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Abstract

We study a class of contracts that is becoming ever more common among ex-
ecutives, in which the manager earns a discrete bonus if his performance clears
an explicit threshold. These performance targets provide the firm with an ad-
ditional instrument to resolve its moral hazard problem with its manager. The
performance target can achieve first-best under risk neutrality, with a target pre-
cisely equal to the desired effort that the firm seeks to induce. The optimal bonus
increases in risk. If the manager is sufficiently risk averse, the firm will shade
the optimal target below equilibrium effort to provide a form of insurance to the

manager, outside of the standard reduction in the bonus.



1 Introduction

Ever since the Securities and Exchange Commission required companies to disclose de-
tails of their executive pay plans in 2006, we have known that many, if not most, com-
panies use some kind of a performance target, in which the manager earns a bonus if his
performance clears an explicit threshold. However, the theoretical literature has either
examined the class of linear contracts under normally distributed errors and exponential
utility (the so-called LEN model), or has articulated optimal nonlinear contracts in full
generality that bear little resemblance to contracts used in practice. What is missing
is a theoretical exploration of performance targets, motivated by their actual use, to
provide both positive prediction and normative guidance.

Until now. We examine the class of performance target contracts under a variety of
settings. To fix ideas, we begin with a risk-neutral agent, and show that performance
targets achieve first-best, with the target optimally set to efficient effort in an optimal
contract. This result bears similarity to the efficiency of rank-order tournaments. And
for good reason, since a performance target is like a tournament, except that the target
is not a strategic choice by a separate agent, but rather an optimal choice of the firm.
The target provides an extra contract parameter, so that the firm can keep one of
the other compensation parameters (the bonus) fixed. Thus, the target offers the firm
an additional instrument to resolve the manager’s effort problem, a theme that will
permeate the analysis. Contrast this with this linear contract, in which salary and
bonus both change when the environment changes.

We then examine risk. The canonical model predicts that increases in risk will
result in smaller bonuses, as the bonus loads risk onto the manager. However, the
empirical evidence on the risk-incentives trade-off has been mixed (Prendergast (2002)).
Under a performance target, the optimal bonus increases in variation in the manager’s
performance measure. When output variance increases, this dampens incentives to work,
as it is less likely that output from a given unit of effort will clear the target (because of
the increased noise in the system). To compensate for this, the firm increases the bonus
in order to extract effort from the manager. That the bonus increases in noise may help
explain the mixed empirical tests of the risk incentives trade-off. These tests largely
regress pay-performance sensitivity (PPS) on stock return volatility, and measure PPS
through changes in total direct compensation. Here, an increase in risk directly increases

the bonus, which will increase direct compensation and therefore PPS, providing a partial



explanation for why empirical tests of the risk incentives trade-off have been mixed.

Next, we solve the model under general risk aversion. While it would be efficient to
pay the manager a flat wage in order to provide full insurance, this would ruin incentives
to work. We show that the firm will optimally select a target below the second-best
equilibrium effort level. Just as the second-best program involves a smaller bonus to
reduce the manager’s exposure to risk, so does the lower target provide this insurance
effect to the manager. Once again, the target serves as a substitute instrument for
the bonus, as they alternatively resolve the manager’s moral hazard problem with the
manager.

There will always be two solutions that induce the same effort, given by a low target
and a high target. However, even though both targets implement the same effort, the
firm is not indifferent. The low target is easier to achieve, and therefore the manager is
more likely to receive his bonus, so his expected bonus compensation is higher. Because
of this, he will accept a smaller salary to participate. Because of risk aversion, the firm
can lower the bonus also to match incentives at the high target. As such, the firm prefers
the low-target contract because it can induce identical effort at lower cost.

We focus attention on finding the optimal contract within the class of performance
target contracts; We do not solve for the optimal contract under all possible contracts
to show that performance targets are globally optimal. Our paper is in the spirit of
the LEN literature, which seeks to discover optimal linear contracts within the smaller
class of LEN contracts. This focus on a restricted subset of the full contract space has
provided much of our core base of knowledge on various incentive schemes and their
optimal attributes, such as the risk-incentives trade-off. We depart from the LEN model
in our focus on targets (not linear), general forms of risk aversion (not only exponential)
and general distributions that are symmetric and single-peaked (not only normal). We
write in the spirit of Ross (2004), who urges research to consider properties of contracts
that are used in practice, rather than focusing attention exclusively on fully general
contracts that are mathematically complex but lack realism.

There’s a small empirical literature on performance targets and an even smaller the-
oretical one. Murphy (2000) is an early empirical analysis of performance targets that
finds that internally determined performance standards are more likely to have discon-
tinuous features that lead to income smoothing. Murphy (2000) considers compensation
in the form of s + b(X — X), where X is the manager’s performance measure, and X

is the standard that the manager faces. While this does capture the flavor of a per-



formance that must exceed a standard, it is nonetheless a linear contract in X — X.
Indeed, much of the prior literature assumes targets of this form, and does not model
the discontinuous nature of the target explicitly. This paper aims to use the description
of performance targets and standards from Murphy (2000), but to model the manager’s
optimization problem more explicitly.

Murphy (2000) further documents the presence of an “incentive zone” in which the
manager’s pay is linear within the incentive zone and flat outside of it. We do not
consider the optimal incentive zone, as the model itself has enough complexity as is,
without examining a linear region in between two different targets. Matéjka and Ray
(2014) examine the incentive zone in a model of multiple performance targets and dif-
ferential incentive weights. Gutiérrez Arnaiz and Salas-Fumdas (2008) show that the
incentive zone collapses to a “dichotomous bonus” (the kind we consider here) when the
performance horizon collapses, say from an annual basis to a quarterly basis.

Gutiérrez Arnaiz and Salas-Fumés (2008) solve for the optimal contract in a specific
setting.! They do not answer the more general question of optimal targets under any
symmetric distribution. Their contract is curvilinear in the incentive zone, as it is
a function of the likelihood ratio, a standard feature of optimal contracts under risk
aversion. This function is convex and then becomes concave after it hits an inflection
point, which the authors argue is effectively the performance target. However, because
they solve their model in a general continuous framework, they do not have a precise
characterization of the optimal bonus and target.

Other theoretical work on targets examines stage financing in venture capital (Dahiya
and Ray (2012)) and performance evaluation over multiple periods (Ray (2007)). Indje-
jikian et al. (2014a) and Gerakos and Kovrijnykh (2013) both consider earnings targets,
and the latter paper indeed contains a formal model. However, none of these papers
solve for the optimal target. There is of course a large literature on the ratchet effect
(Weitzman (1980); Indjejikian et al. (2014b); Aranda et al. (2014); Arnold and Artz
(2015); and Bouwens and Kroos (2011)), which primarily concerns dynamic changes in
targets over time. These papers often ask whether the ratchet effect exists at all, and

generally take the first period target as given, rather than solving for it optimally.

!They assume a Symmetric Variance Gamma (SVG) distribution, and the agent makes a one-shot
change to the mean of a stochastic process. Madan and Seneta (1987) and Carr and Geman (2002)
show that the SVG process fits data from share prices, but as of yet, there is no evidence that SVG fits

data from accounting numbers, on which most performance targets are based.



The existing empirical literature on performance targets largely focuses on testing
the ratchet effect, i.e., whether increases in targets are positively associated with prior-
year performance relative to the target. The evidence of this is mixed, as some papers
find a positive association (e.g., Leone and Rock (2002); Holthausen et al. (1995); Mur-
phy (2000); Anderson et al. (2010); Bouwens and Kroos (2011); Kim and Yang (2014)),
while others do not (e.g., Indjejikian and Nanda (2002); Indjejikian and Matéjka (2006);
Choi et al. (2012)). Some of the more recent papers on performance targets that take
advantage of the executive compensation disclosure requirements of 2006 could be ripe
environments to test some of the predictions of this paper. In particular, after 2006, the
Securities Exchange Commission, the U.S. equities regulator, required any U.S. company
that trades on U.S. exchanges to disclose details of their compensation plans, such as
performance targets, in setting executive pay. Because such performance targets rely
on observable performance measures like earnings or stock price, it would be possible
to calculate the variance of those performance measures to test Proposition 2. Specifi-
cally, a stock price target lends itself to calculating volatility over some fixed horizon,
such as 30-, 60-, or 90-day lag, which could be an empirical proxy for variance in the
performance measure. For earnings targets, a reasonable empirical proxy for variance
would be the volatility of the quarterly EPS targets over an annual or multiyear horizon.
Thus, executive performance targets based on stock prices are particularly well suited
for testing the empirical predictions of this paper, and more and more research today
utilizes this post-2006 disclosure, so such a test would naturally fit into that emerging
literature.

All these papers provide a modicum of evidence supporting the ratchet effect, which
is fundamentally a dynamic incentive story; the model and application here is to a static
contract. Perhaps the greatest contribution of our theory is simply establishing that
the optimal target will lie beneath the equilibrium effort that the principal seeks to
induce. This is a statement fundamentally about target difficulty. There is an emerging
literature on target difficulty, which offers conditions on how to target difficulty changes
with respect to the exogenous parameters. Ultimately, our contribution is to prove that
firms will set achievable targets in equilibrium, which provides some of the foundational
assumptions for the entire empirical literature on targeting. Our objective is to provide
a theoretical justification for much of the empirical work in this area.

Of course, it is somewhat odd that the existing theoretical and empirical literature

on performance targets remains preoccupied with target ratcheting, an inherently dy-



namic concept, when there is an absence of theory (or empirics) on the more elemental
problem of how to set static performance targets. In that sense, the cart has come be-
fore the horse. This is unusual, since historically, agency theory first solved the static
single-agent problem before it moved on to solve multi-agent and/or dynamic incentive
problems. This paper seeks an answer to that more basic question of how the firm sets a
performance target in a static setting. The main theoretical prediction is on the relation
between the optimal target and the equilibrium effort chosen by the manager. Even
though managerial effort is unobservable, one proxy for equilibrium effort may be prior
performance. In that case, this paper is more consistent with the contrarian literature
that shows that managers with high performance are more likely to clear future targets
(e.g. Indjejikian and Nanda (2002); Indjejikian and Matéjka (2006); Choi et al. (2012)).

The paper proceeds as follows. Section 2 considers the base model under risk neu-
trality and discusses the risk-incentives trade-off. Section 3 introduces managerial risk
aversion. Section 4 compares performance targets to linear contracts. Section 5 con-

cludes.

2 The Model

To motivate the model, consider some sample executive pay contracts curated from proxy
statements of corporate filings. In 2010, McDonald’s set a target for operating income
at $7.24 billion. If the CEO hit this target, his payout was $2,160,000. This target was
discrete, in that it offered a fixed cash payment if the performance cleared the target and
nothing otherwise. Other companies have imposed similar discrete targets. For example,
Bank of America in 2011 set a 3-year average ROA target, awarding 33% of the total
bonus if the executive’s actual ROA exceeded 50 bps, and nothing otherwise. Barnes &
Noble enforced an adjusted EBIT target of -$178.27 million, a low bar given the digital
business was expected to have significant cash flow requirements in Fiscal 2014. Chevron
set a target based on invested capital with no performance shares awarded if ROIC fell
below 18%, 8% awarded if it exceeded 18%, 40% awarded if it exceeded 20%, and 80%
awarded if it exceeded 22% or higher. Roughly 38% of the CEO’s compensation was
paid in performance shares, delivered in cash.

These are all examples of sample executive contracts that contain some kind of dis-
crete performance target, in which performance must clear an explicit threshold. Often,

such targets operate at the low end of performance, in which the executive must obtain



a minimal level of performance in order to receive any kind of payout at all. Sometimes
the payout rises linearly with performance, in which case the board interpolates a bonus
number for performance in between two discrete targets.? Nonetheless, even absent in-
terpolation, many executive pay contracts contain some kind of discrete target. The
Incentive Lab database covers the top 750 firms (measured by market capitalization)
over 1998 to 2012, which encompasses 4,673 unique CEO IDs. Of the 2,424 CEOs that
use absolute metrics, 1,666 (or 69%) have some discrete performance target. Of the
2,427 that use relative metrics, 1,088 or (45%) have some discrete performance target.
To keep the analysis focused, we will examine only a single performance target with
no interpolation. Of course, multiple performance targets would be a straightforward
generalization of the theory developed here.

The performance target contract is really a class of contracts and, like all theoretical
models, is a necessary simplification of reality. There is wide variation among executive
contracts on the kinds of performance targets they deploy. Some have only single jumps,
some have multiple jumps. Some have regions that are flat after the jump, while others
grant options as a bonus, which itself increases in value with firm performance. It
would be impossible to document all the different variations, since that would result in
a multitude of models and defeat the purpose of theoretical analysis. Here, our purpose
is simply to isolate the properties of a model that all performance targets share, namely,

the base structure of a single target and a single bonus.

2.1 Risk-neutral Benchmark

A risk-neutral principal (the firm) contracts with a risk-neutral and effort-averse manager
(the agent). The manager exerts unobservable effort e > 0 at a cost of effort C(e) =
0.5ce?, so C' is strictly increasing and convex. The manager’s performance measure is

given by

g=e+e, (1)

where ¢ conditional on each effort follows a continuous distribution G with mean 0 and

2In this case, the company simply takes the weighted average of performance and the weighted
average of the payout that matches the weight on the performance. For example, suppose the contract
offers the executive by if performance clears t; and by if performance clears to. If actual performance is
At1 + (1 — A)ta, then the interpolated payout is Aby + (1 — A)bs.



variance o2 that has unimodal and symmetric density function ¢.* Call e* the first-best
effort, given as the solution to C’(e*) = 1, so ¢* = 1/c. Observe that total surplus is
e* — C(e*) = 5= > 0. The firm offers the manager a contract (¢,s,b), where ¢ is the
performance target, s is the salary, and b is the bonus, contingent on performance. The

manager earns the bonus if performance exceeds the target:

S ifg<t
Pay = (2)
s+b ifg>t.
This fits the simplest description of a performance target, where performance must
exceed a threshold before the manager earns a payment. There is a discontinuity in the
manager’s payoff, jumping from s to s + b, when performance exceeds the target.?

The probability that the manager receives his bonus is

P = Prob(q >t) = Prob(e >t —e) = G(e —t), (3)

since by symmetry of g, G(z) = 1 — G(—x). Observe that the probability increases in

effort and decreases in the target:

oP oP
= gle—t) =" (4)

Higher targets directly reduce the manager’s probability of achieving his bonus. Tar-
get and effort work in exactly opposite directions on this probability. The expected

utility of the manager is

EU = s+ bG(e—t) — C(e). (5)

The manager can select effort at cost C'(e) to maximize his expected payoff. The

solution to this problem generates the incentive constraint for the manager:

bg(e —t) = C'(e). (IC)

3The symmetry of the error distribution is not necessary, but does dramatically ease calculation.

The most common distributions, such as the normal, are symmetric.
4Recall from real analysis that step functions can arbitrarily approximate continuous functions, as

the number of steps tends to infinity (Lebesgue’s Monotone Convergence Theorem). Thus, if we expand
the class of contracts to include multiple performance targets with multiple bonuses, then in the limit,

these contracts will arbitrarily approximate the optimal (nonlinear) contract for the same reason.
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Figure 1: Discontinuity in Manager’s Pay

The manager equates the marginal cost of effort to the expected marginal benefit,
which is the change in the probability of achieving the bonus, times the unconditional
bonus itself. This marginal effect on the change in probability is represented by the
term g, and will permeate the analysis. While higher targets unilaterally decrease the
probability of clearing the target, the effect on the change in probability is ultimately
what matters. Indeed, the firm picks a contract that induces the manager’s effort,
and the difference between the target and effort will ultimately drive the manager’s
incentives. As is common, assume the manager faces an outside opportunity @ in order
to induce participation. The manager’s expected payoff must exceed this opportunity,
and therefore impose the standard participation constraint (PC') that EU > a.

The contract has three instruments—the salary, the bonus, and the target—to control
a unidimensional effort-choice subject to two constraints: the participation constraint
and the incentive constraint. As such, the target provides an extra degree of freedom and
this will, in general, lead to a continuum of equilibria. Specifically, observe that from the
incentive constraint (IC), any pair of bonuses and targets that satisfy IC will induce the
same effort level. To reduce the number of equilibria, we make the additional assumption
that the firm will select the smallest bonus when multiple equilibria exist. This can be
justified on the grounds that incentive compensation at firms can be controversial, as it

may lead to political outrage. For example, recall the backlash that banks faced after
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the U.S. financial crisis for honoring the bonus payments written into their executive
contracts when the banks received government financial assistance. While we do not
model political outrage explicitly, we simply represent this as the additional constraint
by which the firm will choose the lowest bonus among a set of equilibria that generate
the same profits.

The firm maximizes expected profits, subject to the incentive and participation con-
straints. The solution to this problem generates the optimal efficient contract. All proofs

are in the appendix.

Proposition 1 The optimal contract that implements first-best effort e* is (t*, s*,b*)

where
= e, (6)
] ™)
& =+ Cle’) - f(o) (8)

The proposition provides the optimal contract, which in this case is efficient. This
should come as no surprise, as the manager is risk neutral, and there is no conflict of
interest between the firm and the manager. Compare this to the usual efficient linear
contract that makes the agent the full residual claimant on firm output, where the firm
extracts rents from the manager through a (possibly) negative salary. Here, the efficient
contract is nothing like the “sell the firm” contract. The firm will set the target to the
efficient effort level, and then select the salary and bonus to solve the participation and
incentive constraints, respectively. Proposition 1 formally proves that the firm can select
the target equal to efficient effort under risk neutrality. This conforms to the common
intuition that the target can equal the effort that the principal seeks to induce, which
in this case is first-best effort.’

The performance target offers a discrete jump in payoff if performance clears the
target. Consider this a “prize” of b, the difference in payoff from clearing the target

versus not. In equilibrium, ¢* = e*, so (IC) in equilibrium becomes

SGutiérrez Arnaiz and Salas-Fumds (2008) offer a numerical example in which the performance
standard is set equal to the mode of the performance distribution. But without formally solving for
the optimal contract performance target, it is impossible to say for sure whether the target lies above

or below equilibrium effort.
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= 9)

The relationship between target and effort is nontrivial, since a shift in the target ¢
will immediately shift equilibrium effort e(s, b, t). However, the proof of Proposition 1
shows that because the manager’s participation constraint will bind, firm profits equal
total surplus, and therefore the firm can afford to achieve efficiency. Given that the
firm seeks to implement e*, the optimal target will pin down equilibrium efficient effort
exactly. This occurs precisely when the returns to managerial effort are highest, the
point when a marginal increase in effort leads to the greatest change in probability.
This is exactly when the density ¢ hits its maximum at t* — e* = 0.5 Moreover, the
optimal salary compensates the manager for his outside opportunity and cost of effort,
but then deducts half of his bonus from his salary upfront. Indeed, this is necessary
in order to provide the manager with strong effort incentives. Comparative statics on
the proposition immediately generate the following corollaries. First consider the effect

from the changes in the outside options.

Corollary 1 The optimal bonus is unchanged in the manager’s outside options (% = 0) ,

while the optimal salary increases in the manager’s outside options (% > O).

The participation constraint ensures that the manager meets his outside options. As
with the canonical model, increasing outside opportunities forces the firm to increase
the salary in order to retain the manager. Now consider changes in the cost of effort,

which tracks the quality or productivity of the manager.

Corollary 2 As the manager’s marginal cost of effort increases, the optimal target

decreases, the optimal salary decreases, and the optimal bonus is unchanged.

Because our optimal target is t* = e¢* = %, it is immediate that the firm will decrease
the target as the manager’s cost of effort rises. In fact, this is the only comparative static
in which the target changes. As effort becomes costly, first-best effort becomes lower to
save on the managers’ disutility, and therefore social welfare. The corollary shows that
when marginal cost of effort increases, firm decreases the target, which decreases effort.

These two countervailing effects, higher marginal cost of effort and lower level of effort,

6The unimodal condition and symmetry imply that the mean of the distribution is its maximal point,

which is why the firm will set the difference between target and effort to be equal to this mean of 0.
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lead to lower total cost of effort at optimum. As a result, the firm does not have to pay
as much to the manager to compensate for the cost of effort so it will simultaneously
decrease salary. The countervailing effect comes from the fall in the target. Indeed, the
target is a powerful instrument and has a direct effect on effort. The higher marginal
cost of effort counteracts the salary-reducing effect from lower effort. However, the salary
still fall in equilibrium.

There is a close theoretical analogy between rank-order tournaments (Lazear and
Rosen (1981)) and performance targets. Both rely on a relative comparison of output
in order to secure an external prize. In performance targets, that comparison is against
an standard set by the firm, whereas in tournaments that comparison is made against
the output of another strategic player in the game. In both models, an increase in
risk dampens incentives to provide effort, and both models can implement first-best
under risk neutrality. Here, the bonus reduces to ¢(0)~!, which in the case of a normal
distribution is simply ov/27, so the bonus increases in risk unambiguously. This feature

of how the bonus reacts to a change of risk is quite general, as we show next.

2.2 Increases in Risk

There’s hardly a more celebrated result in agency theory than the risk-incentives trade-
off. The standard LEN model of linear contracts, exponential utility, and normal errors
deviates from efficiency because of the risk premium that the firm must pay the manager
to bear risk, through mean-variance preferences that include a disutility for risk. This
workhorse model of contract theory, nicely summarized in Prendergast (1999), posits
that as risk (measured through the variance of the error distribution) increases, optimal
incentives should decrease, since the optimal bonus from that model is (1 + rcaQ)_l. Be-
cause of this, the firm reduces the optimal bonus away from that which would guarantee
efficiency.

The existing literature on the risk-incentives trade-off has been mixed. Some papers
find a positive relationship (Core and Guay (1999), Oyer and Schaefer (2001), Core and
Guay (2001), Nam et al. (2003), and Coles et al. (2006)), some find a negative relation-
ship (Lambert and Larcker (1987), Aggarwal and Samwick (1999), and Jin (2002)), and
some find no relationship at all (Garen (1994), Yermack (1995), Bushman et al. (1996),
Ittner et al. (1997), and Conyon and Murphy (2000)). Most of these papers measure

risk as volatility of stock returns and measure incentives as pay-performance sensitivity,
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Figure 2: An increase in risk. The steeper CDF second-order stochastically dominates
the flatter CDF.

measured as changes in direct compensation for a given change in performance. The
existing literature has not made a conclusive statement on whether incentives optimally
increase or decrease with risk. This calls into question whether the theory is even valid,
if it holds under such special circumstances. Indeed, a raft of papers have offered condi-
tions under which the trade-off reverses, giving a positive relationship between risk and
incentives (e.g., Dutta (2008) and Prendergast (2002)).

Here, the bonus is a reward to the manager for clearing the target, and as the
incentive constraint shows, it will equilibrate the marginal cost of effort against the
change in probability of clearing the target g(e — t), times the unconditional “prize” of
b. Unlike the canonical model, there is no disutility for risk that holds over the entire
domain of the manager’s utility function. Rather, only incentives at the target matter.
The assumption of risk neutrality here is to focus on a competing effect, namely the

effect of noise on the probability of clearing the target.” This effect will still permeate

"Prendergast (2002) also assumes risk-neutral agents in order to avoid the standard trade-off. It is
possible that the trade-off may emerge under risk aversion, though the model does not permit closed-
form solutions of this. Instead, numerical simulations do show that the risk incentives trade-off vanishes

under risk aversion.
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a model of risk aversion, though it may be muted because of the need for insurance. Of
course, linear contracts allow no positive relationship for risk and incentives under any

conditions.

Proposition 2 Let g; be a mean-zero, unimodal distribution for i = 1,2. Let b} be the

optimal bonus from Proposition 1. If Gy second-order stochastically dominates Gy, then
by < b3.

Said differently, as risk increases, this dampens the agent’s incentives to produce
effort. To compensate for this reduction in incentives, the firm must increase the size of
the prize, for the same logic as occurs in tournaments. Thus the optimal bonus exactly
balances the increase in variance. This fits exactly Proposition 2(b) of Gutiérrez Arnaiz
and Salas-Fumas (2008), who find the same unambiguous result that the bonus size
increases in volatility. Even though Gutiérrez Arnaiz and Salas-Fumds (2008) use a
more specific model (SVG process), they also find the same reversal of the risk-incentives
trade-off.

The term g(0)~! is a proxy for the variance: As the variance on output rises, the
tails of the density g will increase and its maximal point g(0) will sink. Recall that G
represents the probability of clearing the target, and ¢ is the change in this probability.
So, under a higher variance, a marginal change in effort will lead to a smaller change
in probability. It is the excess noise that forces the manager to reduce effort. Figure
2 shows two distribution functions, one that is second-order stochastically dominant
over the other. Remember that a marginal increase in effort changes the probability of
achieving the target, and so it is the change in probability (the slope of the distribution
function) that matters. In the low variance case, the slope of the distribution is steeper
around the mean of 0, so a marginal increase in effort leads to a higher probability of
hitting the target than under a high variance distribution. Proposition 2 proves this
rigorously under two distributions.

There is a natural question of whether the bonus in this model can compare to the
bonus in the linear model. Recall that the bonus in the linear model is the slope of the
contract, and therefore directly maps into a conceptual definition of pay for performance.
Because of the discrete nature of the target, there is no natural analogue to this slope,
which is the marginal change in pay for a marginal unit of effort. Nonetheless, the matter
is largely immaterial, because empirical estimates of PPS will almost always increase in

the discrete bonus of this model.
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For example, Aggarwal and Samwick (1999), Jin (2002), and Guay (1999) seek to
estimate the risk-incentives trade-off by regressing pay for performance sensitivity (PPS)
on risk, usually measured through the volatility of stock returns. Jin (2002) defines
PPS as changes in total direct compensation, as well as changes in the re-evaluation of
stock and stock options. An increase in the bonus of Figure 1 will increase total direct
compensation, and therefore will have an upward effect on the empirical measure of
PPS. This will confound the risk-incentives trade-off.

3 Risk Aversion

Now consider that the manager is risk averse and has a utility function u that is strictly
increasing and concave. The firm still writes a contract (s,¢,b) as before, with a similar

bonus and target structure:

o u(s) if g <t
Utility = (10)
u(s+b) ifg>t.
The discontinuity in the manager’s payoff now jumps from u(s) to u(s + b) when

output exceeds the target. The expected utility of the manager is

EU = / _eu(s)g(e)de—l—/oo u(s + b)g(e)de — C(e). (11)

—00 t—e

The integral splits at t — e because that is exactly the point for € such that the
manager earns the bonus (¢ > ¢, or ¢ > ¢t — e). Impose the standard participation
constraint (PC') that EU > u. Observe that because the payoff to the manager takes
only two discrete values, u(s) and u(s+b), the firm can completely control the manager’s
behavior through the choice of these two payoff levels. As such, the compensation terms

pass out of the integral and we can re-write EU as:

EU =u(s)G(t —e) + u(s+ b)G(e —t) — C(e). (12)
Thus, the expectation makes the discrete payoff structure continuous, and so the

manager can select effort to maximize his expected payoff. The solution to this problem,

given by the first-order condition, generates the incentive constraint for the manager:

ofe = 0)(uts +0) — u(s) ) =) (1c)
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As before, the benefit of effort includes its effect on changing the probability of
clearing the target, expressed in the term g(e — t). Observe that under risk neutrality,
the utility spread collapses to the bonus as a special case. The incentive constraint now
contains the term u(s + b) — u(s), which we call the utility spread. This is the gain in
utility from achieving the bonus. Since utility is increasing, the spread rises in the bonus
(W(s+0b) > 0).

The concavity of the utility function prevents first-best contract being adopted and
will lead to an effort distortion. To see this, imagine that the firm could implement
first-best effort. Plugging this into the incentive constraint generates g(e — t)A = 1,

where A is the utility spread. Rearranging terms gives

ole—1)= 5 >3- = g(0) (13)

where the bonus on the right-hand side is set at the first-best level, and A < b* by risk
aversion. But of course, this is impossible since the distribution peaks at zero. So, in
fact, (/C) will hold at an effort level distorted away from first-best. This occurs precisely
when the utility spread is smaller than the optimal bonus, which must occur since the
manager is risk averse and the optimal target lies away from the efficient effort (¢ < é).
Indeed, both the utility spread falls short of the bonus, and the change in probability
lies beneath its maximal point. And thus the marginal benefit is less than the first-best
marginal cost of one, yielding the effort distortion.

Now let’s consider the firm’s problem under risk aversion. The firm maximizes ex-
pected profits, subject to the incentive and participation constraints. The full program

involves expected profits less a multiplier for both constraints:

max e — (s +bG(e—1t)). (14)
s,b,t

subject to

u(s) + (u(s ) — u(s)>G(e - Ce) > a, (PC)
gle = 1) (uls +b) — u(s)) = Ce). (1C)

As in the case of risk neutrality, we assume the firm will choose the smallest bonus
among the contracts that generate the same profits, if there are multiple such contracts.

This will allow us to focus on a unique contract that emerges from the program above.
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Lemma 1, 2 and Proposition 3 solves for this program, and we discover that the target

plays an important role in balancing the risk and incentives problem:
Lemma 1 For any effort, (PC) binds for the optimal contract that induces this effort.

If the participation constraint does not bind, the firm can save some costs but induce

the same effort through lower salary and bonus.
Lemma 2 (IC) binds for any contract.

If the incentive constraint does not bind, the manager can always improve his ex-

pected payoff by marginally changing the effort level.

Proposition 3 Under risk aversion, both (IC) and (PC) bind for the optimal perfor-
mance target contract. If the agent is sufficiently risk averse, the optimal target lies

below equilibrium effort (1 < é).

We measure the level of risk aversion in terms of absolute risk aversion and the
details are provided in the Appendix. The primary result is that the firm will shade the
target downward to handle the manager’s risk aversion. Proposition 3 shows that the
target, in addition to the bonus, offers insurance. This removes the insurance burden
from the bonus and puts it on the target, as often occurs when the firm has multiple
instruments to design optimal compensation. Recall under the benchmark model that
the incentive constraint equalizes the marginal cost of effort against its marginal return.
In the structure of this model, that is equivalent to a horizontal line passing through the
distribution of effort, as shown in Figure 3.

This occurs because of the symmetry of the error distribution. From (IC), the
marginal cost of effort must equal the marginal return, which is the marginal change
in the probability of clearing the target times the size of the prize, the utility spread.
Because ¢ is symmetric, there will always be two targets symmetrically distributed
around equilibrium effort that solve (/C'). To see this visually, imagine a horizontal line
passing through the density g. The coordinates of the x-axes of the intersection points
are the optimum targets that satisfy (/C). There will always be two solutions to this
problem, as Figure 3 illustrates.

The low and high targets will equivalently induce the same equilibrium effort. Recall

that the probability of clearing the target, P, decreases in the level of the target; as such,
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the manager has a lower chance of receiving the bonus with high targets. Therefore, the
manager receives a higher expected bonus from a low target rather than a high target,
so he requires less salary in order to participate. Said differently, the principal must
pay a premium to the manager in order to induce participation under a high target.
Since both targets generate the same equilibrium effect, the high target has no benefit
for output, only a higher cost to induce participation.

This result follows fundamentally from risk aversion. Recall that the utility spread
is the difference in utility from receiving the bonus versus receiving the salary alone.
For any fixed bonus, this spread falls in the salary level because of diminishing marginal
utility (driven by the risk aversion, illustrated in Figure 3b). Therefore, when the firm
offers a high target with a low probability of payout, it must offer a corresponding high
salary to guarantee participation. That high salary, call it sy, paired with a given
bonus, call it by, determines the utility spread and therefore effort incentives. A low
target raises the probability of payout, and the firm can afford to pay a lower salary to
guarantee participation. Because of diminishing marginal utility for a fixed bonus by,
the utility spread at the low salary will exceed the utility spread at the high salary, since
the utility curve is steeper at the lower salary level. To keep incentives unchanged, the
firm can therefore lower the bonus to some b;, < by, which will match exactly the utility
spread and therefore the incentives at the prior contract. To see this visually, observe in
Figure 3b that the diminishing marginal utility (risk aversion) forces b, < by in order
for incentives (A) to be identical at both contracts. Thus, the low target pairs with a
low salary and low bonus, and offers the same incentives as the high target with a high
salary and high bonus. When the agent is sufficiently risk averse, the firm can induce
the same level of effort at lower cost using low target.

As such, in every equilibrium we always have t < é if the manager is sufficiently
risk averse. The optimal performance target contract under risk aversion is inherently
complex, as salary, bonus, and target jointly and simultaneously determine effort. It is
impossible to change one variable alone without changing others as well. In particular,
a change in salary will affect the incentives of a risk-averse manager. Even with this
complexity, we show that the participation constraint will always bind. The firm will
always be able to select a target such that it extracts the full rent from the manager.

To see why, observe that the firm has at its disposal a target that can always serve
as an extra instrument to modulate the manager’s expected utility. If the target is

strictly below equilibrium effort, so ¢ < é, then a slack participation constraint leaves
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rents for the manager. But the firm can always simultaneously lower the salary and
raise the target, keeping equilibrium effort constant. Lowering the salary will tighten
the participation constraint, since the manager’s expected payoff will fall. Raising the
target will further tighten the participation constraint, as the manager certainly prefers
low targets to high targets. But both these actions will raise effort and, therefore, profits
for the firm, and thus allow the firm to implement the same effort at a lower cost (a lower
salary and lower expected compensation). The firm will do this until the participation
constraint binds.

The first-order condition of the manager’s problem may have multiple solutions.
In particular, because the distribution is unimodal, there may be multiple solutions.
However, the full proof of proposition 3 shows that when the manager is sufficiently
risk averse, the firm will implement a particular effort at lower cost by choosing the
low-target contract. Furthermore, the manager will select the equilibrium effort even if
there are other solutions to the (/C') constraint. This helps to eliminate most of the
other effort levels that satisfy the incentive constraint.

Given that, in equilibrium, the optimal effort always exceeds the optimal target

(é > 1), we can generate following comparative statics on the incentive constraint.

Lemma 3 The effort chosen by the manager rises in the bonus, falls in the salary, and

rises in the target if effort exceeds the target (¢ > t).

Corollary 3 follows directly from Lemma 3.
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Corollary 3 Equilibrium effort rises in the bonus, falls in the salary, and rises in the

target.

The first effect from the bonus is the same as the canonical model: higher pay-
forperformance sensitivity (PPS) induces the manager to work more. The second result
is more surprising. Given the specific formulation of the LEN model, salary has no effect
on effort incentives, because of constant absolute risk aversion that fails to capture the
wealth effect (Makarov and Schornick, 2010; Peress, 2003). It is then straightforward
in the LEN model that the firm is then able to hold the manager to his participation
constraint, since it can lower salary without affecting (/C'). But in our model, salary
affects the utility spread and therefore incentives. This is because the utility of wealth
and the disutility of effort enter the utility function separately. The utility function
we considered is in line with a large class of preferences assumed in the literature (see
Holmstrom et al. (1979)) and does not exclude the wealth effect. Under a general
form of risk aversion, risk preferences at any point depend on wealth at that point
(Cohn et al., 1975; Friend and Blume, 1975). In our model, specifically, because the
manager has concave utility and therefore diminishing marginal utility, for a fixed bonus,
a higher salary will cause the utility spread to shrink (since «'(s+b) < v/(s)). This will
decrease effort incentives. This is consistent with the fact that the LEN model does not
incorporate the wealth effect, but the impact on incentives does exist for a general class

of utility functions.

3.1 Simulation of the Optimal Contract

Observe that the optimal contract from (14) does not have a closed-form solution, so
simulation is necessary. However, the incentive constraint does not have a closed-form
solution either, so we cannot first derive the effort, e as a function of (s, b,t). Therefore
we use the “fmincon” function in MATLAB to solve the optimization problem. To

generate the simulation results, we take the following steps.

1. We assume C(e) = 0.5¢ce?, u(x) = /x, g(e) = N(0,0?). Further, we let ¢ = 0.1,

u=1.

2. We define a function named “nlcon(x, sigma)” in MATLAB to capture the con-

straints in the optimization problem. Here, x is a vector with four elements,
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Figure 4: Numerical simulations under cubic utility and mean-zero normal errors. The
graph shows the optimal contract as a function of sigma, when the outside option is

fixed at zero.

(s,t,b,e). We include both binding (IC) and (PC) constraints in this function.

Further, we also require (s,t,b, e) to be non-negative.
3. We multiply profit function (14) by negative one as our objective function.

4. We let o vary from 0.1 to 5 and calculate optimal = vector (s*,¢*,b* e*) that
minimizes the objective function under specified constraints and we obtain the

corresponding maximum profit derived from the minimized objective function.

Figure 4 shows numerical simulation from the example with cubic utility and normal
errors. MATLAB code is available on request. In the graph, we show the optimal
contract as a function of o. Notice that the optimal target always lies below equilibrium
effort. In addition, bonus increases with risk first, and when risk is large enough, the

bonus starts to fall in risk (in this case, approximately when o2 > 3.5? = 12.25). Thus,
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in this case with cubic utility, there is not always a risk-incentives trade-off as predicted
in linear contract. Under performance target contract with risk-averse manager, there
are two forces that affect the relation between bonus and risk. The first force comes
from the noise on the probability of clearing the target. In order to economize on the
costs associated with transferring risk to the agent, the firm reduces the target. The
second force comes from the risk-incentives trade-off, where the firm reduces the bonus
when risk increases, because the bonus loads risk onto the manger. The simulation result
suggests that both forces potentially contribute to the relation between bonus and risk.
When risk is low, the first force dominates. The risk-incentives trade-off dominates when
risk gets too high. Of course, even in this simple example, the implicit equations that
define both the manager’s and firm’s optimal solutions are sufficiently complex that the

optimal target and bonus are non-monotonic.

4 Comparison with Linear Contracts

To put our results in perspective, it may help to consider a simple example that illustrates

how performance target contracts can perform better than linear contracts. In this

section, we consider a liner contract where the wage paid to the manager is w(q) = s+bq
1.2

and agent’s cost of effort C'(e) = 5ce”.

4.1 Risk-neutral Manager

Suppose that the manager is risk-neutral and has a quadratic cost of effort C'(e) = %ceQ.
Output is ¢ = e+¢ as before, with the error term normally distributed, i.e., ¢ ~ N(0, 0?).

Under this specific model, the manager will pick effort é that maximizes expected utility:

1
EU = s+ bE(qle) — =ce®
2 (15)
1
=5+ be — 5662.

Solving manager’s problem we get é = b/c. In order to implement the first-best effort
e* = 1/c, the principal needs to pay the agent a bonus b=1. Asis common, assume
the manager faces an outside option u. The manager’s expected payoff must be at least
u—1/(2¢). The cost of

implementing e* is the manager’s expected wage of Fw = s+ be* = (u— 2%;) —i—% =u+ %

u to induce participation, EU > u. We will have salary §
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Indeed, when agent is risk neutral, the principal will “sell the firm” to the manager and
get the full surplus. Meanwhile, the agent will get “dollar-for-dollar” payoff for his own
effort.

From section 2.1, we know that the first best can be implemented by a performance
target contract with salary s = u+C(e*) —1/(2¢(0)), bonus b = b* = 1/¢(0), and target
t = e* = 1/c. Under this contract, the manager’s wage function is

w(g) = s*+0b ifg>e (16)

*

S otherwise.

The firm will get the (maximized) total surplus. The probability of success of reaching
the target is P = Prob(q > e*) =1 —G(e* —e*) =1 — G(0) = 1.

The cost of implementing e* is the same as the linear contract: Ew = P(s* + b*) +
(1—p)(s*) =s"+% =u+C(e*) = u+ 5. Therefore, when the agent is risk neutral,
both linear contract and performance target contract can achieve first-best effort and

the principal gets the total surplus under both contracts.

4.2 Risk-averse Manager with Mean-variance Preferences

Now consider a risk-averse manager with mean-variance preferences. First consider a

linear contract, where wage w = s + bq. Manager’s expected utility then becomes

EU, = B(w) — gV(w) —C(e) = s+ be — £b202 — O(e). (17)

leading to e = b/c for (IC). The subscript L denotes “linear.” The firm’s problem allows
substituting in (1C) and (PC), so expected profits are

(b)) = e — 26202 —C(e) — @ (18)

Maximizing profit over b gives by, = (1 + rco?)~!. So equilibrium profit is now

c 2
1 1 1
= — <r02 + —) — . (20)
c

c+rcto?  2(1+4rco?)?

2
C
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Under the performance target contract, the manager’s wage function is given by:

S B o
The probability of clearing the target is P = G(e — t). Observe that:
W — { (;9 +0)? with probability P (22)
S with probability 1— P.
Therefore, we can calculate:
E(w) = s+ bP, (23)
E(w?) = (s +b)*P + (s*)(1 - P) (24)
= 5% + P(b* + 2sb). (25)
= V(w) = BE(w?) — (Bw)? = Pb*(1 — P). (26)

The variance of the manager’s wage is a more complex function of the probability of
clearing the target. If this probability is extreme (either 0 or 1) then the variance is 0,
and the manager will simply maximize expected wage, as in the linear model with risk
neutrality. This should be intuitive because, if the manager is certain to succeed or fail,
there is no uncertainty in his wage contract.

Since the wage depends on whether the manager clears the target (which itself de-
pends on the realization of €), the wage is therefore a random variable. The manager’s
payoff is a function of the moments of the wage function. Represent the manager’s

mean-variance preferences as:
EU = E(w) — gV(w) — O(e).

where r is a constant absolute risk-aversion parameter. Inserting F(w) and V(w) into
EU:
EU = (s +bP) — ng2(1 — P)— Cle).

Maximizing expected utility with respect to effort and rearranging terms gives the
incentive constraint:
(b - 252(1 - 2P)) gle —t) = ce. (IC)
Because (PC) binds by Lemma 1, the firm’s expected profit given effort e is

e—(s+bP)=e— (a+gpb2(1 — P) +C(e)). (27)
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Figure 5: Profit of mean-variance preferences under performance target contract and the linear

contract.

Proposition 4 The optimal performance target contract under mean-variance prefer-

ence is characterized by the following system of equations:
(b - gbm - zp)) gle —t) = ce; (1C)

de  rbPgle—t)* + (b— (r/2)b*(1 — 2P))g'(e — 1)

3t e — 021 (b (/2L —2P))gc— ) — ¢ (28)
Oe _ —(L—=rb(1 —2P))g(e —t) ' (29)

b rb’gle—t)2+ (b— (r/2)b*(1 —2P))g'(e —t) — ¢’
(1~ byle — D)%+ fbgle — 1) —cc] = 0 (30)
[1—bg(e — t)]% =rbP(1—P). (31)

The proofs are in the Appendix. When r = 0, bg(e —t) = 1 by (31) and hence
1 = bg(e —t) = ce by (30). So the optimal contract implements the first-best effort
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e* = 1/c. For general r > 0, it is clear that there is no closed-form solution to the
optimal contract and the effort induced. Nonetheless, we were able to simulate some
insight into the question of the optimality of performance targets versus linear contracts
in this model of mean-variance preferences. This allows more of an apples-to-apples
comparison of the firm’s profit under the two contract types. Figure 5 shows plots for the
two different contracts. Overall, the performance target contracts strictly dominate the
linear ones, except when the agent has a low level of risk aversion or the risk is very low
(where the two profits differ by minimal amount).® In most other regions, performance
target contracts fare better than linear contracts. In reality, executive contracts are a
mix of both linear and performance target contracts, with discrete jumps and linear
regions in between them. This analysis studies the two extremes and the simulation

results lend support to the wide use of performance target contracts.

5 Conclusion

Until very recently, academic researchers have largely guessed what executive contracts
actually look like. In the face of such lack of knowledge about these specific contracts,
linear models are good first approximations, given their simplicity and robustness. This
has generated the large LEN literature in accounting and finance (on the theory side),
coupled with linear tests of the risk incentives trade-off (on the empirical side). Yet,
empirical tests of the risk incentives trade-off remain weak, and a comprehensive test
that combines models of actual contracts, with a precise fit to empirical data, remains
elusive.

Since the SEC required more disclosure of executive contracts in 2006, we now have
a better sense of what form CEO pay actually takes. A noteworthy feature of these
contracts is the reliance on a performance target of some kind, which involves an explicit
payout according to a pre-specified target. This paper models such contracts explicitly.
We show that under, risk neutrality, the performance target contract can achieve first-
best with a target precisely equal to the desired effort that the firm seeks to induce.

When the manager is sufficiently risk averse, the firm will shade the optimal target

8In our simulition results, we set vary o from 0.1 to 3 with a 0.1 interval. Linear contract outperforms
performance target contract when o = 0.1 and performance target contract starts to outperform linear
contract from ¢ = 0.2. This indicates performance target contract dominates linear contract most of

the time.
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below equilibrium effort to provide a form of insurance to the manager. Our paper
indicates that the performance target is indeed a powerful tool that provide the firm
with an additional instrument to resolve moral hazard problems with the manager.

Nevertheless, this paper generates a host of new intuitions and insights that can be
tested against executive pay data: (1) the optimal bonus increases in risk, (2) the target
provides insurance (in addition to the bonus) to help resolve the manager’s moral hazard
problem, and (3) how the optimal bonus and target fare against a linear contract. This
result is in contrast to the incentive-risk trade-off in traditional LEN model.’

The trend toward more disclosure makes executive contracts available to the analyst,
who can then tailor the theory and generate more precise empirical predictions than were
possible before. This new research agenda mixes theory with empirics at a more intimate
level, since the contract itself emerges from practice. We remain optimistic about how
future work can explore dynamic effects, earnings management, the informativeness
principle, team incentives, and many other theoretical questions regarding contracts
used in practice, of which performance targets are just one example.!® We hope that
future research can build upon our model and generate empirical implications that can

inspire future researchers to test those predictions against data.

6 Appendix

In Proposition 1, we claim that the contract t* = e*, b* = ﬁ, and s* = u+C(e*) — #(0)

is the optimal contract (with the smallest bonus). Claims 1 and 2 prove this proposition.

We first show that this contract uniquely implements the first-best effort e*.

Claim 1 Suppose that the distribution G satisfies max(_1/.q) g'(€) < cg(0). The contract
1

(s*,t*,b*) = (ﬂ + % — 1 1] ) uniquely implements e* = =,

29(0)7 ¢ g(0) c

‘When the agent is risk averse, optimal bonus first increases in risk and then decreases in risk.
Still this result suggest the relation between bonus and risk is contingent on the level of risk. Indeed,

empirical studies find mixed evidence on the relation between incentive bonus and risk.
10For example, an open question related with earnings management is the firm’s desire to discourage

earnings management. A full exploration of this phenomenon is outside the scope of this paper, but
worthy of future research. Bizjak et al. (2014) finds empirically that performance targets induce real
earnings management rather than accruals management, but to date there is no theoretical investigation

of this question.
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Proof: Note that ¢ = 1 and C(e*) = o-. First, we show that (IC) holds uniquely when

e=1=¢*"

Observe that the FOC holds when e = e*, i.e.,
b*g(e —t7) — C'(e)
=[1/9(0)]g(e = 1/c) — ce
=[1/4(0)]g(0) — 1

where the second equality is satisfied when we replace e by e* = 1/¢. Furthermore, the

SOC holds globally under our assumption, i.e.,
b*g/(e . t*) . C”(e)
=[1/9(0)]¢g'(e — 1/c) — ¢ < 0 for all e > 0.
This is equivalent to
g'(€) < cg(0) for all e > —1/c.

By the assumption of unimodal probability distribution, ¢’(¢) < 0 for alle > 0. So ¢'(¢) <
0 < cg(0) for all € > 0. Because the continuous function ¢’ satisfies maxy_q,.q ¢'(€) <
cg(0), ¢'(e) < cg(0) for all € € [=1/c,0]. Hence ¢'(¢) < cg(0) for all ¢ > —1/c and
equivalently [1/¢(0)]¢'(e — 1/c) — ¢ < 0 for all e > 0. So e* = 1/c is the unique
maximizer for the manager’s expected payoff given this contract.

Then we check (PC) is satisfied under this contract which implements e = e* = 1/c:
u(s)G(t —e)+u(s+b)G(e—t) — Cle)
=s+bG(e —t) — C(e)
=i +1/(2c) — 1/[29(0)] + [1/g(0)]G(e — 1/c) — (1/2)ce’
=i+ 1/(2¢) — 1/[29(0)] + [1/g(0)]G(0) — (1/2)c(1/c)”
=,
where the first equality follows from risk neutrality and the third equality is satisfied

when we replace e by e* =1/c. B

The condition max|_/0 ¢'(€) < cg(0) is satisfied under many distributions. For

example, the probability density function of the normal distribution with mean 0 and

variance o2 is g(€) = (1/v2m02)exp (—€*/(202)). Then g(0) = 1/v2n02 and ¢'(€) =
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(1/V2m02)[—¢/(0?)] exp (—€2/(202)). So ¢'(€) > 0 when ¢ < 0, ¢'(¢) = 0 when e =
0, and ¢'(¢) < 0 when ¢ > 0. Note that ¢”(¢) = (1/v2m0?)[1/(c?)] exp (—€2/(20?))
[(62)/(c?) —1]. Then ¢'(e) strictly increases in € for € < —o, reaches the global maximum
at € = —o, and strictly decreases in € for —o < ¢ < 0. A sufficient condition for

maxi_1/c0 g (€) < cg(0) is that
—1/2
_en(-1/2)
o

, (32)

i.e., the cost function is convex enough or the performance measure spreads out. This is
because the maximum value ¢'(—o) = (1/v2m0?)(1/0) exp (—1/2) and ¢g(0) = ¢/v/2m02.
If ¢(—0) < ¢g(0), then (1/0)exp(—1/2) < c¢. Therefore, the condition we provide in
the Claim (to guarantee the globally satisfied SOC') is general enough for sufficiently
convex cost functions.

Next, we show that (s*,¢*,b*) is the optimal contract that has the lowest bonus.

Claim 2 The contract (s*,t*,0*) = (u+ 1/(2¢) — 1/[2¢(0)],1/c,1/g(0)) is optimal and

the bonus is the smallest among all optimal contracts.

Proof: (PC) binds under (s*,t*,b*) by Claim 1. Because the firm maximizes her payoff
at the first-best effort e*, (s*,¢*,b*) is an optimal contract. We show that the bonus in
an optimal contract cannot be lower than 1/¢g(0). Because the effort implemented is e*
under an optimal contract, FOC must hold at e¢* under such contract. Otherwise, the
manager will make an effort other than e* by continuity and the firm is strictly worse off.
If the bonus is strictly lower than 1/¢(0), the first derivative of the manager’s expected
payoff at e* is then

bg(e* —t) — C'(e")
=bg(e* —1t) — ce”
=bg(e* —t)—1
<bg(0) — 1
<1—-1=0,

which implies a contradiction. Hence, the contract (s*,t*,0*) = (u+1/(2¢)—1/[2¢(0)],1/¢,1/¢(0))

is the optimal contract with the smallest bonus. l

Proposition 1 then follows from Claims 1 and 2.
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Proof of Proposition 2: We use second-order stochastic dominance to measure an
increase in the dispersion of the distribution. Assume g; for i = 1,2 are two probability
densities over the real line with mean 0 and finite variance that both satisfy the single-
peaked condition. Suppose G is second-order stochastically dominant over Gy. By

definition, for all w € (—o0, 00), we have S(w) < Se(w) and S;(00) = Sa(00) where

Si(w) :/ Gi(w)dw. (33)

Suppose g2(0) > ¢1(0). By the single-peaked condition, ¢ is increasing over its

negative domain, so ¢;(0) > g;(x) for each x < 0. Now ¢5(0) > ¢1(0), both densities are

strictly increasing, and they both integrate to the same value, G1(0) = G»(0) = 3, at

the end point of the interval (—oo,0). Then there exists a z € (—o0, 00) such that

g2(x) < g1(x), Vo < 2. (34)

Integrate both sides of this inequality over (—oo, z) for each < z to generate

Go(r) < Gi(x), Vx < z. (35)

Integrate over (—oo, z) to arrive at

Sa(2) < Si(2). (36)

This contradicts the definition of SOSD. Therefore g2(0) < ¢1(0), and so the optimal

bonus from Proposition 1 is

1 1
by = < = b3. 37
00 S w0 " 7
|
For shorthand, denote
A:=u(s+b) —u(s) >0and A" :=u'(s+b) —u(s) <0. (38)

because utility is increasing and concave.

31



Proof of Lemma 1: Suppose that for the cheapest contract (s,t,b) that induces an
effort e, u(s)G(t —e) +u(s +b)G(e —t) — C(e) > u. Let a = u(s)G(t —e) + u(s +
b)G(e —t) — C(e) —u > 0. Consider an alternative contract (s',¢',0’) such that ¢ = t,

u(s’) = u(s) — «, and u(s’' +b') = u(s + b) — a. Because

/

)G(t —e) +u(s +V)G(e—t) — Cle)
=[u(s) — a]G(t — e) + [u(s + b) — a]G(e — t) — C(e)
u(s)G(t —e)+u(s+b)Ge—t)—Ce) —
u(s)G(t—é)+u(s+b)Ge—t)—Cé) —a

=[u(s) — a]G(t — €) + [u(s + b) — a]G(e — t) — C(€)

=u(s)G(t —é) + u(s' + ')G(é — t) — C(é) for all ¢,
(I1C) still holds and the agent will still choose e. Moreover, u(s')G(t—e)+u(s'+b")G(e—
t)—C(e) = [u(s)—a|G(t—e)+[u(s+b)—a]G(e—t)—C(e) = u(s)G(t—e)+u(s+b)G(e—
t) — C(e) —a = u. So (PC) also holds. Then the contract (s',¢,0’) implements effort
e but gives the firm a strictly higher payoff (or a strictly lower payout) than (s,t,b),

u(s

Y

which contradicts the assumption that (s, t,b) is the cheapest contract that induces e. B

Proof of Lemma 2: The incentive constraint is
gle —)u(s+b) —u(s)] = C'(e) = ce.

Let e* be the manager’s effort induced in equilibrium. Suppose that g(e* —¢)[u(s +b) —
u(s)] > C’'(e*) = ce*. Because the distribution function and the marginal cost of effort
are continuous in effort, there is ¢’ > e* such that g(e —¢)[u(s+b) —u(s)] = Agle—1t) >
C'(e) = ce for all e € [e*, ¢/]. The manager’s expected payoff from selecting e* is

*

u(s) + AG(e* —t) — C(e*) = u(s) + AG(—t) + /06 (Ag(e —t) — ce)de.  (39)

On the other hand, the manager’s expected payoff from selecting €’ is
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u(s) + AG(e —t) — C(€)

=u(s) + AG(—t) + /06 (Ag(e —t) — ce)de

* el

—u(s) + AG(—1) + /0 " (Agle — 1) — ce)de + / (Agle — 1) — ce)de  (40)

8/

=lu(s) + AG(e* —t) — C(e")] + / (Ag(e —t) — ce)de

o
>u(s) + AG(e* —t) — C(e"),

where the inequality follows from Ag(e —t) > ce for e € [e*, €/]. This implies that e* is

not the equilibrium effort of the manager, which contradicts the hypothesis. Similarly,

we can show that the manager can improve his payoff by selecting a marginally lower

effort if g(e* — t)[u(s + b) — u(s)] < C’(e*) = ce*. This completes the proof. |

Claim 3 Assume that g" # 0 over R. The second-order condition for the manager’s
problem ¢'(e — t)A — ¢ < 0 holds at the effort induced.

Proof: Since ¢” # 0 over R, ¢ is not constant at the neighborhood of any point. So
the second derivative ¢'(e — t)A — ¢ is not constant at zero around the effort induced.
Note that ¢'(e — t)A — ¢ is a continuous function of e.

If g(é = t)A — ¢ > 0 for the effort é induced, then Ag(e —¢) —ce < 0 for e < é
and Ag(e —t) — ce > 0 for e > é by the (IC) condition proved in Lemma 2. Hence
the manager can improve his payoff by marginally increasing effort from the similar
argument shown in Lemma 2.

If ¢(é —t)A — ¢ = 0 for the effort é induced, either Ag(e —t) —ce < 0 for e # é
nearby or Ag(e —t) — ce > 0 for e # é nearby. The manager can improve his payoff
by marginally decreasing effort in the former case and by marginally increasing effort in
the latter case.

Therefore ¢'(é —t)A — ¢ < 0 at the effort é induced. W

In Proposition 3, we claim that the effort that is actually implemented can never
be less than the target under the optimal contract. This is shown by demonstrating
that a contract with a lower target would implement the same effort at a lower cost

for the firm. We include the technical discussion in the proof. In particular, we show
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that under the contract with lower target, the manager will select the equilibrium effort
even if there are other solutions to the (IC) constraint. The argument applies to any
(strongly) unimodal distribution. We prove Proposition 3 in a series of steps, which we
state and prove as claims.

It is clear that é # ¢ when the manager is risk averse. We first prove that if an
effort is implemented by a contract with target ¢ > e and spread A, it is implemented

by another contract with target ¢ < e and the same spread A as well.

Claim 4 If a contract with t = é + z implements effort é for some z > 0, then so does

a contract with t = é — z and the same spread.

Proof: Let (s,b,ty) be a contract generating effort é such that é < tgy. Let A =
u(s + b) — u(s) be the spread. Let z =ty —é > 0. We show that the effort é is also
implemented by a contract with ¢, = é — z and the same spread A. It is clear that
tp <ée<ty.

First, we claim that the (/C) condition holds for the contract with target ¢,. Note

that the spread A is the same for the two contract. Then we have
glé —t)A—cée=g(z2)A—cé =g(—2)A —cé =g(é —ty)A —cé =0, (41)

where the first equality follows from the definition of ¢, the second equality follows from
the symmetry of g, the third equality follows from the definition of z, and the fourth
equality follows from (IC') for the contract with target ¢5. Hence é is one solution to
the (IC') condition for the contract with target ty.

Next, we show that the manager will select ¢ under the contract with target ¢
even if there are multiple solutions to (/C'). Suppose that the manager’s payoff can be
maximized by an effort ¢/ # é under the contract with target t;. Since ce is strictly
increasing and g(e — t;)A is strictly decreasing in e > ¢, there is a unique solution
greater than ¢y, to (IC) for the contract with target ¢, which is é (é > ;). Further
because € # ¢, ¢ must be less than t;. Because we assume that the manager gets a

weakly higher payoff from ¢’ than é under the contract with target ¢,
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/e /é(Ag(e ) — ceVde

=[u(s) + AG(—tL) + /Oe(Ag(e —t) — ce)de] — [u(s) + AG(—tr) + /06 (Ag(e —tr) — ce)de]

=[u(s) + AG(é —t1) — C(€)] — [u(s) + AG(e' — t) — C(e")] <0,
(42)
where the inequality follows from the hypothesis. Furthermore, observe that g(e —

tg)A < g(e —tr)A for e < é under the unimodal distribution. Then we have

[u(s) + AG(é —ty) — C(é)] — [u(s) + AG(¢ —ty) — C(€')]

!

=lu(s) + AG(—ty) + /Oe(Ag(e —ty) — ce)de] — [u(s) + AG(—ty) + /Oe (Ag(e —ty) — ce)de]
= /le(Ag(e —ty) — ce)de

< /e(Ag(e —tr) — ce)de < 0,

’ (43)
where the strict inequality follows from g(e —ty)A < g(e —t;)A for e < é and €' < é.
Hence the manager’s expected payoff u(s) + AG(é — ty) — C(é) from selecting é under
the contract with target ¢y is strictly lower than the payoff u(s) + AG(e/ — ty) — C(€')
from selecting €’. This contradicts the assumption that the contract with target ¢y im-
plements the effort é. We therefore conclude that the contract with target ¢, implements

the effort é as well and that this is the unique solution to the manager’s problem. W

The low-target contract requires less salary and bonus to implement given that it

would yield the same expected payoff for the manager.

Claim 5 Let (s,b,t) be a contract that implements effort € < t. Then the salary and
bonus would be lower for another contract (s',0',2é — t) with the same spread if it gives

the manager equal expected payoff, i.e., s < s and b’ < b.

Proof: It is clear that 2¢ —t < é. We so call the contract with target ¢ high-target
contract, denoted by (s, by, tg), and the contract with target 2é —t low-target contract,

denoted by (sg,br,tr). Claim 4 shows that the manager will select effort é exactly under
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the contract with target ¢y, i.e., (IC) holds. We then show that the salary and the bonus
to induce the same payoff for the manager is lower under the contract with target ;.

Let @ be the manager’s expected payoff under the contract (sg,by,ty). Then
i =u(sy)+AG(é —ty) — C(é) = u(sy) + AG(—ty) + / (Ag(e —ty) — ce)de. (44)
0

By the assumption of unimodal distribution, g(e — ty)A < g(e — t;)A for e < é. So

/Oé(Ag<€ —ty) — ce)de < /Oé<Ag(e — 1) — ce)de.

Furthermore, —ty < —t;, < 0 and A > 0. This implies that AG(—ty) < AG(—tyL).
Hence, if the same payoff @ is induced by the contract with target ¢, the manager’s

salary sy, satisfies
u(sp) =u — [AG(—tr) + / (Ag(e —tr) — ce)de]
0

<t — [AG(—ty) + /Oe(Ag(e —ty) — ce)de]
:U(SH),

because the spread A is the same under these two contracts. The strictly increasing
payoff function u(-) implies that s; < sg.

Moreover, we have
u(sg +by) —u(sy) = A =u(sy,+br) —u(sg).
The marginal utility «'(+) is strictly decreasing because of risk aversion, so
u(sg +br) —u(sy) < u(sp +br) —u(sg).

It follows that
u(sg +br) —u(sy) < u(sy +by) —u(sy),

which implies by, < by by strictly increasing utility function. Bl

The next three claims will be useful in proving Lemma 4 that a low-target contract

is cheaper to implement for a sufficiently risk averse manager.
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Claim 6 If a twice continuously differentiable function f satisfies f"(-) > (<)(=)0, then

fla) + f(0)

s =)

(46)

Proof: For any z such that 0 <z <b—a,a<a+z <band a <b—2x <b. It is clear
that

(ﬂ@ flb—2)) = (fla+z) - f(a))

- [

a+x

= f(t—i—b—x—a)dt—/aﬂf'(t)dt

[f'(t+b—z—a)— f(t)dt

It follows that

:/0 af(a—i-x)dl'—f(a)(b_a)
~ [ 1wy - (e~ a).

The Inequality (46) then follows, because

F(a) + FB))(b— a) /f
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Claim 7 If a three-times continuously differentiable function h satisfies h''(-) > (<)
(=)0, then W is strictly increasing (strictly decreasing) (constant) in x > 0

for any given a.

Proof: We show that the first derivative of W with respect to x is positive
(negative) (zero) if A" (-) > (<)(=)0.
The first derivative is
d (h(a +x) — h(a— x)> [W(a+ )+ h(a—)](2x) - 2[h(a + ) — h(a — z)]
dx 2x 42
[W(a+ =)+ W(a—=)]/2 = [h(a+ x) — h(a — z)]/(2z)

T

_[Wlat o)+ Wla—2))/2— [T W (0t 20) (<)(=)0

T

it B”(-) = (W')" > (<)(=)0 by Claim 6. Hence for any a, %zh(“_x) is strictly increas-

ing (strictly decreasing) (constant) in x > 0 if () > (<)(=)0. &

Claim 8 If two contracts with the same spread (Sg,by,ty) and (sp,br,2é — ty) give
manager the same expected payoff, the low-target contract is less costly to implement if
and only if

uHu(sp) +A) —ut(ulsy))  ut(ulsy)+A) —ut(u(sg))

(u(sL) +A) — ulsu) - (u(sg) +A) —u(sy) (47)

where A is the common spread.

Proof: Claim 4 shows that the same effort € will be implemented. Since the manager

gets the same expected payoff from two contracts and G(ty — é) + G(t, — é) = 1,

u(sy)G(ty — é€) +u(sy +bu)[l — Gty —é)] — C(é)
=u(sy)G(t, —é) +u(sy +br)[l — G(t, —€)] — C(é)
It follows that [1 — G(ty — €)]/G(ty — €) = [u(s + br) — u(su)]/[u(sy + b)) — u(sg)].

The conclusion follows from the equivalent statements below: the expected payment is
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lower for the low-target contract than the high-target contract if and only if

SHG(tH—G) (SH+bH)[ (tH—é)] > SLG(tL—é)+(SL+bL)[1—G(tL—é)]
SsuyGty —é) +u N u(sy) + A1 — Gty — é)] > sp[l — Gty — )] +u H(u(sy) + A)G(ty — é)
S[1— Gty —e)]/G(ty —é) > [u (u(sy) + A) — sy

]
@u(sL +0br) —u(sg)  w(u(sp) +A) —ut(u(sy))
u(sg +by) —u(sp) ~ w N u(sy)+A) —u(u(sy))
Nu(sp) +A) —u ' (u(sn))
)

The next Lemma shows that the firm will implement a particular effort at lower cost

by low-target contract if the manager is sufficiently risk averse.

Lemma 4 Let A(w) = —Z/,l((g)) be the coefficient of absolute risk aversion, where w is
the wealth level.

(1) If A(w) > (%)(%” “)) for all w, a contract with the same spread and lower target

implements the same eﬁort at a lower cost for the firm than the contract with higher

target.

(2) If A(w) < \/ (5) (5

implements the same eﬁort at a higher cost for the firm than the contract with higher

) for all w, a contract with the same spread and lower target

target.

(3) If Alw) = \/ (5) (s

implements the same eﬁort at the same cost for the firm than the contract with higher

) for all w, a contract with the same spread and lower target

target.

Proof: In Claim 5, we have established that s; < sy and by, < by. So s; < sy <
sp, +br < sy + by, because if sy > s;, + by, the manager gets a strictly higher payoff

from the contract with higher target, i.e.,

)G (tH—e)+u(sH+bH)[1—G(tH—é)]—C’(é)

u(s
2> u(

(s, +br)G (tH — &) +u(sy +br)[l — Gty — )] — C(e)
(
(

V

u SL+bL) C(é)
>U SL) (tL — 6) + U,(SL + bL)[]_ — G(tL — é)] — C(é)
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We will show that if the manager is sufficiently risk averse, i.e., A(-) > (%)(i:/(())),

the expected compensation for the manager is lower under the low-target contract, i.e.,
SHG(tH — é) + (SH + bH)[l — G(tH — é)] > SLG(tL - é) + (SL + bL)[l - G(tL — é)] Then

the firm gets a higher expected payoff to induce é under the low-target contract.

By the third order derivative of Faa di Bruno’s formula,

d3w _ dw 4 (u”(w))2 "
A —(@) [ W — u"(w)]

— dw 4 u”<w> 2 1 "
dw ,

=(7) BA(w))*u (w) = u”(w)]

So if A(w) > (<)(=)4/(G)( /:,(w ), then du@,” > (<)(=)0, ie., % is a strictly convex

(strictly concave) (linear) function of the utility w.
ulse) +ulsu) + 4 . Observe that

Furthermore, let V =

2
u(sp) +A=V+ ulse) —ulsw) + A u(sy) =V — u(sp) —u(sg) + A
) ) H 9 ;
_ u(sy) —u(sy) + A B u(sy) —u(sy) + A
u(sg) +A=V+ 5 su(sp) =V — : ‘

It is clear that “(SH)_Z(SLHA > U(SL)_UQ(SHHA by Lemma 5. By Claim 7, if

o
du?

1 (V4z)—u N (V—2z)
2z

follows that
u (u(sp) +A) —u " (u(sr)) u(u(sp) + A) —uHu(sy))
(u(su) +A) —u(sL) (u(sp) +A) —u(syg)

By Claim 8, if Eq. (49) holds, the low-target (high-target) contract requires less pay-

is strictly increasing (strictly decreasing) (constant) in z > 0. It then

> (<)(=) (49)

ment on expectation given that the manager gets the same expected payoff. Therefore,

it Aw) > (<)(=)

target implements the same effort at a lower (higher) (the same) cost for the firm than

///

(%)(“,(w ) for all w, a contract with the same spread and lower

the contract with higher target. B

Suppose that the manager’s payoff is a power function, i.e., u(w) = w® for 0 < o < 1.

So the manager is better off with more wealth and also risk averse. Then u/(w) = aw®™,
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u'(w) = ala — w2, and u’”( = ala — 1)(a — 2)w*3. Tt follows that A(w) =

_a(aa:ﬂl(ziuf’2 (1 _ O{ -1 / ’:’((l:u 1a(a 10)651](1(1 21)w°‘ 3 _ /(1—a)3(2—o¢)w_1

So if 0 < a < 1/2, it is less costly to induce the low -target contract; if @ = 1/2, it is

equally costly to induce either contract; if 1/2 < a < 1, it is more costly to induce the

low-target contract. The threshold of risk aversion level is then 1/2.

Example 1 Suppose that u(-) = +/-, which is strictly concave. We illustrate that
the expected compensation is the same under the two contracts through the following
numerical example. Suppose that sy = 16, by = 9, s, = 12.25, by, = 8.  Then
u(sy +bu) = Vsu+by =5, ulsy) = /su =4, u(sp +by) = Vs +b, = 4.5, and
u(sg) = /5. = 3.5. Because the manager’s payoff is the same under these two contracts,
G(ty—e) =0.75 and 1 —G(ty —é) = 0.25. We can then verify that the expected payment

1s 18.25 under both contracts.

Proof of Proposition 3: By Lemma 4, if the manager is sufficiently risk averse, i.e.,
A() > (%)(%(())), then the firm will implement the same effort and give the manager
the same expected payoff, but make less expected payment by the low-target contract.
Hence any contract such that the target is greater than the effort cannot be optimal,
because there always exists a lower-target contract that implements the same outcome
at a lower cost. This implies that the target is less than effort in equilibrium under the

optimal contract. [ ]

Proof of Lemma 3: Note that (/C) defines the effort level implicitly. Write the

second-order condition from the manager’s effort problem as
gle—t)A—c<0. (SOC)
By Claim 3, the second-order condition holds at the effort induced.! Differentiate (1C')

with respect to the bonus:
Oe _ gle—t)u'(s+b)
ob  c—Ag(e—t)

This occurs because u is increasing and from the (SOC). Now, differentiate (/C') with

> 0. (50)

respect to salary:
de  gle—1t)A’

g_c—Ag’(e—t)<o (51)

11We actually do not need to require that the second-order condition hold for every effort level.
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from (SOC). Finally, differentiate (/C) with respect to the target:
de _ gle—HA
ot gle—t)A—c

because the marginal density is 0 at e = ¢, positive for effort less than ¢, and negative

> 0 if and only if e > ¢, (52)

for effort greater than t. [ |

By Proposition 3 we proved above, we know ¢ < é in equilibrium, and therefore the

derivative with respect to target is always positive in equilibrium.

Proof of Proposition 4: Recall that the incentive compatibility constraint is
(b - gb2(1 - 2P)> gle —1t) = ce. (1C)
By the Implicit Function Theorem, we get (28) and (29) from (/C):

Oe _ rbPgle—t)* + (b— (r/2)b(1 — 2P))g'(e — 1)
ot rb2gle—t)2+ (b— (r/2)b*(1 —2P))g' (e —t) — ¢

and de —(1 —rb(1 —2P))g(e — t)

b rh2gle — )2 + (b— (r/2)b2(1 — 2P))g'(e — t) — ¢’

Further, the firm’s problem has been reduced to

_Ipp(1-py— i
n&zg( {e 2Pb (1-P)—Cle) —u}

subject to (1C).

Taking first-order condition with respect to ¢, we get

de
ot
By (IC), £b*g(e—t)(1—2P) = bg(e—t)—ce. Replace 5b*g(e—t)(1—2P) with bg(e—t)—ce

in the equation above and obtain (30):

n— £b2g(e (1 —2P) — e 4 £b2g(e —#)(1 - 2P) = 0.

[1—bg(e— t)]% + [bg(e — t) — ce] = 0.

Taking first-order condition with respect to b, we get
- ngg(e —#)(1—2P) — ce}% —rbP(1 — P) = 0.
Replace 5b%g(e —t)(1 — 2P) by bg(e — t) — ce and obtain (31):

Oe
[1—bg(e— t)]% =rbP(1 — P).
Then (1C), (28), (29), (30), and (31) jointly determine the optimal contract. |
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