1	Suppression of ACADM-mediated fatty acid oxidation promotes hepatocellular
2	carcinoma via aberrant Cav1/SREBP-1 signaling
3	
4	Angel P. Y. Ma ¹ , Cherlie L. S. Yeung ¹ , Sze Keong Tey ¹ , Xiaowen Mao ¹ , Samuel W. K. Wong ¹ ,
5	Tung Him Ng ¹ , Frankie C. F. Ko ¹ , Ernest M. L. Kwong ¹ , Alexander H. N. Tang ¹ , Irene Oi-Lin
6	Ng ^{1,2} , Shao Hang Cai ³ , Jing Ping Yun ⁴ , Judy W. P. Yam ^{1,2}
7	
8	¹ Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong,
9	Hong Kong, China.
10	² State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
11	³ Department of Infectious Diseases, Nanfang Hospital, Southern Medical University,
12	Guangzhou, China.
13	⁴ Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
14	
15	Running title
16	Aberrant ACADM-mediated fatty acid oxidation exacerbates HCC
17	
18	Keywords
19	β -oxidation; Cancer cell metabolism; Drug synergism; Lipid metabolism; Liver cancer.

\mathbf{r}	\sim
~	S

21	Corresponding author
22	Name: Judy Wai Ping Yam
23	Address: Room 08-001, Block T, Queen Mary Hospital, Pokfulam Road, Hong Kong, China.
24	Telephone: 852 2255 2681
25	Email: judyyam@pathology.hku.hk
26	
27	Conflict of interest
28	The authors declare no potential conflicts of interest.
29	
30	Word count
31	Abstract: 245, Text: 5280
32	
33	Number of Figures & Tables
34	7 Figures
35	
36	
37	

40

41

42

43

44

45

46

47

48

49

50

51

52

Lipid accumulation exacerbates tumor development, as it fuels the proliferative growth of cancer cells. The role of medium-chain acyl-CoA dehydrogenase (ACADM), an enzyme that catalyses the first step of mitochondrial fatty acid oxidation, in tumor biology remains elusive. Therefore, investigating its mode of dysregulation can shed light on metabolic dependencies in cancer development. In hepatocellular carcinoma (HCC), ACADM was significantly underexpressed, correlating with several aggressive clinicopathological features observed in patients. Functionally, suppression of ACADM promoted HCC cell motility with elevated triglyceride, phospholipid and cellular lipid droplet levels, indicating the tumor suppressive ability of ACADM in HCC. Sterol regulatory element-binding protein-1 (SREBP-1) was identified as a negative transcriptional regulator of ACADM. Subsequently, high levels of caveolin-1 (Cav1) were observed to inhibit fatty acid oxidation, which revealed its role in regulating lipid metabolism. Cav1 expression negatively correlated with ACADM and its upregulation enhanced nuclear accumulation of SREBP-1, resulting in suppressed ACADM activity and contributing to increased HCC cell aggressiveness. Administration of an SREBP-1 inhibitor in combination with sorafenib elicited a synergistic anti-tumor effect and

- 54 significantly reduced HCC tumor growth in vivo. These findings indicate that deregulation of
 - 55 fatty acid oxidation mediated by the Cav1/SREBP-1/ACADM axis results in HCC progression,
 - 56 which implicates targeting fatty acid metabolism to improve HCC treatment.

58

59 Statement of Significance

- This study identifies tumor suppressive effects of ACADM in hepatocellular carcinoma and
 suggests promotion of β-oxidation to diminish fatty acid availability to cancer cells could be
 used as a therapeutic strategy.
- 63
- 64

65 Introduction

Primary liver cancer is one of the top leading cause of cancer-related deaths worldwide (1).
Among the different types, hepatocellular carcinoma (HCC) is the most common type
accounting for approximately 90% of the cases, with its incidence rate higher in developing
countries. The administration of vaccines against hepatitis B virus in newborns has contributed
to the decline of cancer incidence and mortality in Asia (2), however an increasing trend is
being observed in Western countries (3) along with the rise of non-viral HCC cases.

72

73 The alterations in fatty acid metabolism are increasingly recognised for their role in inducing 74 carcinogenesis. In rapidly proliferating cancer cells, carbons are hijacked from energy 75 production to synthesise fatty acids, which can be sourced either exogenously or from *de novo*

76	synthesis (4). Current literature cannot confirm whether the upregulation or downregulation of
77	fatty acid oxidation (β -oxidation) contributes to HCC tumourigenesis, which may be due to the
78	tumour heterogeneity nature of HCC. The expression of many β -oxidation-related genes was
79	found to vary significantly between different patients (5). The upregulation of hypoxia
80	inducible factor-1 α inhibited β -oxidation, resulting in decreased reactive oxygen species and
81	increased glycolysis to further facilitate HCC development (6). The evidence highlights the
82	significant potential of targeting β -oxidation to treat HCC.
83	
84	Medium-chain acyl-CoA dehydrogenase (ACADM) catalyses the first step of β -oxidation and
85	is responsible for the breakdown of medium-chain fatty acids in the mitochondria. Medium-
86	chain acyl-CoA dehydrogenase deficiency, caused by mutations in the ACADM gene, is the
87	most common inherited metabolic disorder in Caucasians and thus signifying the profound
88	influence of ACADM in metabolic diseases (7). Alteration of ACADM expression is found in
89	subjects with cardiovascular, metabolic and non-alcoholic fatty liver diseases (8-10). However,
90	the role of ACADM in human cancers has not been thoroughly studied. To our knowledge, the
91	only functional study of ACADM performed in hepatoma cells was carried out where ACADM
92	knockdown enhanced tumour growth (6). The regulation of ACADM expression has not been
93	fully defined in other cancers (6,11-13), and little is known regarding this enzyme and HCC in
94	literature.

96	This study aims to unravel the mechanisms involved with aberrant lipid metabolism and to
97	define novel biomarkers of HCC progression. The results presented here provide innovative
98	insights into the dysregulation of ACADM-mediated β -oxidation by oncogenic Caveolin-1
99	(Cav1) and sterol regulatory element-binding protein-1 (SREBP-1) to facilitate cancer
100	development in HCC. With ACADM being a critical functional component in promoting β -
101	oxidation, the establishment of its tumour suppressor role indicates its promising potential as a
102	biomarker for HCC proliferation and metastasis. The mode of interplay between ACADM,
103	SREBP-1 and Cav1 inspired an enhanced synergised treatment model which will not only
104	benefit HCC patients, but also for treating other diseases arising from metabolic disorders.
105	

107 Materials and Methods

108 *Patient samples*

Fifty pairs of human HCC and their corresponding non-tumourous samples were obtained during surgical resections from patients at Queen Mary Hospital (QMH), Hong Kong and were selected for analysing ACADM mRNA expression in this study. Paraffin-embedded HCC specimens were obtained from the archives of the Department of Pathology, Sun Yat-sen University Cancer Center (SYSUCC), Guangzhou, China. The patients neither received any

115	from all the patients. The use of human samples was approved by the Institutional Review
116	Board of The University of Hong Kong/Hospital Authority Hong Kong West Cluster (HKU/HA
117	HKW IRB) and the Institute Research Medical Ethics Committee of SYSUCC.
118	
119	Tissue microarray
120	The tissue microarray slides were constructed using paired HCC and adjacent non-tumourous
121	liver tissues. First, the marked areas on each sample were punched with the MiniCore®
122	Excilone (MiniCore, U.K.) to yield tissue cores of 0.6 mm in diameter. Samples were then re-
123	embedded, fixed with 4% paraformaldehyde before embedding in paraffin wax. Subsequently,
124	the paraffin-embedded sections were cut into 4 μ m-thick slices and mounted onto glass slides.
125	After dewaxing, the slides were treated with 3% hydrogen peroxide in methanol and blocked
126	using a biotin-blocking kit (DAKO, Germany). The slides were incubated with primary
127	antibodies after blocking: ACADM (Abcam Cat# ab92461, RRID:AB_10563530) at 1:600
128	dilution for 50 minutes and SREBP-1 (Santa Cruz Biotechnology Cat# sc-13551,
129	RRID:AB_628282) at 1:25 dilution overnight at 4°C. The slides were washed three times with
130	$1 \times PBS$ before incubation with the biotinylated secondary antibodies for 1 hour, then the slides
131	were stained with 3, 3'-diaminobenzidine tetrahydrochloride in solution (DAKO). Finally, the
132	slides were counterstained with Mayer's haematoxylin and observed under a microscope for

chemotherapy nor radiotherapy prior to the surgery. Informed written consent was obtained

analysis.

135	The stained samples were quantified without prior knowledge of corresponding patients'
136	clinicopathological data. To quantify ACADM expression, each specimen was individually
137	scored as 0 for negative, 1 for weak positive, 2 for moderate positive and 3 for strong positive.
138	The proportion of positive-stained cells in total tumour cells was in percentages of 0, 50%,
139	80% and 100%. The histoscore (H-score) was calculated by multiplying the percentage of
140	positive cells with the score of intensity, giving a range of 0 to 300. To assess the nuclear
141	immunoreactivity of SREBP-1, the percentage and intensity of nuclear signal were scored.
142	
143	Cell cultures
144	The human HCC cell lines used in this study were either purchased from the American Type
145	Culture Collection (Manassas, VA, USA) (Hep3B (ATCC Cat# HB-8064, RRID:CVCL_0326)
146	and PLC/PRF/5 (ATCC Cat# CRL-8024, RRID:CVCL_0485)) or were sourced from the
147	Cancer Institute, Fudan University, China (LM3 (RRID:CVCL_6832) and MHCC97L
148	(RRID:CVCL_4973)), the Japanese Collection of Research Bioresources (Huh7 (JCRB Cat#
149	JCRB0403, RRID:CVCL_0336) and HLE (JCRB Cat# JCRB0404, RRID:CVCL_1281)) and
150	from Jayanta Roy-Chowdhury, Albert Einstein College of Medicine, New York (MIHA
151	(RRID:CVCL_SA11)). All cell lines were cultured in Dulbecco's Modified Eagle Medium,

High Glucose supplemented with 10% fetal bovine serum (FBS) (Gibco), with the medium's
final pH adjusted to 7. Cell cultures were kept in humidified incubators maintained at 37°C
with 5% CO₂. Mycoplasma detection in cell cultures were carried out by PCR screening with
primers Myco5 and Myco3 (Supplementary Table 1). Cell line authentication was performed
by short tandem repeat DNA profiling (Bio-Gene).

- 157
- 158 *Stable cell lines and expression constructs*

To establish stable knockdown cells of Cav1 and ACADM, MISSIONTM short hairpin RNAs 159 (shRNA) targeting Cav1 and ACADM and non-target control (CTL) were purchased from 160 Sigma-Aldrich. To establish double knockdown cells of Cav1 and ACADM, shRNA targeting 161 162 ACADM was subcloned into pLKO.1-Blast vector (RRID:Addgene 26655) via AgeI and EcoRI sites. To establish ACADM knockout in murine cells, single guide RNAs (sgRNA) 163 targeting murine ACADM and the control sgRNAs (Integrated DNA Technologies) were 164 synthesised and subcloned into the pX330-U6-Chimeric BB-CBh-hSpCas9 vector 165 (RRID:Addgene 42230). The sequences of oligos used in the study are provided in 166 Supplementary Table 1. For stable overexpression of SREBP-1 cells, the human open reading 167 frame (ORF) cDNA of SREBP-1 was purchased from Sino Biological (Cat. No. HG17512-168 UT). The plasmids were subjected to DNA sequencing carried out by the Centre for Genomic 169 Sciences, HKU, to confirm the correct orientation and sequence of the insert in the plasmid. 170

171	Expression constructs were transfected into 293FT cells (ATCC Cat# PTA-5077,
172	RRID:CVCL_6911) using the GeneCopoeia Lenti-Pac [™] HIV expression packaging system;
173	detailed procedures are described elsewhere (14).
174	
175	Lipid detection assays
176	The EnzyChrom TM Triglyceride Assay Kit and Phospholipid Assay Kit (BioAssay Systems)

177 were used to detect the level of triglycerides and phospholipids in cells. The manufacturer's

178 protocol was followed, the experiments were done in triplicates and 1×10^6 cells were used per

sample per well. Total cell lysate was used for sample normalisation.

180

181 Nile Red is a phenoxazone dye used to detect intracellular lipid droplets. Cells were prepared 182 as follows: a clean coverslip was placed into a 6-well plate. An optimal number of cells was seeded into the well and incubated overnight at 37°C. The cells were gently rinsed with 1× PBS 183 before fixing with 4% paraformaldehyde, staining with Nile Red (10 µg/ml, Sigma-Aldrich), 184 then counterstaining with DAPI (Invitrogen). The coverslips were carefully mounted onto a 185 clean glass slide with mounting medium (Vectashield). Cells were then visualised with confocal 186 microscopy (Carl Zeiss LSM-700). Quantification of the signals was performed with the 187 ImageJ software (ImageJ, RRID:SCR 003070) by normalising the Nile Red signal intensity 188 with the DAPI signal, the latter of which indicate the nuclear staining level of the cells. 189

191	Oil Red O (Sigma) is a lysochrome diazo dye used for staining neutral triglycerides and lipids
192	on frozen tissue sections. Briefly, fresh frozen tissue was cut into 5-10 μ m thick sections and
193	mounted on slides. The slides were then air-dried, fixed in ice-cold 10% formaldehyde, rinsed
194	in distilled water and allowed to air-dry again before being placed in absolute propylene glycol
195	to avoid carrying water into the Oil Red O. The staining was performed in pre-warmed Oil Red
196	O solution, then differentiated in 85% propylene glycol solution. The slides were rinsed in
197	distilled water, stained with haematoxylin, washed thoroughly under running tap water, placed
198	in distilled water, then finally mounted with mounting medium.
199	
200	Chromatin immunoprecipitation (ChIP)
201	The EpiQuik [™] Chromatin Immunoprecipitation Kit (Epigenetik) was used to determine the
202	interaction between SREBP-1 and the endogenous promoter of ACADM. The manufacturer's
203	protocol was followed and PCR was performed to observe for any protein-DNA interactions.
204	The sequences of primers ACADM-540F and ACADM+41R flanking the SREBP-1 binding
205	
	site, and the primers ACADM-1450-F and ACADM-950-R flanking the -1450 to -950 region
206	site, and the primers ACADM-1450-F and ACADM-950-R flanking the -1450 to -950 region of the ACADM promoter are shown in Supplementary Table 1.

²⁰⁸ Hydrodynamic injection in FVB/N mice

209	The hydrodynamic tail vein injection was employed to induce transfection of foreign DNA
210	inside the livers of mice. The following plasmids were used in this study: pT3-EF1-NRAS,
211	pX330-TP53, Sleeping Beauty (SB) transposon and ACADM-KO. Plasmids were amplified
212	using the GenElute TM HP Endotoxin-Free Plasmid Maxiprep Kit (Sigma) according to the
213	manufacturer's protocol. To prepare the plasmid solution for injection, 20 μ g of each oncogene
214	and 1.6 μg of SB transposon were used for each mouse. The plasmids were added to $1\times$ PBS
215	resulting in a total volume of 2 ml per mouse. The plasmid solution was then filtered through
216	a 0.22 µm filter before use.

Immunocompetent male 6-week-old FVB/N mice (MGI Cat# 3528175, RRID:MGI:3528175)
were selected for this procedure. Each mouse was placed in a mouse restrainer, then its tail was
swabbed with 70% ethanol prior to injection. The plasmid solution was injected via the tail
vein within 5-8 seconds. The mouse was then returned to its cage. Mouse weight was recorded
biweekly until the mouse has reached its humane endpoint, at which point the liver was
harvested and fixed in 10% formaldehyde for immunohistochemical staining. Antibodies used
in this study are listed in Supplementary Table 2.

225

226 Drug treatment of cells

Etomoxir (ETO), an irreversible carnitine palmitoyl transferase 1 (CPT1)-specific inhibitor

which inhibits fatty acid entry into the mitochondrial matrix for β-oxidation, was used to treat
MHCC97L Cav1 knockdown cells. Cells were incubated with 100 µM of ETO (Cayman
Chemical) in the culture medium for 48 hours before being subjected to further experiments.

231

232 Subcutaneous injection and drug treatment of nude mice

Male BALB/cAnN-nu (Nude) mice of approximately 4-5 weeks of age were selected for 233 subcutaneous implantation of HCC cells to observe their tumourigenic ability. Various stably-234 transfected HCC cell lines were subcutaneously injected into the flank of mice, with the optimal 235 cell number of each cell line suspended in 100 µl of either 1× PBS or Matrigel per injection. 236 The tumour sizes were measured using a calliper and monitored at the indicated time points 237 238 throughout the experiment, with the tumour volume calculated with the formula: 1/2 (largest diameter) \times (smallest diameter)². At the experimental endpoint, the mice were sacrificed before 239 tumours were excised and weighed. 240

241

For drug treatment, subcutaneous xenografts of 5×10^6 MHCC97L cells were injected into 4week-old nude mice. When the tumours reached 5 mm in diameter, mice were randomly assigned to one of four groups and drugs were administered in the following combinations: (1) vehicle, (2) eicosapentaenoic acid (EPA) (200 mg/kg), (3) sorafenib (30 mg/kg), and (4) EPA + sorafenib. Both drugs were fed to mice via oral gavage in volumes of 100 µl, with sorafenib

247	fed daily for 21 days and EPA fed every other day for 10 days. Mouse weights and tumour sizes
248	were recorded daily. At the experimental endpoint, the tumours were excised and weighed.
249	
250	All mice in this study were fed with standard chow and raised in individually ventilated cages
251	equipped with local woodchip for bedding. All experiments involving live animals were
252	performed according to the Animals (Control of Experiments) Ordinance (Hong Kong), and
253	the Institute's guidance from Laboratory Animal Unit on animal experimentation was strictly
254	followed.
255	
256	Clinicopathological correlation and statistical analysis
257	For the genes investigated in this study, their mRNA levels were correlated to various
258	clinicopathological parameters in HCC patients using IBM SPSS statistics 20 (SPSS,
259	RRID:SCR_002865). The parameters were determined and analysed by clinical pathologists
260	upon surgical resection. Student's t-test, Kaplan-Meier analysis, log-rank test, Chi-squared test
261	and Mann-Whitley U test were incorporated into the statistical analyses of data. All other
262	statistical analyses were performed by GraphPad Prism 7 (GraphPad Prism,
263	RRID:SCR_002798) where Student's t-test was used for the functional <i>in vitro</i> assays unless
264	otherwise stated. $P < 0.05$ was considered as statistically significant.

Clinical significance of ACADM downregulation in HCC

269	The mRNA expression of ACADM was analysed in 50 paired cases of HCC and their
270	corresponding non-tumourous tissues from the QMH cohort. It was observed that ACADM
271	was underexpressed in 64% (32/50) of HCC cases (Fig. 1A). The overall ACADM level was
272	significantly lower in tumourous versus non-tumourous tissues; ACADM expression data from
273	The Cancer Genome Atlas (TCGA) database also revealed a significant decrease in ACADM
274	expression in tumourous samples (Fig. 1B). ACADM expression was found to be reduced with
275	further HCC progression (Fig. 1C); its underexpression significantly correlated with the
276	aggressive pathological features such as bigger tumour size, presence of venous invasion,
277	advanced HCC tumour stage and poor cell differentiation (Fig. 1D & Supplementary Table 3).
278	Receiver operating characteristic curves indicate the significant discrimination of ACADM
279	expression between non-tumourous and early stage, but not between early and late stage HCC
280	(Supplementary Fig. 1A-1B). Furthermore, ACADM expression was analysed in the SYSUCC
281	cohort using tissue microarray. Immunohistochemical staining of ACADM protein expression
282	in paired HCC tissues was scored as strong (45/51) and moderate (6/51) positive in 100% of
283	non-tumourous liver tissues, when compared to strong and moderate positive in 52.9% (27/51)
284	of tumourous tissues. Weak positive and negative were observed in 47.1% (24/51) of

285	tumourous tissues (Fig. 1E). Among 51 cases, ACADM was downregulated in 86.3% (44/51)
286	of HCC tumours when compared to the adjacent non-tumourous liver tissues (Fig. 1F).
287	Together, these findings indicate that the reduced ACADM level in tumourous tissues could be
288	a valuable biomarker of HCC.
289	
290	ACADM knockdown enhances cell aggressiveness in HCC
291	To functionally characterise ACADM in HCC, it was suppressed in non-metastatic Huh7 cells.
292	Stable non-target control and ACADM knockdown clones (shACADM; sh61 and sh65) were
293	established and verified with western blot (Fig. 2A). ACADM knockdown enhanced cellular
294	lipid content, triglycerides and phospholipids in shACADM compared to the shCTL cells (Fig.
295	2B), with similar results observed in immortalised normal liver cell line MIHA (Supplementary
296	Fig. 2A-2B). As reflected by the cellular respiration rate, shACADM cells displayed reduced
297	fatty acid oxidation when compared to shCTL cells (Fig. 2C). Fatty acid profiling revealed the
298	overall increase in fatty acids in shACADM cells, with the same being observed in both
299	palmitic acid and oleic acid levels (Fig. 2D). The abundance of other saturated and unsaturated
300	fatty acids was found to be elevated in shACADM cells compared to shCTL (Supplementary
301	Fig. 3A-3B). Diminution of ACADM in Huh7 and MIHA cells significantly encouraged cell
302	growth, anchorage independent growth, migration and invasiveness of the shACADM cells,
303	indicating their enhanced cell aggressiveness compared to the shCTL (Fig. 2E and

304	Supplementary Fig. 4A-4B). The tumour development rate significantly increased in
305	subcutaneous xenografts derived from shACADM cells (Fig. 2F), with immunohistochemical
306	staining indicating the higher proliferation rate of shACADM cells compared to the shCTL
307	(Fig. 2G).

309 The oncogenic effect of ACADM knockdown was further analysed by hydrodynamic injection mouse model. ACADM expression was found to correlate to NRAS/p53 gene alterations 310 according to the TCGA database (Supplementary Fig. 5A). The establishment of the ACADM-311 KO plasmids (ACADM-KO1 and ACADM-KO2) were confirmed in murine NIH3T3 cells 312 with western blot (Supplementary Fig. 5B). Plasmids used in the experiment and the 313 314 approximate timeline of actions were depicted, with the mice split into three groups to observe 315 the effect of different oncogenic plasmid combinations on HCC development (Fig. 2H). At 316 week 4 post-injection, larger tumours were formed in mice injected with the N-RasV12, p53and ACADM-KO plasmids versus mice without ACADM-KO plasmid (Supplementary Fig. 317 5C). At the end of the experiment, it was observed that injection with ACADM-KO plasmid 318 319 resulted in significantly more tumour formation and larger tumour sizes compared to either the 320 control group or the mice only injected with RasV12 and p53-KO plasmids (Fig. 2H). Nevertheless, significant differences were not observed between the end-point liver weight, 321 liver:body weight ratio and mouse weight of mice injected with RasV12 and p53-KO plasmids 322

323	with or without ACADM-KO plasmid (Supplementary Fig. 5D). Immunohistochemical
324	staining of the excised livers revealed the ACADM knockout expression and N-Ras
325	overexpression in mice that received injection of ACADM-KO and RasV12 plasmids (Fig. 2I).
326	The expression of p53 was not detected in the normal liver; in mice injected with p53-KO
327	plasmid, p53 was not detected in tumour cells but observed in adjacent lymphoid cells
328	suggesting the successful knockout of p53 in tumours.

330 SREBP-1 is the direct upstream regulator of ACADM in HCC

To determine how ACADM is regulated in HCC, the activity of ACADM promoter in cells was 331 investigated. Submitting the ACADM promoter sequence to MatInspector (Genomatrix) 332 333 revealed two putative transcription factor binding sites upstream of the ACADM transcription site, peroxisome proliferator response element (PPRE) and sterol regulatory element (SRE). To 334 335 confirm whether these two sites play a significant role in regulating ACADM transcription, both sites were mutated. In MHCC97L cells, high ACADM promoter activity was observed for 336 the SRE-mutant versus the wildtype ACADM promoter (-1450), with the non-significance 337 between the PPRE-mutant and the wildtype promoter. SRE is the binding site of SREBP-1; RT-338 339 qPCR using primers flanking SRE but not primers amplifying unrelated region of ACADM 340 promoter revealed the increased copy number of ACADM promoter fragments pulled down by anti-SREBP-1 antibody in MHCC97L cells (Fig. 3A). These findings suggested that SREBP-341

344 Inversely correlated expressions of SREBP-1 and ACADM in HCC

345	To determine the clinical relevance of SREBP-1 and ACADM in HCC, we examined their			
346	expressions in a cohort of HCC tissues from SYSUCC ($n = 41$). The SREBP-1 expression was			
347	inversely correlated with ACADM expression with significance; in cases with SREBP-1			
348	overexpression, reduced levels of ACADM were detected in tumourous tissues (Fig. 3B). In			
349	tissue microarray comprising of 46 HCC specimens, strong and moderate positive staining of			
350	SREBP-1 were detected in 41.3% (19/46) of tumourous tissues while only weak positive and			
351	negative were detected in non-tumourous tissues (Fig. 3C; Supplementary Fig. 6). The nuclear			
352	immunoreactivity of SREBP-1 was significantly higher in tumourous tissues as indicated by			
353	the higher H-score. The overall SREBP-1 expression was higher in tumourous tissues when			
354	compared to non-tumourous tissues, and SREBP-1 overexpression was found in 56.5% (26/46)			
355	of the cases (Fig. 3C). These data established the association between ACADM			
356	underexpression and SREBP-1 upregulation in human HCC.			

357

358 *Cav1 enhances SREBP-1 nuclear accumulation to suppress ACADM*

359 Since SREBP-1 has previously been reported to interact with Cav1 in other diseases (15,16),

this warrants further investigation into their interplay in HCC. It was revealed that the ACADM

361	promoter activity was significantly elevated in shCav1 cells (Fig. 3D). It was observed that a
362	lower Cav1 level prevented the nuclear accumulation of SREBP-1 and enhanced ACADM
363	expression in MHCC97L shCav1 cells, with treatment of filipin, a Cav1 inhibitor (17), inducing
364	the same effect in MHCC97L shCTL cells (Fig. 3E). The results implicate that Cav1 facilitates
365	nuclear accumulation of SREBP-1 leading to the negative transcriptional regulation of
366	ACADM. Restoration of SREBP-1 in MHCC97L shCav1 cells reduced ACADM expression
367	(Fig. 3F). Conversely, knockdown of SREBP-1 upregulated ACADM level in MHCC97L cells
368	(Fig. 3G). Our data also showed that Cav1 interacted with full-length SREBP-1 in MHCC97L
369	cells, implicating the potential role of Cav1 to mediate the maturation and nuclear accumulation
370	of SREBP-1 (Supplementary Fig. 7). Further investigation will be needed to delineate how
371	Cav1 regulates the activation of SREBP-1 leading to ACADM downregulation.
372	

373 *Cav1 promotes HCC progression in part by modulating* β *-oxidation*

Literature has revealed the emerging roles of Cav1 in cancer metabolism (18-20). However, its mode of action remains unclear, especially in cancer. To investigate the prospective role of Cav1 in β -oxidation, an examination of the effect of Cav1 on cellular lipid levels was conducted in metastatic MHCC97L cells. First, stable non-target control (shCTL) and Cav1 knockdown (shCav1) clones were established (Fig. 4A). The knockdown of Cav1 significantly reduced the cellular triglycerides, phospholipids and lipid accumulation levels compared to the shCTL cells

380	(Fig. 4B). The oxygen consumption rate increased in shCav1 cells, indicating the increase in
381	β -oxidation compared to the shCTL (Fig. 4C). The same effects were observed in non-
382	metastatic Hep3B cells (Supplementary Fig. 8A-8C), suggesting that Cav1 can downregulate
383	β-oxidation.
384	
385	Cav1 enhances HCC cell aggressiveness by suppressing β -oxidation
386	Since Cav1 exerts potent effects in driving HCC tumourigenesis and metastasis, it is intriguing
387	whether an alteration in β -oxidation contributes to the oncogenic properties of Cav1. Etomoxir
388	(ETO) treatment inhibited fatty acid breakdown and resulted in the restoration of triglycerides,
389	phospholipids and lipid droplets in shCav1 cells (Fig. 4D). Cav1 knockdown significantly
390	diminished the proliferation rate, anchorage-independent growth, migration and invasiveness
391	of MHCC97L cells; however, such diminishment was partly restored in shCav1 cells treated
392	with ETO (Fig. 4E), with the same effect observed in Hep3B cells (Supplementary Fig. 8D).
393	The cell aggressiveness was also augmented in nude mice intraperitoneally injected with ETO,
394	with immunohistochemistry indicative of the Cav1 expression and Oil Red O staining revealing
395	the build-up of oil droplets in shCav1 tumours treated with ETO compared to the non-treated
396	tumours (Fig. 4F). To demonstrate the functional interaction between Cav1 and SREBP-1,
397	SREBP-1 was overexpressed in MHCC97L Cav1 knockdown cells; the enhancement of fatty
398	acid oxidation in shCav1 cells was suppressed by SREBP-1 overexpression (Fig. 4G).

Functionally, the reduced promoting function of Cav1 was rescued by overexpressing SREBP1 in shCav1 cells; these cells displayed increased anchorage independent growth, cell migration
and invasion (Fig. 4H).

402

403 Negative correlation between Cav1 and ACADM

To investigate whether Cav1 correlates with ACADM in HCC, their mRNA and protein 404 expression levels were analysed. In the HCC cell line panel, ACADM and Cav1 expressions 405 were found to be negatively correlated (Fig. 5A & 5B). Immunohistochemistry revealed the 406 alternated expressions of Cav1 and ACADM in tumours derived from MHCC97L cells 407 implanted into the mouse liver (Fig. 5C). The enhanced transcriptional and protein levels of 408 409 ACADM were also validated in both Hep3B and MHCC97L shCav1 cells (Fig. 5D & 5E). The 410 mRNA expressions of ACADM and Cav1 in 25 paired clinical samples of HCC and non-411 tumourous tissues from QMH were determined; consistent with their association observed in cell lines, their negative correlation was also observed to be significant in data obtained from 412 the TCGA database (Fig. 5F). 413

414

415 Suppression of ACADM in shCav1 cells restores HCC aggressiveness

416 To validate whether Cav1 mediates β -oxidation via ACADM in HCC, ACADM was suppressed

417 in shCav1 MHCC97L and Hep3B cells to recapitulate the functional effect of Cav1

418	overexpression (Fig. 6A). The resulting effects were that the levels of triglycerides,
419	phospholipids, intracellular lipid contents as well as fatty acid oxidation were elevated in
420	double knockdown cells of Cav1 and ACADM (shCav1/sh61 and shCav1/sh65) (Fig. 6B-6D).
421	The enhancement of HCC anchorage independent growth, cell growth and motility were also
422	observed in the double knockdown cells compared to the shCav1 cells (Fig. 6E - 6G). The same
423	effect was observed in animal models, with the shCav1/sh61 tumours proliferating much
424	quicker than the shCav1 only tumours (Fig. 6H); immunohistochemical staining revealed the
425	darker staining of CD31 and Ki67 in shCav1/sh61 tumours, highlighting the elevated
426	angiogenesis and cell proliferation rates compared to the shCav1 only cells (Fig. 6I).

428 SREBP-1 antagonist enhances the efficacy of sorafenib and suppresses HCC development

429 Based on the *in vitro* findings, we hypothesised that the inhibition of fatty acid synthesis genes 430 can potentially inhibit the proliferation of cancer cells. EPA was found to inhibit the maturation of SREBP-1 protein in hepatocytes (21). Reduction of activated SREBP-1 was observed in 431 MHCC97L cells after EPA treatment (Fig. 7A). The therapeutic effect of EPA alone and in 432 combination with sorafenib was investigated in MHCC97L subcutaneous xenograft mouse 433 model (Fig. 7B). The significant efficacy enhancement of the combinational treatment of 434 sorafenib with EPA to suppress HCC growth was observed (Fig. 7C). Significant reductions in 435 tumour volume and weight were also observed in the combinational treatment group compared 436

437	to single administrations of either drug (Fig. 7D). Animals treated with drugs did not reveal
438	significant weight loss when compared to animals of other groups (Supplementary Fig. 9).
439	Tumours treated with EPA alone or in combination with sorafenib resulted in the decrease in
440	SREPB-1 and increase in ACADM expressions (Fig. 7E). Tumours formed in mice which
441	received the combined treatment showed the least Ki67 staining among the four experimental
442	groups.
443	
444	
445	Discussion
446	Despite a previous report of using Hep3B cells to investigate the role of ACADM in tumour
447	growth (6), the demonstration of its role in HCC metastasis is still deficient. In this study,
448	ACADM knockdown remarkably enhanced lipid accumulation and cell aggressiveness in vitro,
449	while ACADM knockout modulated the tumour growth in mice, suggesting that the loss of
450	ACADM augmented HCC aggressiveness and that ACADM is a functional component in
451	promoting β -oxidation. Although a non-significant difference in ACADM expression between
452	HCC lesions and adjacent normal tissues was previously reported (6), our data showed that
453	ACADM was underexpressed in the vast majority of HCC patients. Altogether, the results
454	highlighted ACADM's potential as a valuable biomarker during HCC development.

456	The mutation of the SRE binding site, which substantially boosted ACADM expression in HCC
457	cells, suggested that genes binding to SRE are responsible for controlling ACADM expression.
458	SRE is the transcription factor binding site of SREBPs, which are cholesterol sensors located
459	in the endoplasmic reticulum (ER) that regulate intracellular cholesterol (22) and fatty acid
460	synthesis (23). SREBP-1c is one of the three isoforms of SREBPs that is mainly found in the
461	liver, muscles and fat tissues (24). In cancer cells, the frequent overexpression of SREBPs
462	resulted in the accumulation of lipids to enhance cell proliferation rate (25). In this study, the
463	previously unprecedented suppression of ACADM by SREBP-1 prevented β -oxidation,
464	leading to further lipid accumulation to fuel cancer growth; our observation corroborates with
465	other findings that SREBP-1 overexpression can suppress various lipid oxidation genes in
466	bovine hepatocytes (26,27).

The precursor form of SREBP-1 resides in the ER; upregulation of SREBP-1 leads to lipid accumulation in normal hepatic and hepatoma cells under ER stress (28). Though normally localised to the plasma membrane, Cav1 has been shown to accumulate in the ER which causes the protein to be targeted to lipid droplets (29), therefore it is possible for Cav1 to interact with the precursor of SREBP-1 in the ER. Although previously reported to interact with each other in other cancers, the interplay of SREBP-1 and Cav1 remained ambiguous in HCC. Here, Cav1 was revealed to be a positive regulator of SREBP-1 by acting upstream to modulate SREBP-1 expression in HCC. The overexpression of SREBP-1 in Cav1 knockdown cells did not affect
Cav1 expression, but restored their cell aggressiveness, which confirmed the positive
correlation between these two genes. However, how Cav1 facilitates SREBP-1 nuclear
accumulation remains unclear. The transcriptional increase in ACADM expression was
detected upon the knockdown of Cav1. Pooling together these results, they indicate that Cav1
can modulate fatty acid metabolism via the activation of SREBP-1 to suppress ACADM in
HCC.

482

The oncogenic role of Cav1 in cancer has been well established; it is an important factor 483 involved in tumourigenesis and progression of many cancers, but with context dependent 484 485 functions. Our previous study demonstrated the definitive role of Cav1 in HCC metastasis, also revealing the dramatic expression of Cav1 in metastatic HCC cells (14). The upregulation of 486 Cav1 associated with the presence of C-terminal truncated HBx in HCC, which activates the 487 transcription of Cav1 with significant functional impact on HCC tumourigenesis (30). Based 488 on the knowledge that metastasis is a prominent feature in the advanced stage of HCC and that 489 Cav1 is a potent metastasis promoter, the role of ACADM as an effector of Cav1 was explored. 490 Compared to other β -oxidation genes, ACADM was of particular interest due to how its 491 oxidation target, medium-chain fatty acids (C6 - C12), has the ability to diffuse unaided into 492 the mitochondria as opposed to longer-chain fatty acids which have to be imported by CPT1; 493

494	this is due to the increased solubility of shorter-chain fatty acids into the mitochondrial
495	membrane (31). This diversion from the carnitine shuttle may reveal a previously unrecognised
496	pathway that bypasses CPT1 to regulate β -oxidation. We speculated that Cav1 regulates β -
497	oxidation by inhibiting ACADM expression, which was proven by the negative correlation of
498	Cav1 and ACADM in HCC cellular models, animal models and patient biopsies.

As a routine medication used to treat unresectable HCC, sorafenib is an important multikinase 500 501 inhibitor drug which is also applied for the treatment of several other types of cancers, although its effect on prolonging the survival of patients for only a few months leaves a lot to be desired. 502 From previous reports, it can be theorised that by targeting SREBP1 activity, it will inhibit the 503 504 expression of fatty acid synthesis genes which can potentially inhibit the proliferation of cancer 505 cells. EPA is a major component of ω -3 polyunsaturated fatty acids which can enhance fatty 506 acid oxidation and reduce *de novo* lipogenesis by modulating transcription factors to inhibit 507 SREBP-1 nuclear translocation (32,33); it has previously been shown to inhibit SREBP-1 activity by inhibiting its nuclear translocation in hepatocytes (21,34). In normal cells, the 508 overabundance of unsaturated fatty acids triggers a negative feedback loop, which suppresses 509 510 SREBP-1c expression to prevent excessive lipid accumulation (35). The administration of EPA in combination with another omega-3 fatty acid, docosahexaenoic acid (DHA), have been 511 shown to alleviate illness and to promote general good health in mice (36), with the enhanced 512

513	protective effect of EPA over DHA highlighted (37). Here, we showed that the combinational
514	treatment of EPA and sorafenib markedly suppressed the growth of MHCC97L subcutaneous
515	xenografts when compared to treatments with either drug alone. This phenomenon can be
516	attributed to the broad-spectrum protein kinase inhibitor activity of EPA previously observed
517	in both prostate and breast cancers (38,39), which further enhanced the multikinase inhibitor
518	and anti-tumour properties of sorafenib. Therefore, our data indicates the immense potential of
519	the co-administration of EPA and sorafenib in slowing down HCC progression to provide a
520	better prognosis for patients.
521	
522	In conclusion, this study has revealed the mode of ACADM-mediated fatty acid oxidation in
523	HCC and how its dysregulation led to the increase in fatty acid availability for promoting the
524	proliferation and metastatic abilities of HCC cells (Fig. 7F). We highlighted the critical function
525	of ACADM as a tumour suppressor in its role of modulating fatty acid metabolism to inhibit
526	tumourigenesis and HCC development, which indicate its potential as a biomarker for HCC
527	proliferation and metastasis. Our data delineated the novel Cav1/SREBP-1/ACADM axis in
528	the regulation of fatty acid oxidation in HCC, and revealed the immense therapeutic potential
529	of suppressing SREBP-1 activity to synergise sorafenib potency in treating HCC. All in all, this
530	study has contributed to a better understanding of the mechanistic pathways that shape the
531	dysregulation of fatty acid metabolism in HCC, which will be beneficial to the advancement

533	cancer development.				
534					
535					
536	Acknowledgements				
537	This worl	k is supported by the Hong Kong Research Grants Council, General Research Fund			
538	(Project number: 17100418) and the University Research Committee, Seed Fund for Basic				
539	Research (Project number: 201711159021). IOL is Loke Yew Professor in Pathology. We				
540	would like to thank Dr Rakesh Sharma at the Proteomics and Metabolomics Core Facility, LKS				
541	Faculty of Medicine, HKU for conducting the fatty acid profiling. Imaging data were acquired				
542	using equipment maintained by the Imaging and Flow Cytometry Core, Center for PanorOmic				
543	Sciences, LKS Faculty of Medicine, HKU.				
544					
545					
546	References				
547	1. Bray	F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics			
548	2018	: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in			
549	185 0	countries. CA: a cancer journal for clinicians 2018;68:394-424			
550	2. Chen	W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China,			

of targeted therapies for cancer patients, since tumour metabolism plays such a key role in

551		2015. CA: a cancer journal for clinicians 2016 ;66:115-32
552	3.	Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: a cancer journal for
553		clinicians 2019 ;69:7-34
554	4.	Medes G, Thomas A, Weinhouse S. Metabolism of neoplastic tissue. IV. A study of lipid
555		synthesis in neoplastic tissue slices in vitro. Cancer research 1953;13:27-9
556	5.	Björnson E, Mukhopadhyay B, Asplund A, Pristovsek N, Cinar R, Romeo S, et al.
557		Stratification of Hepatocellular Carcinoma Patients Based on Acetate Utilization. Cell
558		reports 2015 ;13:2014-26
559	6.	Huang D, Li T, Li X, Zhang L, Sun L, He X, et al. HIF-1-Mediated Suppression of Acyl-
560		CoA Dehydrogenases and Fatty Acid Oxidation Is Critical for Cancer Progression. Cell
561		reports 2014 ;8:1930-42
562	7.	Oerton J, Khalid JM, Besley G, Dalton RN, Downing M, Green A, et al. Newborn
563		screening for medium chain acyl-CoA dehydrogenase deficiency in England: prevalence,
564		predictive value and test validity based on 1.5 million screened babies. J Med Screen
565		2011 ;18:173-81
566	8.	Van Berendoncks AM, Garnier A, Beckers P, Hoymans VY, Possemiers N, Fortin D, et
567		al. Exercise training reverses adiponectin resistance in skeletal muscle of patients with
568		chronic heart failure. Heart (British Cardiac Society) 2011;97:1403-9
569	9.	Simula MP, Cannizzaro R, Canzonieri V, Pavan A, Maiero S, Toffoli G, et al. PPAR

570		signaling pathway and cancer-related proteins are involved in celiac disease-associated
571		tissue damage. Molecular medicine (Cambridge, Mass) 2010;16:199-209
572	10.	Mitsuyoshi H, Yasui K, Harano Y, Endo M, Tsuji K, Minami M, et al. Analysis of hepatic
573		genes involved in the metabolism of fatty acids and iron in nonalcoholic fatty liver
574		disease. Hepatology research : the official journal of the Japan Society of Hepatology
575		2009;39:366-73
576	11.	Seok S, Kim YC, Byun S, Choi S, Xiao Z, Iwamori N, et al. Fasting-induced JMJD3
577		histone demethylase epigenetically activates mitochondrial fatty acid β -oxidation. The
578		Journal of clinical investigation 2018;128:3144-59
579	12.	Wu Y, Sarkissyan M, McGhee E, Lee S, Vadgama JV. Combined inhibition of glycolysis
580		and AMPK induces synergistic breast cancer cell killing. Breast Cancer Res Treat
581		2015 ;151:529-39
582	13.	Sohn EJ, Kim J, Hwang Y, Im S, Moon Y, Kang DM. TGF- β suppresses the expression
583		of genes related to mitochondrial function in lung A549 cells. Cellular and molecular
584		biology (Noisy-le-Grand, France) 2012;Suppl.58:Ol1763-7
585	14.	Tse EY, Ko FC, Tung EK, Chan LK, Lee TK, Ngan ES, et al. Caveolin-1 overexpression
586		is associated with hepatocellular carcinoma tumourigenesis and metastasis. The Journal
587		of pathology 2012 ;226:645-53
588	15.	Yeh M, Cole AL, Choi J, Liu Y, Tulchinsky D, Qiao JH, et al. Role for sterol regulatory

- 589 element-binding protein in activation of endothelial cells by phospholipid oxidation
- 590 products. Circulation research **2004**;95:780-8
- 591 16. Prade E, Tobiasch M, Hitkova I, Schaffer I, Lian F, Xing X, et al. Bile acids down-
- regulate caveolin-1 in esophageal epithelial cells through sterol responsive element-
- 593 binding protein. Mol Endocrinol **2012**;26:819-32
- 17. Xu Y, Henning RH, van der Want JJL, van Buiten A, van Gilst WH, Buikema H.
- 595 Disruption of endothelial caveolae is associated with impairment of both NO- as well as
- 596 EDHF in acetylcholine-induced relaxation depending on their relative contribution in
- 597 different vascular beds. Life Sciences 2007;80:1678-85
- 18. Mastrodonato M, Calamita G, Rossi R, Mentino D, Bonfrate L, Portincasa P, et al.
- 599Altered distribution of caveolin-1 in early liver steatosis. European journal of clinical
- 600 investigation **2011**;41:642-51
- 601 19. Asterholm IW, Mundy DI, Weng J, Anderson RG, Scherer PE. Altered mitochondrial
- function and metabolic inflexibility associated with loss of caveolin-1. Cell metabolism
- **2012**;15:171-85
- 604 20. Fernández-Rojo MA, Restall C, Ferguson C, Martel N, Martin S, Bosch M, et al.
- 605 Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy
- 606 metabolism: implications for liver regeneration. Hepatology (Baltimore, Md)
- **2012**;55:1574-84

608	21.	Tanaka N, Zhang X, Sugiyama E, Kono H, Horiuchi A, Nakajima T, et al.
609		Eicosapentaenoic acid improves hepatic steatosis independent of PPAR α activation
610		through inhibition of SREBP-1 maturation in mice. Biochem Pharmacol 2010;80:1601-
611		12
612	22.	Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, et al. SREBP-1, a basic-
613		helix-loop-helix-leucine zipper protein that controls transcription of the low density
614		lipoprotein receptor gene. Cell 1993;75:187-97
615	23.	Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of
616		cholesterol and fatty acid synthesis in the liver. The Journal of clinical investigation
617		2002 ;109:1125-31
618	24.	Moslehi A, Hamidi-Zad Z. Role of SREBPs in Liver Diseases: A Mini-review. J Clin
619		Transl Hepatol 2018 ;6:332-8
620	25.	Guo D, Bell EH, Mischel P, Chakravarti A. Targeting SREBP-1-driven lipid metabolism
621		to treat cancer. Current pharmaceutical design 2014;20:2619-26
622	26.	Deng Q, Li X, Fu S, Yin L, Zhang Y, Wang T, et al. SREBP-1c gene silencing can
623		decrease lipid deposits in bovine hepatocytes cultured in vitro. Cellular physiology and
624		biochemistry : international journal of experimental cellular physiology, biochemistry,
625		and pharmacology 2014 ;33:1568-78
626	27.	Li X, Li Y, Yang W, Xiao C, Fu S, Deng Q, et al. SREBP-1c overexpression induces

- 628 oxidation and VLDL assembly in bovine hepatocytes. The Journal of steroid
- biochemistry and molecular biology **2014**;143:174-82
- 630 28. Fang DL, Wan Y, Shen W, Cao J, Sun ZX, Yu HH, et al. Endoplasmic reticulum stress
- 631 leads to lipid accumulation through upregulation of SREBP-1c in normal hepatic and
- hepatoma cells. Mol Cell Biochem **2013**;381:127-37
- 633 29. Ostermeyer AG, Paci JM, Zeng Y, Lublin DM, Munro S, Brown DA. Accumulation of
- 634 caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. The
- 635 Journal of cell biology **2001**;152:1071-8
- 636 30. Mao X, Tey SK, Ko FCF, Kwong EML, Gao Y, Ng IO, et al. C-terminal truncated HBx
- 637 protein activates caveolin- $1/LRP6/\beta$ -catenin/FRMD5 axis in promoting
- hepatocarcinogenesis. Cancer letters **2019**;444:60-9
- 639 31. Schrader M, Costello J, Godinho LF, Islinger M. Peroxisome-mitochondria interplay and
- disease. Journal of inherited metabolic disease **2015**;38:681-702
- 641 32. Sato A, Kawano H, Notsu T, Ohta M, Nakakuki M, Mizuguchi K, et al. Antiobesity
- 642 effect of eicosapentaenoic acid in high-fat/high-sucrose diet-induced obesity: importance
- of hepatic lipogenesis. Diabetes **2010**;59:2495-504
- 644 33. Takeuchi Y, Yahagi N, Izumida Y, Nishi M, Kubota M, Teraoka Y, et al. Polyunsaturated
- 645 fatty acids selectively suppress sterol regulatory element-binding protein-1 through

proteolytic processing and autoloop regulatory circuit. The Journal of biological

647 chemistry **2010**;285:11681-91

648	34.	Tajima-Shirasaki	N, Ishii K-A,	Takayama H	, Shirasaki T,	, Iwama H,	Chikamoto K, et a	al.
-----	-----	------------------	---------------	------------	----------------	------------	-------------------	-----

- Eicosapentaenoic acid down-regulates expression of the selenoprotein P gene by
- 650 inhibiting SREBP-1c protein independently of the AMP-activated protein kinase
- pathway in H4IIEC3 hepatocytes. The Journal of biological chemistry 2017;292:10791-
- **652** 800
- 653 35. Ou J, Tu H, Shan B, Luk A, DeBose-Boyd RA, Bashmakov Y, et al. Unsaturated fatty

acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-

1c) gene by antagonizing ligand-dependent activation of the LXR. Proceedings of the

National Academy of Sciences of the United States of America **2001**;98:6027-32

- 657 36. Wang C-C, Ding L, Zhang L-Y, Shi H-H, Xue C-H, Chi N-Q, et al. A pilot study on the
- effects of DHA/EPA-enriched phospholipids on aerobic and anaerobic exercises in mice.
- 659 Food & Function **2020**;11:1441-54
- 660 37. Pinel A, Pitois E, Rigaudiere J-P, Jouve C, De Saint-Vincent S, Laillet B, et al. EPA
- 661 prevents fat mass expansion and metabolic disturbances in mice fed with a Western diet.
- 662 Journal of lipid research **2016**;57:1382-97
- 663 38. Oono K, Ohtake K, Watanabe C, Shiba S, Sekiya T, Kasono K. Contribution of Pyk2
- 664 pathway and reactive oxygen species (ROS) to the anti-cancer effects of

665	eicosapentaenoic acid (EPA) in PC3 prostate cancer cells. Lipids in Health and Disease
666	2020 ;19:15
667	39. deGraffenried LA, Friedrichs WE, Fulcher L, Fernandes G, Silva JM, Peralba JM, et al.
668	Eicosapentaenoic acid restores tamoxifen sensitivity in breast cancer cells with high Akt
669	activity. Annals of Oncology 2003;14:1051-6
670	
671	
672	Figure legends
673	Figure 1 ACADM underexpression correlated to worse prognosis in HCC.
674	(A) ACADM was underexpressed in 64% of QMH clinical cases. (B) ACADM mRNA levels
675	were higher in non-tumour (NT) vs. tumour (T) cases, with TCGA data indicating lower
676	ACADM mRNA expression in tumours. (C) ACADM mRNA expression reduced with HCC
677	stage progression. The mRNA expression of HPRT, a housekeeping gene, was used for
678	normalisation. (D) ACADM underexpression correlated to various clinicopathological
679	parameters. (E) ACADM expression in tissue microarray samples. Intensity scores of ACADM
680	were generally high (scores 2 to 3) in non-tumourous tissues vs. the low scores (0 to 1) observed
681	in tumourous tissues. Scale bar, 100 μ m. (F) Magnification of the HCC and the corresponding
682	NT tissue cores from two clinical cases to show the cell morphology and stain intensities of
683	ACADM. The pie chart depicted ACADM to be underexpressed (T < NT) in 86.3% of HCC

.

.

cases compared to 13.7% without underexpression. HPRT = Hypoxanthine-guanine
phosphoribosyltransferase.

686

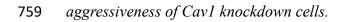
687 Figure 2 Suppression of ACADM diminishes β-oxidation and promotes HCC
688 tumourigenicity.

689 (A) Western blot validated ACADM knockdown in Huh7 cells (sh61 and sh65) compared to the stable non-target control. (B) Nile Red staining, triglyceride and phospholipid levels in cells. 690 691 Scale bar, 50 µm. (C) The fatty acid oxidation assay was used to determine the cellular respiration rate of control and ACADM knockdown cells. (D) Fatty acid profiling of Huh7 cells 692 detected the total fatty acids, different fatty acid chain lengths and types found in shACADM 693 cells. (E) MTT assay, soft agar (scale bar, 90 µm), migration and invasion assays (scale bar, 694 695 200 µm) were used to indicate the aggressiveness of HCC cells upon ACADM knockdown. (F) 696 In subcutaneous xenografts of Huh7 cells injected into nude mice (n = 6), the tumour volume and weight of tumours were measured. (G) Immunohistochemical staining of shCTL and 697 shACADM in subcutaneous xenografts was performed. Quantification of ACADM and Ki67 698 699 signal are shown. (H) Hydrodynamic injection was performed in mice (n = 12), split into three 700 groups for injection of different plasmid combinations to compare their effects. Number of 701 tumour nodules was counted and nodule size was measured. (I) Representative images showing immunohistochemical staining of ACADM, N-Ras and p53 of the excised livers of mice at the 702

705

706 Figure 3 SREBP-1 is the direct upstream negative transcriptional regulator of ACADM
707 along the Cav1/SREBP-1/ACADM axis.

708 (A) Schematic diagram to show the mutation of the PPRE and SRE binding sites in the fulllength (-1450) ACADM promoter (left). ACADM promoter activity was significantly 709 upregulated upon mutation of the SRE but not the PPRE site (middle). ChIP assay revealed the 710 711 enrichment of ACADM promoter fragments in the presence of SREBP-1 compared to IgG 712 control. ACADM-540F and ACADM+41R primers are flanking the SREBP-1 binding site 713 (SRE) and ACADM-1450-F and ACADM-950-R primers are flanking the unrelated promoter 714 region (right). (B) Correlation between SREBP-1 and ACDAM expression in paired cases of 715 tumour (T) and non-tumourous tissues (NT). Representative cases with and without SREBP-1 and the corresponding ACADM expression are shown. The signal intensities of SREBP-1 and 716 ACADM expressions are quantified and the IHC H-scores are shown. Scale bar, 100 µm. (C) 717 SREBP-1 expression in tissue microarray samples. Intensity scores of SREBP-1 were generally 718 719 low (scores 0 to 1) in non-tumourous tissues vs. the higher scores (2 to 3) observed in 720 tumourous tissues. The H-scores indicated the extent of nuclear immunoreactivity of SREBP-1 in tissues. Magnification of the HCC and the corresponding NT tissue cores from two clinical 721

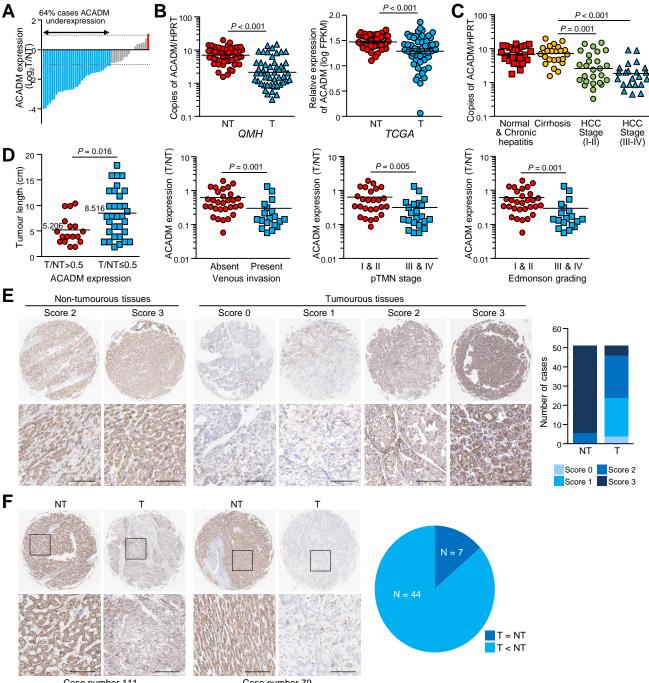

722	cases to show the cell morphology and stain intensities of SREBP-1. The pie chart depicted
723	SREBP-1 to be overexpressed (T > NT) in 56.5% of HCC cases compared to 43.5% without
724	overexpression. (D) ACADM promoter activity was upregulated in MHCC97L shCav1 cells
725	compared to shCTL cells. (E) Cellular fractionation of MHCC97L shCTL and shCav1 cells,
726	and of MHCC97L cells with or without filipin treatment, was performed and analysed for the
727	indicated protein expressions by western blotting. (F) Western blot analysis of ACADM
728	expression in MHCC97L shCav1 cells stably expressing SREBP-1. (G) The ACADM
729	expression in MHCC97L cells transiently transfected with siRNA targeting SREBP-1 was
730	examined by immunoblotting.

731

732 Figure 4 Cav1 promotes HCC via regulating lipid metabolism.

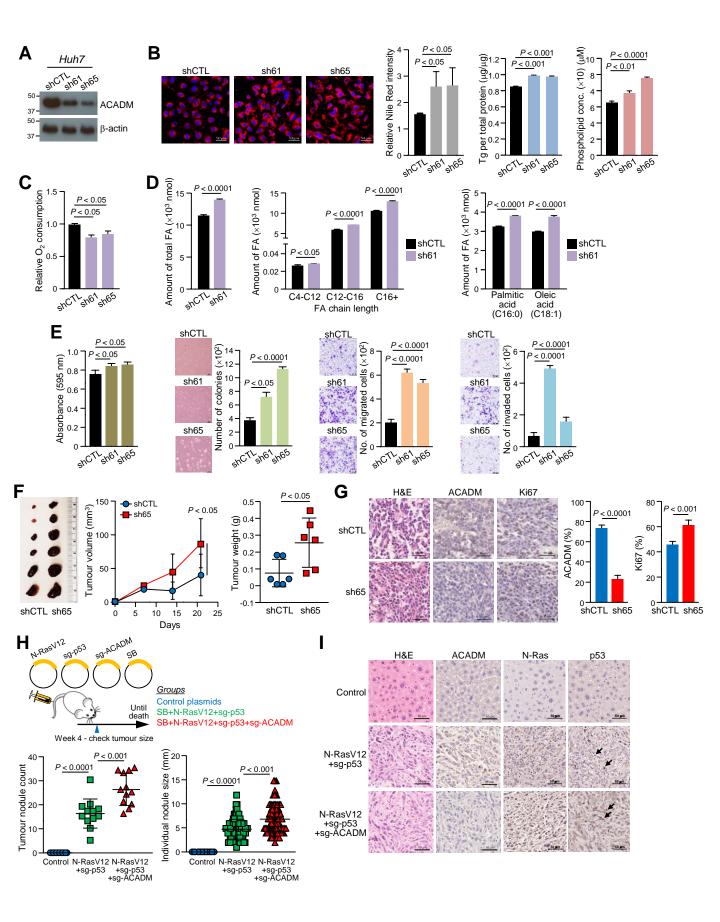
733 (A) Western blot revealed Cav1 expression in MHCC97L stable non-target control (shCTL) 734 and Cav1 knockdown clones (shCav1#1 and #2). (B) The cellular triglycerides (Tg), phospholipids and Nile Red staining of the oil droplets in cells. DAPI was used to stain the 735 nuclei blue. The Nile Red signal intensity was quantified using ImageJ software (NIH). Scale 736 737 bar, 50 µm. (C) The fatty acid oxidation assay was used to determine the cellular respiration 738 rate of HCC cells. (D) The addition of ETO restored the triglycerides, phospholipids and cellular lipids (scale bar, 50 µm) of shCav1 cells, with their promoted cell aggressiveness as 739 demonstrated by the (E) cell proliferation rate, anchorage independent growth (scale bar, 90 740

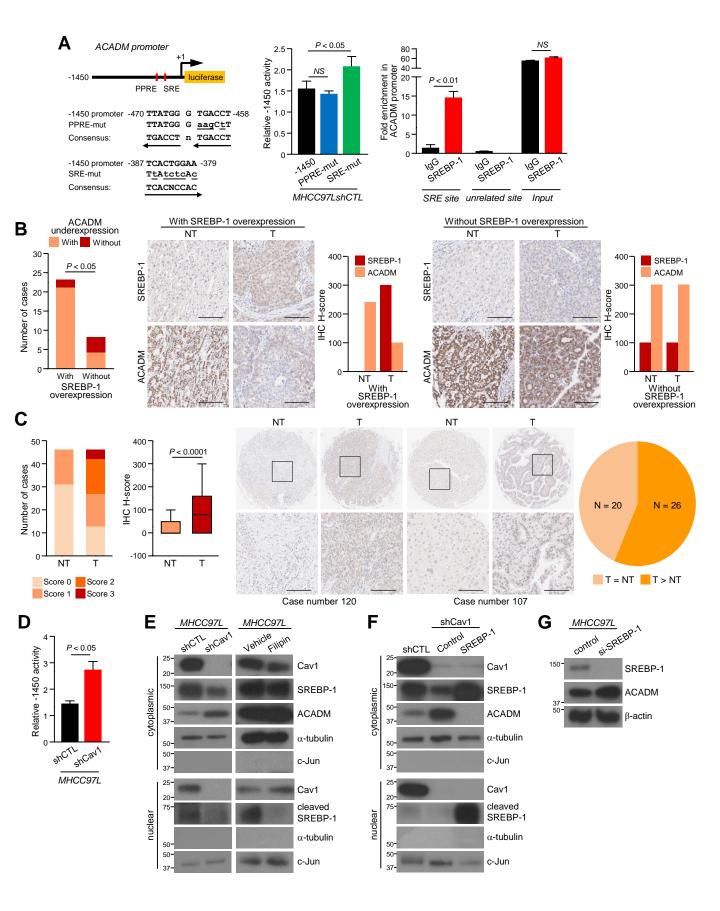
741	μ m), migration and invasiveness (scale bar, 200 μ m). (F) Subcutaneous xenografts from nude
742	mice injected intraperitoneally with ETO significantly increased the volume and weight of
743	tumours derived from shCav1 MHCC97L cells. ETO was injected twice a week for four weeks
744	before tumour harvest. Immunohistochemistry revealed the increased levels of Cav1 and oil
745	droplets in the xenografts from mice injected with ETO compared to the ones without. (G) The
746	fatty acid oxidation assay was performed using MHCC97L shCav1 cells overexpressing
747	SREBP-1. (H) MHCC97L shCav1 cells with SREBP-1 overexpression was subjected to colony
748	formation, migration and invasion assays.
749	
750	Figure 5 Negative correlation between Cav1 and ACADM expressions.
750 751	<i>Figure 5</i> Negative correlation between Cav1 and ACADM expressions.(A) RT-qPCR and (B) western blot revealed the inversely correlated ACADM and Cav1 mRNA
751	(A) RT-qPCR and (B) western blot revealed the inversely correlated ACADM and Cav1 mRNA
751 752	(A) RT-qPCR and (B) western blot revealed the inversely correlated ACADM and Cav1 mRNA and protein levels in the HCC cell line panel, respectively. Cells were ordered in increasing
751 752 753	(A) RT-qPCR and (B) western blot revealed the inversely correlated ACADM and Cav1 mRNA and protein levels in the HCC cell line panel, respectively. Cells were ordered in increasing aggressiveness from left to right. (C) Immunohistochemical staining of Cav1 and ACADM in
751 752 753 754	(A) RT-qPCR and (B) western blot revealed the inversely correlated ACADM and Cav1 mRNA and protein levels in the HCC cell line panel, respectively. Cells were ordered in increasing aggressiveness from left to right. (C) Immunohistochemical staining of Cav1 and ACADM in the MHCC97L subcutaneous xenografts. Scale bar, 50 µm. (D) RT-qPCR and (E) western blot
751 752 753 754 755	(A) RT-qPCR and (B) western blot revealed the inversely correlated ACADM and Cav1 mRNA and protein levels in the HCC cell line panel, respectively. Cells were ordered in increasing aggressiveness from left to right. (C) Immunohistochemical staining of Cav1 and ACADM in the MHCC97L subcutaneous xenografts. Scale bar, 50 μ m. (D) RT-qPCR and (E) western blot indicated the mRNA and protein levels of ACADM in Hep3B and MHCC97L shCav1 cells. (F)

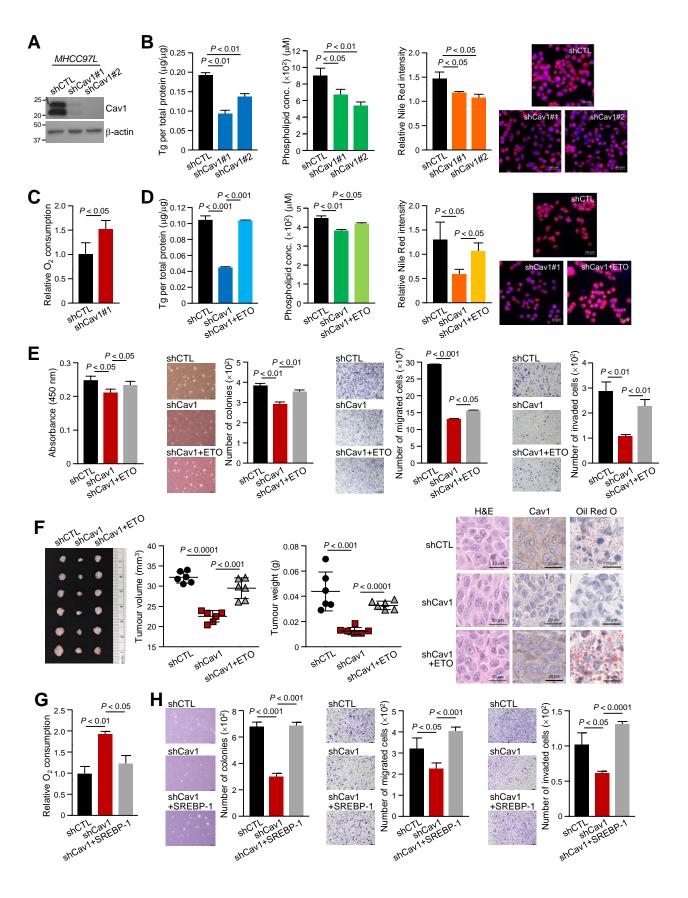

760	(A) Western blot revealed the expression of ACADM after ACADM knockdown in MHCC97L
761	and Hep3B shCav1 cells (shCav1/sh61 and shCav1/sh65). (B) Cellular triglyceride and
762	phospholipid levels, and (C) Nile Red staining of the lipid droplets in cells. Scale bar, 50 μ m.
763	(D) Fatty acid oxidation assay was performed using MHCC97L and Hep3B cells with double
764	knockdown of Cav1 and ACADM. The (E) soft agar (scale bar, 90 μ m), (F) migration and (G)
765	invasion assays (scale bar, 200 μm) defined the aggressiveness of HCC cells upon ACADM
766	knockdown in shCav1 cells. (H) Subcutaneous xenografts of MHCC97L shCTL, shCav1 and
767	shCav1/sh61 cells in nude mice (n = 6). Tumours dissected from mice at the end of the
768	experiment are shown. Tumour weight and volume are measured. (I) Immunohistochemical
769	staining of Cav1, ACADM, CD31 and Ki67 in xenograft tissues. The quantification of Ki67
770	positive signal is shown. Scale bar, 50 µm.

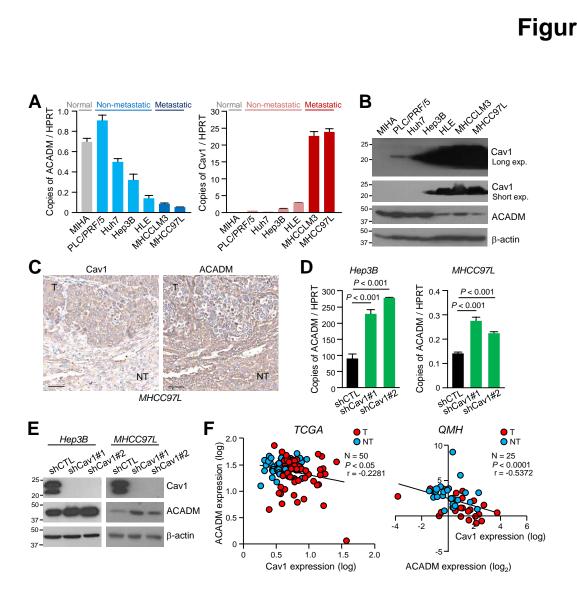
771

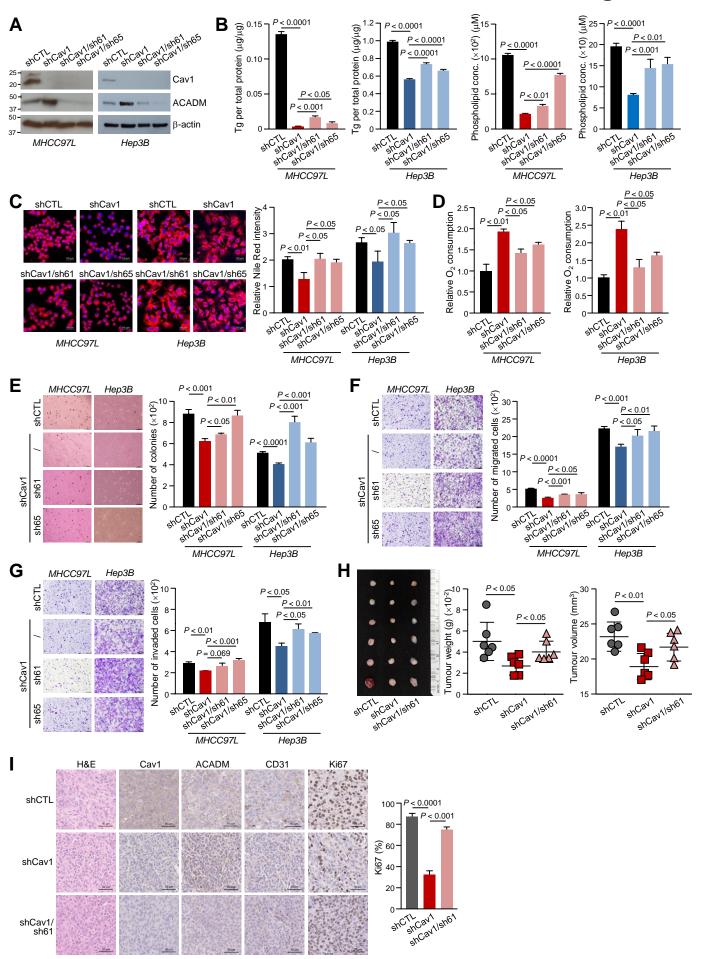
772 Figure 7 Inhibition of SREBP-1 enhanced sorafenib efficacy in vivo.

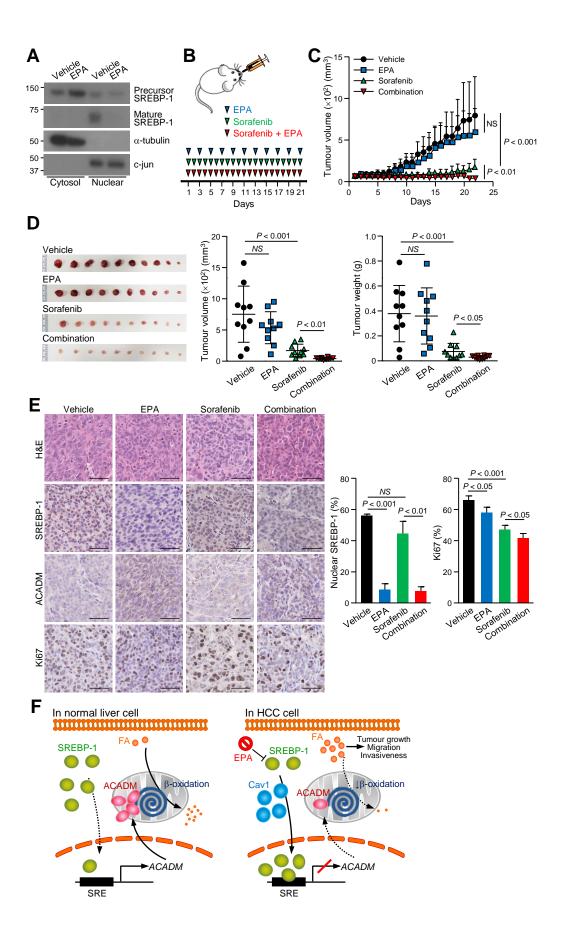

(A) Western blot analysis of SREBP-1 expression in MHCC97L cells treated with vehicle or
EPA. (B) Oral gavage feeding chart of drugs into mice over a period of 21 days. (C) The tumour
size was measured daily and the tumour volume was calculated and plotted. (D) Image of
excised subcutaneous xenografts, with the tumour volume and weight of the tumours measured
and plotted. (E) Immunohistochemical staining indicated the expressions of SREBP-1,
ACADM and Ki67 in the excised subcutaneous tumours. Cells with positive Ki67 expression


779	and nuclear stain of SREBP-1 were quantified. Scale bar, 50 μ m. (F) Visual summary of the
780	findings in this study. In normal liver cells, SREBP-1 accumulates in the nucleus to modulate
781	ACADM transcription, resulting in the regulation of β -oxidation to breakdown fatty acids. In
782	HCC cells, increased Cav1 enhanced the nuclear accumulation of SREBP-1, which suppressed
783	ACADM transcription, leading to decreased β -oxidation and the accumulation of fatty acids,
784	contributing to the augmented tumour growth, migration and invasiveness of cancer cells; EPA
785	administration abrogated these effects.




Case number 111


Case number 79



Suppression of ACADM-mediated fatty acid oxidation promotes hepatocellular carcinoma via aberrant Cav1/SREBP-1 signaling

Angel P. Y. Ma¹, Cherlie L. S. Yeung¹, Sze Keong Tey¹, Xiaowen Mao¹, Samuel W. K. Wong¹,

Tung Him Ng¹, Frankie C. F. Ko¹, Ernest M. L. Kwong¹, Alexander H. N. Tang¹, Irene Oi-Lin Ng^{1,2}, Shao Hang Cai³, Jing Ping Yun⁴, Judy W. P. Yam^{1,2}

Supplementary Materials and methods

Supplementary Figures

Supplementary Tables

Supplementary Materials and methods

Protein extraction and western blotting

To collect cell pellets for protein extraction, sub-confluent cells were collected and then washed with ice-cold PBS to remove residual culture medium. The cells were lysed using RIPA lysis buffer on ice for 30 minutes before centrifugation to obtain the cell lysate in the supernatant, which was kept on ice after extraction. The NE-PERTM Nuclear and Cytoplasmic Extraction Reagents (Thermo Scientific) were used to separate cytoplasmic and nuclear extracts from cells. The extraction was carried out according to the manufacturer's protocol.

The Bradford reagent (Bio-Rad Laboratories) was used to determine the concentration of the cell lysate according to the manufacturer's instructions. Concentration determination were done in triplicates per sample. Absorbance reading was measured at 595 nm by the Infinite® F200 microplate reader (Tecan, Switzerland).

For protein detection, 30 µg of protein lysate per sample were used. Proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to the 0.45 µM polyvinylidene difluoride blotting membrane (Amersham[™] Hybond[™], GE Healthcare). The membranes were blocked with 5% semi-skimmed milk in 1× TBST at room temperature for 1 hour, then incubated with primary antibodies against Cav1 (BD Biosciences Cat# 610406, RRID:AB_397788), ACADM (Abcam Cat# ab92461, RRID:AB_10563530), SREBP-1 (Santa Cruz Biotechnology Cat# sc-13551, RRID:AB_628282), β -actin (Sigma-Aldrich Cat# A5316, RRID:AB_476743), α -tubulin (Sigma-Aldrich Cat# T9026, RRID:AB_477593) and c-Jun (BD Biosciences Cat# 610326, RRID:AB_397716) overnight at 4°C. The proteins were detected with the ECLTM western blotting detection system (AmershamTM GE Healthcare) according to the manufacturer's instructions.

Co-immunoprecipitation (Co-IP)

CoIP was performed to investigate the putative interaction between Cav1 and SREBP-1. In brief, cell lysates to be analysed were collected with NETN lysis buffer. Proteins were incubated with primary antibody and subsequently with 50% Protein G beads (GE). The protein-beads were then pelleted, washed and resuspended in 2× SDS loading dye, then boiled at 95°C for 5 minutes before being subjected to SDS-PAGE followed by western blot analysis.

Dual luciferase reporter assay

The full-length DNA encoding for the ACADM promoter was amplified by PCR using primers, ACADM-1450-Kpn-F and ACADM+41-Bgl-R (Supplementary Table 2). The PCR products were purified and cloned into the pGL3-Basic vector (Promega). pGL3-Basic vector carrying

ACADM promoter together with Renilla luciferase were transfected into cells using Lipofectamine® 2000 reagent (Invitrogen). For the detection of ACADM promoter activity, the Dual-Luciferase® reporter assay system (Promega) was employed according to the manufacturer's instructions. Readings were taken using the Infinite® F200 microplate reader (Tecan).

Detection of mRNA with Quantitative real-time polymerase chain reaction

Trizol[®] Reagent (Invitrogen) was used for RNA extraction from cells according to the manufacturer's protocol. Concentration and quality of the resulting RNA were determined using BioDrop µLITE (BioDrop, United Kingdom). For reverse transcription of RNA to cDNA, 1 µg of RNA was added to 4 µl of SuperScript® VILOTM Master mix (Invitrogen) in a total volume of 20 µl and subjected to PCR cycle conditions of 25°C for 10 minutes, 42°C for 1 hour and 85°C for 5 minutes.

Quantitative PCR was performed on the ABI7900HT Fast Real Time PCR system (Applied Biosystems), with each sample assayed in triplicates on a 96-well reaction plate. The reactions were carried out with the following TaqMan probes (ThermoFisher Scientific): Cav1, ACADM, ACADL, ACADS and ECHDC3. The relative expression was normalised with the housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT) (Applied

Biosystems).

Immunohistochemistry (IHC)

Prior to paraffin embedding, human or mouse tissues were fixed with 10% formaldehyde and washed with 70% ethanol. The paraffin block was then sectioned into 5 µm sections for IHC staining. Paraffin sections were dewaxed with xylene, then rehydrated in a decreasing alcohol concentration gradient before rinsing with water. Antigens were retrieved in antigen retrieval buffer by boiling for 5 minutes. Slides were allowed to cool at room temperature before rinsing in water. To block any endogenous peroxidase activity, slides were incubated in 10% hydrogen peroxidase solution in TBS for 20 minutes, followed by a 30 minutes incubation of 10% goat/mouse/rabbit serum. Sections were stained with primary antibodies overnight at 4°C, then incubated with horseradish peroxidase conjugated secondary antibodies for 30 minutes at room temperature. For histological analysis, dewaxed sections were counterstained with haematoxylin and eosin for several minutes. Histological analysis was carried out by pathologists and scanning of the slides was performed with Aperio ScanScope CS System camera to create high-quality digital slides for analysis.

Fatty acid oxidation assay

The Fatty Acid Oxidation Complete Assay Kit (Abcam) was used to detect the respiration rate

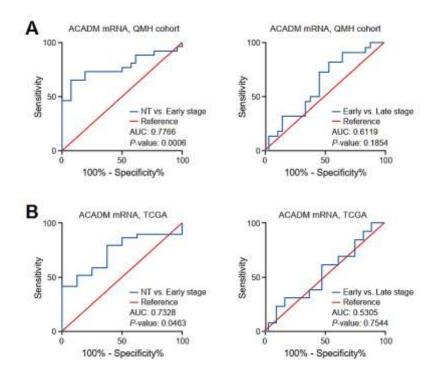
of cells according to the manufacturer's protocol. Briefly, cells were plated in triplicates in a 96-well plate, then incubated overnight at 37°C. The culture media was replaced with Glucose-Deprivation media and incubated for a further 24 hours. Reagents to be used were prepared freshly according to the manufacturer's protocol. Cells were washed twice with FA-free Measurement Media before the addition of FA/FA-free Measurement Media and O₂ consumption reagent. Controls were then added (ETO, FCCP or BSA). High Sensitivity mineral oil was used to seal the wells before fluorescence measurements were recorded with the Infinite® F200 microplate reader (Tecan, Switzerland). Kinetic data output was analysed to determine the FAO-driven electron transport chain activity.

Targeted metabolite relative quantification of fatty acids

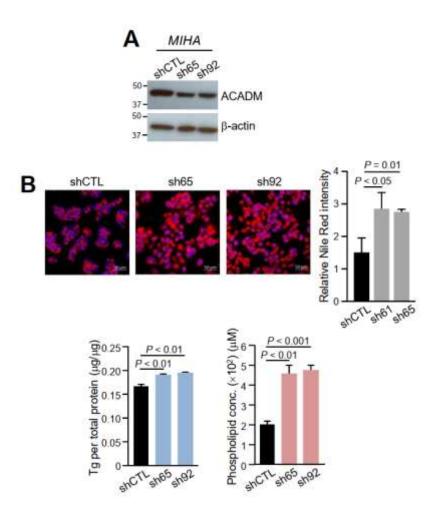
Sample processing and gas chromatography-mass spectrometry (GC-MS) analysis were performed at the Proteomics and Metabolomics Core Facility, Li Ka Shing Faculty of Medicine, HKU. For Folch extraction, 100 μ l of 200 ppm C19:0 fatty acid internal standard (Sigma-Aldrich) was spiked to ~10⁷ cells. A modified Folch extraction procedure wherein 4.9 ml Chloroform/Methanol (2:1, v/v) was added to the cells. The mixture was subjected to 10 pulses of sonication before being centrifuged at 4,000 rpm for 5 minutes. The clear supernatant was added to NaCl/Water (0.73%, w/v), then vortexed for 30 seconds. The aqueous layer was discarded and the organic layer was washed twice using Methanol/Water (1:1, v/v) without mixing, with the resulting organic layer evaporated under a gentle stream of nitrogen at 45° C. For esterification, the dried sample was dissolved in 0.1 ml of chloroform, 1 ml of methanol, and 50 µl of concentrated hydrochloric acid (35%, w/w). The solution was overlaid with nitrogen, vortexed, then heated at 100°C for 1 hour. Once cooled to room temperature, 1 ml of hexane (Acros) and 1 ml of water were added for fatty acid methyl ester extraction. After vortexing and phase separation, up to 1 µl of the hexane phase was injected for GC-MS analysis.

GC/MS chromatogram was acquired in SCAN and SIM mode in an Agilent 7890B GC -Agilent 7010 Triple Quadrapole Mass Spectrometer system. The sample was separated through an Agilent DB-23 capillary column (60 m \times 0.25 mm ID, 0.15 µm film thickness) under constant pressure at 33.4 psi. Characteristic fragment ions (m/z 55, 67, 69, 74, 79, 81, 83, 87, 91, 93, 95, 96, 97, 115, 127, 143) were monitored in SIM mode throughout the run. Mass spectra from m/z 50-350 were acquired in SCAN mode. Data analysis was performed using the Agilent MassHunter Workstation Quantitative Analysis Software. Linear calibration curves for each analyte were generated by plotting peak area ratio of external/internal standard against standard concentration at different concentration level. Analytes were confirmed by comparing the ratio of characteristic fragment ions in the sample and standard.

Cell migration and invasion assays

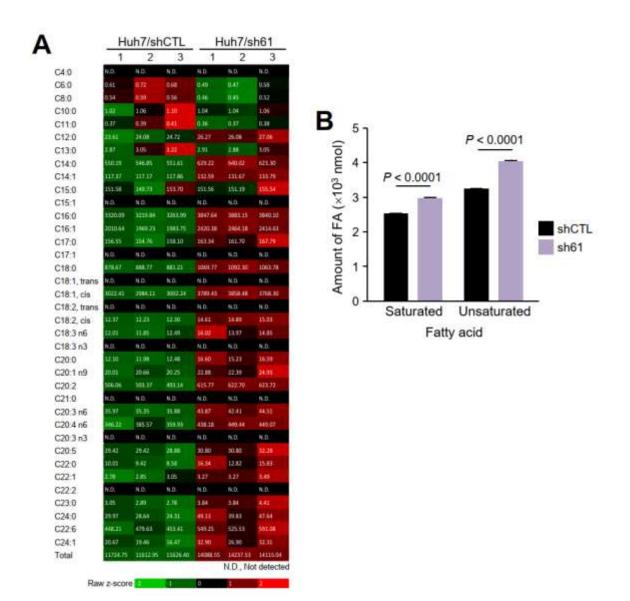

To reproduce the ability of cells to migrate and invade into the vasculature from the tumour origin, cell migration and invasion assays were performed in triplicates using Transwell® migration chambers (Corning Costar). Optimal cell numbers specific for each cell line were resuspended in serum free medium before seeding into migration chambers; the full-medium in the bottom of the well creates a nutrient gradient which attract the cells in the chamber to migrate through the membrane. To assess the invasion ability of cells, an additional thin layer of 1× MatrigelTM membrane matrix (Corning) was coated onto the inner membrane of the chamber 30 minutes prior to cell seeding. After cell seeding into the chambers, the cells were allowed to migrate for 18 hours at 37°C. After incubation, the migrated and invaded cells were fixed in methanol and stained with 1× crystal violet. Four images of each chamber were visualised and photographed at random under a microscope fitted with a CCD camera (Nikon).

Soft agar assay


The soft agar assay was used to monitor the anchorage-independent growth ability of cells, and it comprises of single cells suspended in a layer of 0.4% agarose on top of a 1% agarose base. The plates were then wrapped in Parafilm and incubated at 37°C for 3-4 weeks to allow cell colonies to form. Each sample were assayed in triplicates. Twenty images of each plate were visualised and photographed at random under a microscope fitted with a CCD camera (Nikon).

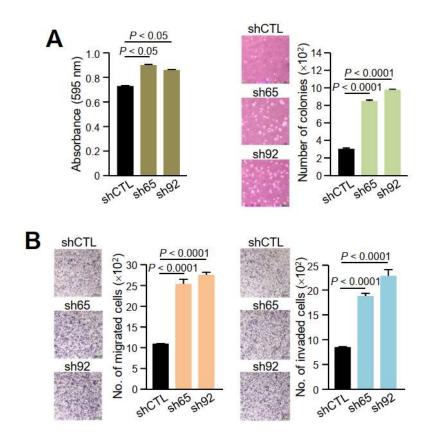
To assess the proliferation rate of adherent cells, cells were seeded at a density of 2 x 10^3 cells per well of a 96-well plate in triplicate and cultured in full-DMEM for 24 hours. MTT labelling reagent was then added to a final concentration of 0.5 mg/ml per well before incubating the cells at 37°C for 4 hours. The labelling reagent was removed and 70 µl of DMSO solubilisation solution was added to each well before incubating for a further 15 minutes at room temperature. The resulting absorbance per well was measured at 595 nm with the Infinite® F200 microplate reader (Tecan).

Supplementary Figures

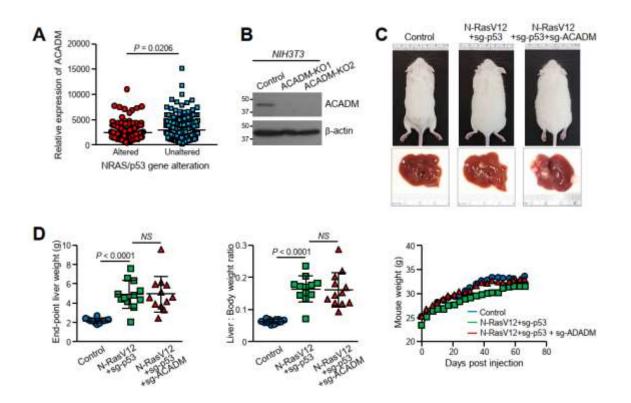


Supplementary Figure 1. ACADM expression is significantly related to the early stages of HCC. The receiver operating characteristic curves illustrated the significance of ACADM expression in relations to (A) the NT vs. early stage and early vs. late stage HCC in the QM cohort, with similar trends observed between ACADM and (B) early stage and late stage HCC data obtained from TCGA.

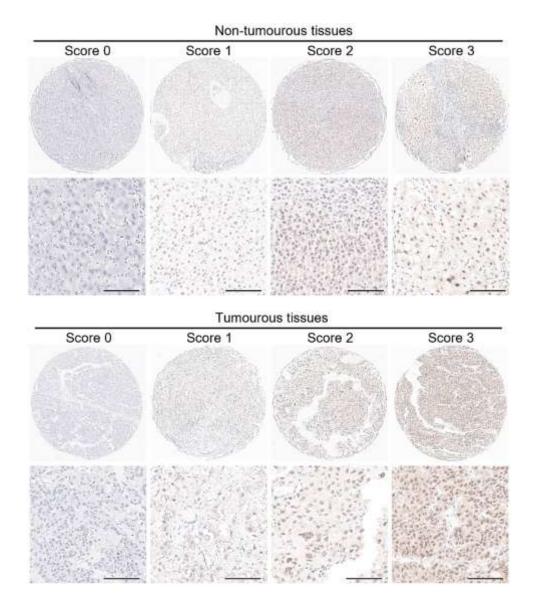
Supplementary Figure 2. Suppression of ACADM diminishes beta-oxidation.


(A) Western blot validated the knockdown efficiency of ACADM in MIHA knockdown clones (sh65 and sh92) compared to the stable non-target control (shCTL). (B) Nile Red staining (scale bar, 50 μm), triglyceride and phospholipid levels in cells.

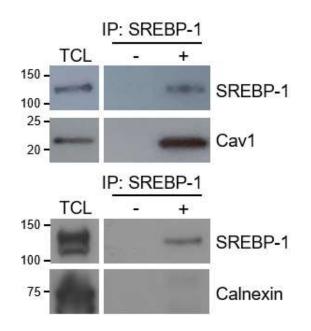
Supplementary Figure 3. Increased abundance of both saturated and unsaturated fatty acids


in ACADM knockdown cells.

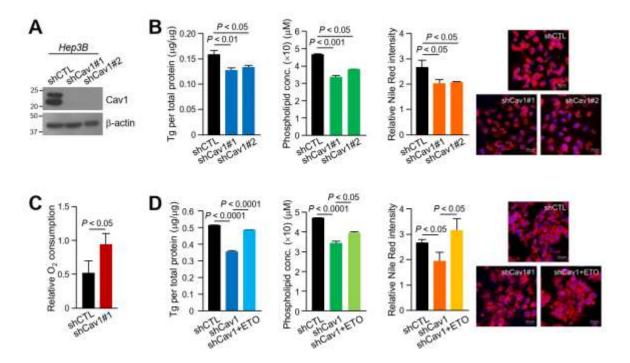
(A) Heat map and (B) bar chart illustrating the abundance of both saturated and unsaturated fatty acids in shACADM Huh7 cells compared to the shCTL. Green = low abundance and red = high abundance.


Supplementary Figure 4. Suppression of ACADM promotes proliferation, anchorageindependent growth, migration and invasion of immortalised normal liver cells.

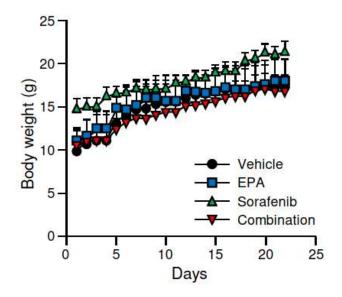
The MTT, soft agar (scale bar, 90 μ m) (A), migration and invasion assays (B) (scale bar, 200 μ m) were used to indicate the aggressiveness of HCC cells upon ACADM knockdown.


Supplementary Figure 5. Rationale for the choice of oncogene combination for hydrodynamic injection and the effect of ACADM-KO in mice.

(A) Data from TCGA revealed the decreased ACADM expression upon NRAS/TP53 gene alterations. (B) The knockout of ACADM (ACADM-KO1 and -KO2) were established in the mouse cell line NIH3T3 and confirmed by western blotting. (C) The livers excised from one mouse from each group at week 4 post-injection to observe tumour growth. (D) The end-point liver weight, liver:body weight ratio and mouse weight of mice injected with different oncogenes observed after hydrodynamics injection.


Supplementary Figure 6. Expression levels of SREBP-1 in tissue microarray tissues.

The different stain intensities of SREBP-1 as observed in non-tumourous and tumourous tissues, with the morphology of cells varying from the lowest to the highest score. Scale bar, $100 \ \mu m$.


Supplementary Figure 7. Interaction between Cav1 and SREBP-1.

Total cell lysate of MHCC97L cells were immunoprecipitated with anti-SREBP-1 antibody and the immunoprecipitated protein lysate was subjected to immunoblotting using anti-SREBP-1, anti-Cav1 and anti-Calnexin antibodies. Calnexin, an ER protein, was included as a negative control.

Supplementary Figure 8. Cav1 promotes HCC via its regulation in lipid metabolism in nonmetastatic HCC cells.

(A) Western blot revealed the expression of Cav1 in Hep3B stable non-target control (shCTL) and Cav1 knockdown clones (shCav1#1 and #2). (B) The cellular triglycerides (Tg), phospholipids and Nile Red staining (scale bar, 50 μ m) of the oil droplets in cells. (C) The fatty acid oxidation assay was used to determine the cellular respiration rate of HCC cells. (D) The addition of ETO to inhibit FAO restored the TGs, phospholipids and cellular lipids (scale bar, 50 μ m) in shCav1 cells treated with ETO.

Supplementary Figure 9. Body weight of mice during EPA and sorafenib treatment.

Body weight of mice was measured daily over the course of the treatment period.

Supplementary Tables

Туре	Clone	Sequence 5' to 3'
shRNA	Human shCav1-1	CCGGGACCCTAAACACCTCAACGATCTCG
	(NM_001753.3-441s1c1)	AGATCGTTGAGGTGTTTAGGGTCTTTTT
	Human shCav1-2	CCGGGACGTGGTCAAGATTGACTTTCTCG
	(NM_001753.3-462s1c1)	AGAAAGTCAATCTTGACCACGTCTTTTT
	Human shACADM-61	CCGGGCTGGCTGAAATGGCAATGAACTCG
	(NM_000016.4-1396s21c1)	AGTTCATTGCCATTTCAGCCAGCTTTTTG
	Human shACADM-65	CCGGGTGCAGATACTTGGAGGCAATCTCG
	(NM_000016.4-1547s21c1)	AGATTGCCTCCAAGTATCTGCACTTTTTG
	Human shACADM-92	CCGGCCGTGAACACATTGACAAGTACTCG
	(NM_000016.4-1666s21c1)	AGTACTTGTCAATGTGTTCACGGTTTTTG
ORF cDNA	Human SREBP1	Identical with the GenBank sequence except for
	(NM_004176.4)	the point mutations not causing the amino acid
		variation
Primer	ACADM-1450-Kpn-F	GGTACCAATGTACTTTGTGCTCTTAGCTG
	ACADM+41-Bgl-R	GA <u>AGATCT</u> CGGTTGCGCTGAACGGTGGG
	ACADM-1450-F	AATGTACTTTGTGCTCTTAGCTG
	ACADM-950-R	GCTCGACTTCACAGGCTGCTC
	ACADM-540-F	AATTCCCAGAAGACAAAGTAGGG
	ACADM+41-R	CGGTTGCGCTGAACGGTGGG
sgRNA	Murine ACADM-KO-F	CACCGCTCGAAAGCGGCTCACAAGC
	Murine ACADM-KO-R	AAACGCTTGTGAGCCGCTTTCGAGC
Primer	Myco5	YGCCTGVGTAGTAYRYWCGC
	Myco3	GCGGTGTGTACAARMCCCGA

Supplementary Table 1. Sequences of oligonucleotides used in the study.

Target	Source & Cat. No.	Isotype	Dilution	Application*
Cav1	BD Bioscience, 610406	Mouse	1:1000 and 1:100	WB, IHC and IP
Cav1	Cell Signaling Technology 3267S	Rabbit	1:1000	WB
ACADM	Abcam ab92461	Rabbit	1:10000 and 1:100	WB and IHC
SREBP-1	Santa Cruz Biotechnology sc-13551	Mouse	1:1000 and 1:100	WB, IHC and IP
β-actin	Sigma-Aldrich A5316	Mouse	1:5000	WB
α-tubulin	Sigma-Aldrich T9026	Mouse	1:1000	WB
c-Jun	BD Bioscience 610326	Mouse	1:1000	WB
CD31	Abcam ab28364	Rabbit	1:100	IHC
Ki-67	Dako M7240	Mouse	1:1000	IHC
p53	Invitrogen MA5-14067	Mouse	1:250	IHC
N-Ras	OriGene TA505835	Mouse	1:125	IHC
Calnexin	Affinity Bioreagents BF0515	Mouse	1:1000	WB

Supplementary Table 2. Antibodies used in the study.

*WB = Western blot, IP = Immunoprecipitation and IHC = Immunohistochemistry.

		Cases with ACADM underexpression	Cases without ACADM underexpression	
Parameter	Category	$T/NT \le 0.5$	T/NT > 0.5	<i>P</i> -value
Sex	Male	22	12	1.000
	Female	10	5	
HBsAg	Positive	29	13	0.217
	Negative	3	4	
Cirrhotic liver	Cirrhosis	10	13	0.006*
	Normal & CH	22	4	
Cell differentiation by	I & II	11	13	0.007*
Edmondson grading	III & IV	21	4	
Tumour size	> 5 cm	22	6	0.035*
	\leq 5 cm	10	11	
Direct liver invasion	Present	12	5	1.000
	Absent	17	9	
Tumour nodule	≥ 2	5	2	1.000
	= 1	27	15	
Tumour encapsulation	Absent	20	9	0.541
	Present	11	8	
Tumour microsatellite	Present	13	3	0.123
formation	Absent	19	14	
Venous invasion	Present	16	3	0.034*
	Absent	16	14	
pTNM stages	I & II	13	13	0.013*
	III & IV	19	3	

Supplementary Table 3. Clinicopathological correlation of ACADM expression in HCC. P-value of < 0.05 was considered as statistically significant and marked with an asterisk (*).

HBsAg = Hepatitis B surface antigen and pTNM = Pathological Tumour-Node-Metastasis.