4. Results
4.1. Semantic Pedestrian Detection

Figure 7 shows example results of semantic segmentation and object recognition. It
can be seen that environmental features like roadway (F2), sidewalk (F3), construction (F4),
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sky and terrain (F5), air-conditioned vehicle (F6), vehicle (bike) (F7), street furniture (F8),
pedestrian (F9), and ‘others’ (F10) have been detected. All the 530,000 TSV photographs
were processed by the CNN and R-CNN deep learning models in 22 days.

Figure 7. Results of semantic segmentation and object recognition. (a) Example of semantic segmentation, color indicates
class; (b) example of object recognition, color of a bounding box indicates class.

Deep transfer learning results were validated in three sets of cases, that is, high-density,
mid-density, and low-density urban areas. The results were reported for each set based on
the average value of 50 randomly sampled cases, with ground truth provided by manual
recognition. Among the sample cases, 23 belonged to ‘high-density’ areas, 10 from ‘low-
density’ areas, and 17 from ‘medium-density’ areas. We spent three days annotating the
ground truth of the uncountable and countable objects in the samples. Table 2 shows the
average precision, recall rates, and F1 values for countable and uncountable urban objects.
In brief, both indicators met with relatively high satisfaction, especially for distinct objects
like construction sites, vehicles, and persons nearby. However, one set of unsatisfactory
results arose from the different settings of pre-trained deep learning models. For instance,
stop signs detection in the R-CNN model was confused because it was trained by the
Microsoft COCO dataset in which traffic signs are not the same as Hong Kong’s. Another
set of errors lay in fogged and tiny objects, such as cars and persons, of a few pixels in the
far distance.

Table 2. Average validation results of the transductive deep transfer learning of Hong Kong
TSV photographs.

Category Object Precision Recall F1 Satisfactory?

Uncountable Vegetation 0.87 0.99 0.93 Yes
(As pixels) Construction 0.97 0.94 0.95 Yes

Roadway 0.95 0.98 0.97 Yes

Countable Vehicle 0.95 0.77 0.85 Yes
Person 0.84 0.87 0.85 Yes

Stop sign 0.89 0.22 0.35 No

As a result, a total number of 248,168 bounding boxes of persons were detected in
530,000 TSV photographs. Through the geolocation triangulation shown in Figure 6b, the
over 240,000 boxes were concluded to 61,788 instances of pedestrians by removing dupli-
cated predictions according to the geolocation. Figure 8 maps the geospatial distribution
of the 61,788 pedestrians. In addition, each pedestrian was associated with its nearest
panoramic photographs for the clearest semantic features.
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Figure 8. Geospatial distribution of 61,788 pedestrians detected in 530,000 TSV photographs.

4.2. Pedestrian Clustering by Where They Stood

Unsupervised clusters can help understand the groupings and behaviors of pedes-
trians. We employed ground features to describe where the 61,788 detected pedestrians
stood. The ground features of the pedestrians formed a table (Table 3). Each row had the
percentage of the feature pixels defined in Table 3. For example, the first instance was of
a pedestrian standing on a sidewalk area (F3), while the second one had a vehicle and a
building nearby.

Table 3. Excerpt of the feature table of the grounds where the 61,788 pedestrians stood.

Id F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1 0 0 1 0 0 0 0 0 0 0
2 0.00917 0 0.00917 0.37615 0 0.57798 0 0 0.02752 0
3 0 0 0.61290 0 0 0 0 0.16129 0.22581 0
...

...
...

...
61,788 0 0.26316 0 0 0 0 0 0 0.73684 0

In order to eliminate correlations between the semantic features, the eigen decomposi-
tion transformed Table 3 into independent principal components (PCs). Figure 9a shows
the accumulated representation of variance increasing along with the increasing number of
PCs. The top three PCs represented 78.6% of the total variance. Figure 9b shows the 3D
view of the 61,788 pedestrians in the semantic space of the top three PCs. Based on the
color of points in Figure 8, it is clear that the densest points are around a crowd of persons,
walking on the sidewalk (including guardrail areas), and crossing the roadway.
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Figure 9. PCA results of the ground feature using eigen-decomposition. (a) Cumulative variance results of PCA; (b) the 3D
data view in the top three PCs, where color indicates the most frequent feature and transparency shows the 3D depth.

We applied k-mean clustering to group unknown pedestrians. Figure 10a illustrates
the iterative tests of k-mean clustering. An elbow point was found at k = 4, as shown by the
green line. By setting k = 4, we had four clusters grouped and associated with the meanings:
crowd, crosswalk, vehicle and building, and sidewalk (see Figure 10b), and their mutual
hierarchical closeness is depicted in Figure 10c.

Figure 10. Cont.
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Figure 10. Results of k-means clustering of the pedestrians by the ground features. (a) Iterative tests of k-means clusters,
where the elbow point was found at k = 4; (b) four clusters detected and associated with meanings; (c) the hierarchical
closeness between the clusters.
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4.3. Pedestrian Query by Instance and Natural Language

As depicted in Figure 11, two types of queries, i.e., instance-based and natural
language-based, were tested. In an instance-based query, a pedestrian instance was given
to the search engine for finding the most similar persons. Figure 11 shows an example of
someone beside a car. The top radar chart in Figure 11 shows the three sets, i.e., ground,
background, and sides, of the semantic features. It can be seen that the ground of the
instance contained more F6 (vehicle) than F2 (roadway), while the background was filled
by F2 (roadway) pixels.

Figure 11. Examples of the pedestrian query of a given instance or a pre-defined action.

The top five most similar results from the 61,788 pedestrians are shown in Figure 11.
The results consist of the object ID, size in pixel, geolocation as latitude and longitude,
MAE, and an associated TSV panoramic photo for each returned pedestrian. Figure 11
illustrates that the query results are correct.

Apart from the unstructured instance, natural language query in pre-defined object
tags and markings was also enabled. For example, ‘taking or driving a vehicle’ meant all
the pixels around a person were vehicles (car, bus, or truck). The second radar chart in
Figure 11 visualizes the identical targets of semantic vectors. The top five query results
were all correct, with four in cars and one in a bus, while MAE values were all zero.

Sometimes, a pedestrian’s relational object, e.g., his/her pet, do not fall within the
‘bounding box.’ The MAE metric can be replaced by other relatedness metrics, such as
angular error between a dog and the nearest (in angle) pedestrian. Then, a query clause
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‘walking a pet’ returns a list of pedestrians and their pets. The closeness in the angular
directions in the TSV photo indicated a close relationship between pet and walker.

4.4. Semantic Enrichment for OpenStreetMap

The semantics of pedestrians on the streets was also applied to enrich digital maps
such as OpenStreetMap. First, the 61,788 pedestrians in Figure 8 were aggregated to the
street network of OpenStreetMap. By dividing the number of pedestrians by the length,
we defined a property named ‘pedestrian density’ in the unit of m−1:

pedestrian density = number of pedestrians along a street/length of the street (7)

Figure 12 shows the pattern of pedestrian densities on the island. Similarly, a property
named ‘crowdedness density’ can be defined as the number of pedestrians having >50%
side pixels labeled as ‘pedestrians.’ Then, we added the new properties to the GeoJSON
exchange format for enriching OpenStreetMap’s street network.

Figure 12. Visualization of the GeoJSON file consisting of enriched OpenStreetMap nodes, where the warmer colors indicate
higher densities of pedestrians on the streets.



ISPRS Int. J. Geo-Inf. 2021, 10, 561 17 of 22

5. Discussion

The proposed VUCCA approach consists of deep transfer learning, unsupervised
clustering, and vector-based analytics. Deep transfer learning can gather, share, and
transmit data between civic infrastructures, which lays a foundation to accomplish smart
cities’ rosy vision. Furthermore, unsupervised learning and vector-based analytics require
the least prior knowledge of complicated urban objects such as pedestrians. This approach
provides an efficient and economical system, which makes it possible to refine multiplex
eye-level urban features and facilitate the evolution of smarter cities in various aspects,
embracing the reduction of workflow costs in automating processes, and the establishment
of feedback between citizens and administrations. In this article, pioneering efforts were
exerted to automatically detect pedestrians and pedestrian behavior, from 536,759 TSV
photos on over 500 km of the road network in Hong Kong Island. Overall, we conclude
that through employing big data from a street view photographic database, and using deep
learning and unsupervised learning we were able to automatically detect a large number
of pedestrian instances over a large geographic range.

The main contributions of our methodology are summarized below:

• To begin with, pedestrians and other urban objects in unstructured big data of street
view photographs are computable, analyzable, and queryable through the VUCCA
approach. The vectors of semantic features enable not only unsupervised clustering
and unstructured query of pedestrians in photographs, but more importantly structure
information useful for applying more comprehensive vector-based concept computing
for pedestrians and other key urban objects, e.g., buses, streetscapes, and urban areas.
The results of unstructured, instance-based, natural language-based queries, and
other semantic vector-based concept computing validated a new approach of urban
computing for pedestrians.

• Secondly, CNN and R-CNN serve as positive contributors to fulfill the semantic
segmentation and label uncountable or countable objects. It was successfully adopted
to classify several types of features (see Table 1); with greater precision in view
classification achievable by adding to the number of input network layers. In addition,
VUCCA is inexpensive to reuse transfer deep learning models to publicly available
street view photographs. This suggests a productive research agenda in creating high
quality deep learning pre-processors for specific smart-city application domains.

• Furthermore, building computational models from static big data is exhausting, let
alone for dynamic data (e.g., moving pedestrians or vehicles), which readily fluctuate
in space and time. Accordingly, by leveraging unsupervised clustering algorithms,
our research proposes an approach to automatically cluster the detected samples by
comparing and processing resemblances through similar targets in nearby distances.

• Finally, street view data has the capacity to play a small but vital role in smart city
informatics. Big-data-driven multi-faceted semantic approaches can help maximize
the potential of these otherwise purely visual data sources.

The research has certain limitations:

• First, our query application considers specified semantic features, such as background
and sides. However, the derived analytics may suffer from low reliability and detection
rate due to blurred and insufficient 2D pixels, e.g., pedestrians in the distance. In
addition, searchable semantic features are limited by the predicted classes of the
pre-trained deep transfer learning and more dynamic pedestrian analytics within a
certain time period will be more accurate in query. Thus, 3D LIDAR data [65,66],
photorealistic 3D models [67], high-resolution images, and re-training of the transfer
learning models with local data and enriched semantic labels [68] are prioritized
among the future research directions.

• The VUCCA presented in this paper, e.g., clustering and searching, is theoretical. A
future direction is to implement value-added application software systems, which
utilize processes pedestrians-of-interest in uploaded images. Example results are those
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with similar behaviors, such as the jogging persons in the morning and higher-risk
pedestrians around accident blackspots.

• Despite spending ten days applying transfer learning to over 500,000 photographs to
prepare for analytics of 61,788 pedestrians, more processing time would give better
results. It is always beneficial for deep learning models to acquire more abundant
training data, which can allow for further training iterations and lead to better classifi-
cation ability (i.e., precision, recall, and F1 score), particularly when probing the full
richness of eye-level urban features.

• While we have shown that our method has potential for relational queries of urban
photographic data, nevertheless, further studies are encouraged to explore latent
inconsistency and indeterminacy in different data sets. Our method is clearly limited
to cities with coverage of street view imaging services. More variance in street scene
might be helpful to find a more robust semantic segmentation approach.

6. Conclusions

Systematically captured street view images have become a new source of urban
data. They may be considered big data when processed automatically to sample from
the infinite amount of information contained in them. They have the potential to reveal
multi-faceted eye-level urban features for cross-sectional and comparative-static pattern
analysis. Adding semantics is a crucial step in rendering these patterns understandable for
behavioral interpretation and thence for analysis in smart city monitoring, management
and planning. The methods for sensing, selecting, cleaning, and filtering the essential
conceptual elements for usable urban big data research are still in their infancy and rapidly
developing with data science advancements. In this paper, urban big data of TSV and deep
learning methods have been adopted as stepping-stones for data extraction from street
view imagery and we have explored how to integrate extracted urban conceptual features
into meaningful urban analytics such as pedestrian queries and pedestrian behavioral
classification. We demonstrate that pedestrian and other relational queries based on
unsupervised learning are realistically achievable from street view data bases. A novelty of
the work is to test a cost-effective framework for identifying high-order object relations in
street view photographs without a priori knowledge of ad hoc external domain information
about specific local context.

In a nutshell, the VUCCA for clustering and searching pedestrians in large image
datasets with the query being a natural language description is a three-step process: (i) se-
mantic segmentation of uncountable objects with CNN, (ii) semantic segmentation of count-
able objects with R-CNN, and (iii) semantic feature-based clustering and searching. VUCCA
makes full use of big data samples to realize multi-faceted information analysis. In addi-
tion, it economizes on feature interpretation and objectification by utilizing detection and
relational information derived by automatic clustering. Our test results illustrated that
VUCCA provides satisfactory levels of precision in correlational queries. However, we note
that tiny or obscure objects in street view pictures are not reliably captured. This suggests
that a refinement of the method may be to automatically cut off distant objects. This runs
the risk of excluding closer small objects that are confused with distant large objects, but
we note that there is structure to this problem that should mean that it is amenable to a
data processing solution. For example, a small, fuzzy object could be classified as distant
and therefore excluded from the sample, using the geometry of the image, by relational
context, of by deep learning from similar objects. On the other hand, approaches could be
developed to inferring probability of classification of indistinct distant objects (instead of
excluding them), by the same techniques or by pre-simulating the distance-degradation of
model objects contained in training sets.

This research therefore makes several contributions, including extracting informa-
tion by transfer learning from public domain training datasets; utilizing big data samples
efficiently; demonstrating an efficient and convenient method of semantically-rich informa-
tion extraction from urban images; and understanding object attributes in a multi-faceted
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manner using relational information between detected objects. However, the method also
has limitations in terms of handling distance and range within an image, picture qualities,
clarity and size of objects, and diverse experimental verification are required in the future.

The VUCCA pedestrian analytics can enhance the effectiveness and efficiency of
the process of multi-level clustering of image characteristics to detect objects. VUCCA
utilizes semantic vectors to represent and compute multi-faceted urban information for
semantically distinct meanings. Classification is a first step in any science and methods
such as the one presented here are necessarily the foundation for the advancement of the
science of smart cities. Our method creates the possibility of relational query within a smart
city’s information infrastructure that is based on intrinsic image structure linked to generic
object definitions and also to labeled objects that may as yet not be semantically labeled.
There is no reason why such an approach may not eventually support automated retrieval
of complex behavioral queries in which some detected elements are not even given specific
semantic labels. For example, ‘find examples of aggregated behaviors around accident
blackspots’, might retrieve instances of similar body expressions, pedestrians with unusual
characteristics, and learn other relational features of ‘aggregated behaviors’ that have not
been explicitly labeled in the training process.

We further encourage researchers to extend these insights, including (i) improving
the CNN and R-CNN detection of small or unclear sections and incorporating 3D data
sets, (ii) strengthening the understanding of semantic vectors under extreme circumstances
(e.g., rainy days), (iii) handling comprehensive vector features of street view for fine-
grained analytical tasks, (iv) self-learning in adjusting the deep transfer learning models
and parameters for variations in contexts (such as different styles of road sign), (v) adding
AI-invisible cloak techniques and anti-invisibility algorithms, and (vi) expanding the
computational semantic vector-based applications to other smart city research domains
and specific query types (e.g., urban planning, landscape design, autonomous vehicles),
together with developing models for learning meaningful interpretation from limited
training (as in the aggregated behavior example).
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40. Šerić, L.; Pinjušić, T.; Topić, K.; Blažević, T. Lost person search area prediction based on regression and transfer learning models.
ISPRS Int. J. Geo-Inf. 2021, 10, 80. [CrossRef]

41. Bowman, S.R.; Angeli, G.; Potts, C.; Manning, C.D. A large annotated corpus for learning natural language inference. arXiv 2015,
arXiv:1508.05326v1. Available online: https://arxiv.org/abs/1508.05326 (accessed on 15 August 2021).

42. Zhong, B.; Xing, X.; Love, P.; Wang, X.; Luo, H. Convolutional neural network: Deep learning-based classification of building
quality problems. Adv. Eng. Inform. 2019, 40, 46–57. [CrossRef]

43. Fu, X.; Jia, T.; Zhang, X.; Li, S.; Zhang, Y. Do street-level scene perceptions affect housing prices in Chinese megacities? An
analysis using open access datasets and deep learning. PLoS ONE 2019, 5, 14. [CrossRef]

44. Chen, L.; Lu, Y.; Sheng, Q.; Ye, Y.; Wang, R.; Liu, Y. Estimating pedestrian volume using Street View images: A large-scale
validation test. Comput. Environ. Urban Syst. 2020, 81. [CrossRef]

45. Zhang, F.; Wu, L.; Zhu, D.; Liu, Y. Social sensing from street-level imagery: A case study in learning spatio-temporal urban
mobility patterns. ISPRS J. Photogramm. Remote Sens. 2019, 153, 48–58. [CrossRef]

46. Srivastava, S.; Vargas-Muñoz, J.E.; Tuia, D. Understanding urban landuse from the above and ground perspectives: A deep
learning, multimodal solution. Remote Sens. Environ. 2019, 228, 129–143. [CrossRef]

47. Salvador, A.; Bellver, M.; Campos, V.; Baradad, M.; Marques, F.; Torres, J.; Giro-i-Nieto, X. Recurrent Neural Networks for
Semantic Instance Segmentation. arXiv 2017, arXiv:1712.00617.

48. Liu, X.; Zhao, H.; Tian, M.; Sheng, L.; Shao, J.; Yi, S.; Yan, J.; Wang, X. HydraPlus-Net: Attentive Deep Features for Pedestrian
Analysis. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
IEEE: Piscataway, NJ, USA, 2017. [CrossRef]

49. Li, S.; Xiao, T.; Li, H.; Zhou, B.; Yue, D.; Wang, X. Person Search with Natural Language Description. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ,
USA, 2017; pp. 1970–1979. [CrossRef]

50. Branson, S.; Wegner, J.D.; Hall, D.; Lang, N.; Schindler, K.; Perona, P. From Google Maps to a fine-grained catalog of street trees.
ISPRS J. Photogramm. Remote Sens. 2018, 135, 13–30. [CrossRef]

51. Lin, Y.; Zheng, L.; Zheng, Z.; Wu, Y.; Hu, Z.; Yan, C.; Yang, Y. Improving person re-identification by attribute and identity learning.
Pattern Recognit. 2019, 95, 151–161. [CrossRef]

52. Chen, Y.-H.; Chen, W.-Y.; Chen, Y.-T.; Tsai, B.-C.; Wang, Y.-C.F.; Sun, M. No more discrimination: Cross city adaptation
of road scene segmenters. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22–29 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1992–2001. [CrossRef]

53. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The cityscapes dataset
for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 3213–3223. [CrossRef]

54. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767v1.
55. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in

Context. In European Conference on Computer Vision; Springer: Berlin, Germany, 2014; pp. 740–755. [CrossRef]
56. Wang, R.; Lu, Y.; Zhang, J.; Liu, P.; Yao, Y.; Liu, Y. The relationship between visual enclosure for neighbourhood street walkability

and elders’ mental health in China: Using street view images. J. Transp. Health 2019, 13, 90–102. [CrossRef]
57. Bennett, J. OpenStreetMap; Packt Publishing Ltd: Birmingham, UK, 2010.
58. Raifer, M. Overpass API. 2018. Available online: http://overpass-turbo.eu/ (accessed on 15 August 2021).
59. Hoyer, L.; Kesper, P.; Khoreva, A.; Fischer, V. Short-Term Prediction and Multi-Camera Fusion on Semantic Grids. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; IEEE: Piscataway, NJ, USA,
2019; pp. 813–821. [CrossRef]

60. Zhang, C.; Lin, G.; Liu, F.; Yao, R.; Shen, C. CANet: Class-Agnostic Segmentation Networks with Iterative Refinement and
Attentive Few-Shot Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Long Beach, CA, USA, 15–20 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 5217–5226. [CrossRef]

http://doi.org/10.1038/nature14539
http://doi.org/10.1162/NECO_a_00052
http://doi.org/10.1109/TKDE.2009.191
http://doi.org/10.1016/j.isprsjprs.2019.02.006
http://doi.org/10.1109/HealthCom.2017.8210843
http://doi.org/10.3390/app10207272
http://doi.org/10.3390/ijgi10030137
http://doi.org/10.3390/ijgi10020080
https://arxiv.org/abs/1508.05326
http://doi.org/10.1016/j.aei.2019.02.009
http://doi.org/10.1371/journal.pone.0217505
http://doi.org/10.1016/j.compenvurbsys.2020.101481
http://doi.org/10.1016/j.isprsjprs.2019.04.017
http://doi.org/10.1016/j.rse.2019.04.014
http://doi.org/10.1109/ICCV.2017.46
http://doi.org/10.1109/CVPR.2017.551
http://doi.org/10.1016/j.isprsjprs.2017.11.008
http://doi.org/10.1016/j.patcog.2019.06.006
http://doi.org/10.1109/ICCV.2017.220
http://doi.org/10.1109/CVPR.2016.350
http://doi.org/10.1007/78-3-319-10602-1_48
http://doi.org/10.1016/j.jth.2019.02.009
http://overpass-turbo.eu/
http://doi.org/10.1109/ICCVW.2019.00109
http://doi.org/10.1109/CVPR.2019.00536


ISPRS Int. J. Geo-Inf. 2021, 10, 561 22 of 22

61. Zhao, R.; Zhan, L.; Yao, M.; Yang, L. A geographically weighted regression model augmented by Geodetector analysis and
principal component analysis for the spatial distribution of PM2.5. Sustain. Cities Soc. 2020, 56, 102106. [CrossRef]

62. Li, X.; Liu, X.; Li, C.Z.; Hu, Z.; Shen, G.Q.; Huang, Z. Foundation pit displacement monitoring and prediction using least squares
support vector machines based on multi-point measurement. Struct. Health Monit. 2019, 18, 715–724. [CrossRef]

63. Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [CrossRef]
64. Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. C 1979, 28, 100–108.

[CrossRef]
65. Babahajiani, P.; Fan, L.; Kämäräinen, J.K.; Gabbouj, M. Urban 3D segmentation and modelling from street view images and

LiDAR point clouds. Mach. Vis. Appl. 2017, 28, 679–694. [CrossRef]
66. Xue, F.; Lu, W.; Webster, C.J.; Chen, K. A derivative-free optimization-based approach for detecting architectural symmetries from

3D point clouds. ISPRS J. Photogramm. Remote Sens. 2019, 148, 32–40. [CrossRef]
67. Wu, Y.; Shang, J.; Xue, F. RegARD: Symmetry-based coarse registration of smartphone’s colorful point clouds with CAD drawings

for low-cost Digital Twin Buildings. Remote Sens. 2021, 13, 1882. [CrossRef]
68. Xue, F.; Wu, L.; Lu, W. Semantic enrichment of building and city information models: A ten-year review. Adv. Eng. Inform. 2021,

47, 101245. [CrossRef]

http://doi.org/10.1016/j.scs.2020.102106
http://doi.org/10.1177/1475921718767935
http://doi.org/10.1016/0169-7439(87)80084-9
http://doi.org/10.2307/2346830
http://doi.org/10.1007/s00138-017-0845-3
http://doi.org/10.1016/j.isprsjprs.2018.12.005
http://doi.org/10.3390/rs13101882
http://doi.org/10.1016/j.aei.2020.101245

	Introduction 
	Background 
	Urban Big Data and Street View Photography 
	Deep Learning-Based Urban Semantic Features 

	Research Methods 
	Study Area and Data Collection 
	The VUCCA Approach 
	Semantic Feature Detection 
	Unsupervised Clustering 
	Analytical Functions 


	Results 
	Semantic Pedestrian Detection 
	Pedestrian Clustering by Where They Stood 
	Pedestrian Query by Instance and Natural Language 
	Semantic Enrichment for OpenStreetMap 

	Discussion 
	Conclusions 
	References

