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Abstract: The combined effect of acrylonitrile butadiene styrene (ABS) spherical beads and granular
activated carbon (GAC) particles as fluidized media on the performance of anaerobic fluidized bed
membrane bioreactor (AFMBR) was investigated. GAC particles and ABS beads were fluidized
together in a single AFMBR to investigate membrane fouling and organic removal efficiency as well
as energy consumption. The density difference between these two similarly sized media caused the
stratified bed layer where ABS beads are fluidized above the GAC along the membrane. Membrane
relaxation was effective to reduce the fouling and trans-membrane pressure (TMP) below 0.25 bar
could be achieved at 6 h of hydraulic retention time (HRT). More than 90% of soluble chemical
oxygen demand (SCOD) was removed after 80 d operation. Biogas consisting of 65% of methane
was produced by AFMBR, suggesting that combined use of GAC and ABS beads did not have any
adverse effect on methane production during the operational period. Scanning Electron Microscope
(SEM) examinations showed the adherence of microbes to both media. However, 16S rRNA results
revealed that fewer microbes attached to ABS beads than GAC. There were also compositional
differences between the ABS and GAC microbial communities. The abundance of the syntrophs
and exoelectrogens population on ABS beads was relatively low compared to that of GAC. Our
result implied that syntrophic synergy and possible occurrence of direct interspecies electron transfer
(DIET) might be facilitated in AFMBR by GAC, while traditional methanogenic pathways were
dominant in ABS beads. The electrical energy required was 0.02 kWh/m3, and it was only about 13%
of that produced by AFMBR.

Keywords: anaerobic fluidized bed bioreactor; GAC; ABS media; energy reduction

1. Introduction

Media fluidization is one of the key aspects to determine the performance of AFMBR
in the treatment of low strength wastewater such as domestic sewage [1–3]. The media
materials fluidized by bulk recirculation alone through AFMBR provides a surface area for
cell growth [4–13]. While AFMBR is widely applied in wastewater treatment along with
the production of renewable energy in the form of methane, membrane fouling results
in the loss of performance of a membrane due to the deposition of rejected wastewater
constituents. GAC particles in AFMBR are often used to provide mechanical cleaning along
the membrane surface to reduce membrane fouling [6,14].

While GAC particles can be an excellent tool as fluidizing media [15–17], the particles
can be broken very easily by frequent collisions due to their weak rigidity during long-term
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reactor operation. This phenomenon should be more pronounced with larger media size, a
higher recirculation rate or mixing intensity through the AFMBR reactor [18]. As a result,
GAC particles that are ground into a smaller size can accelerate the membrane fouling
because the particles should be deposited on membrane surface or even within membrane
pores due to the formation of very dense cake layers easily [18–21]. Fluidizing the media
accounts for the major portion of the energy in the operation of AFMBR, but it can depend
strongly upon their intrinsic properties [5,22,23]. For example, higher specific gravity of
the media such as GAC than the bulk wastewater present in the reactor, which is often
higher than 2.0, requires more energy needed for the media fluidization than smaller ones.
Given that the packing ratio of GAC particles is lower, recirculation flowrate through the
reactor will be reduced, and thus less GAC particles are expected to be abrased during
media fluidization. Nevertheless, membrane fouling is still severe if the upward flowrate
is not enough for the GAC particles to cover the whole surface area of the membrane.

Significant efforts were made to apply various scouring agents such as zeolite [8,12,13]
and plastic agent [24–26] alternatives to the GAC in AFMBR, but only the usage of single
media has been considered. Moreover, the use of inorganic particles is still of concern for
practical applications because the particles are most likely abrasive in suspension to the
membrane. The ABS is a cost-effective, polystyrene-based polymer composite material that
has been used widely for various industrial applications [27–29]. The advantage of ABS
can hold excellent mechanical stability and chemical resistance. The ABS-based materials
should employ a low deformation rate. As a result, they can maintain intrinsic properties
suitable for long-term reactor operation, even under harsh environmental conditions [30].
Additionally, the ABS beads have lower specific gravity than the GAC, thus requiring
low energy consumption for their fluidization. However, the smooth surface of ABS
beads provides less surface area for the growth of biofilm than that by GAC [31–33].
The AFMBR was operated using plastic beads as single fluidized media for domestic
wastewater treatment application [24]. It was reported that bulk volatile suspended solid
(VSS) concentration was about 4–5 times higher than those reported with the AFMBR
system using the GAC, where most active microorganisms can be grown.

The objective of this study was to combine the GAC particles and ABS beads having
the different specific gravity and surface properties as fluidized media while having similar
sizes to investigate whether their combined usage is complementary and their microbial
communities on each media are similar in the AFMBR treating low-strength wastewater.
Specifically, this study examined whether combining ABS beads with GAC could have a
synergistic impact on the AFMBR performances such as fouling control, organic removal
efficiency and methane production. Although the characteristics of GAC as a biocarrier
has been widely researched [34], little is known about the capacity of ABS media to act
as a biocarrier and fouling mitigation in the presence of GAC with the AFMBR system.
Previous studies have primarily focused on the elimination of biofilm on ABS instead of
biofilm development, as ABS is commonly used in medical devices [35–37]. Thus, we
considered that there is a need to study whether ABS can support methane production
from a microbial perspective. In addition, the use of plastic beads was applied to reduce
the membrane fouling in the membrane bioreactor, but only single media has been used as
a scouring agent to clean the membrane [38,39]. Key questions, such as whether ABS beads
could harbor the appropriate microbial community for methane production and whether
biocarrier materials would also influence such community formation, hold important
implications for reactor performance. Therefore, it is necessary to investigate the impact of
using combined usage of media on microbial compositions and energy requirements, as
well as reactor performance, which is the key to successful AFMBR operation under the
dual media fluidization.
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2. Materials and Methods
2.1. AFMBR Operation

A laboratory-scaled AFMBR system was developed as shown in Figure 1 and applied
in this study. The reactor was made using acrylic materials with a total reactor volume of
4 L. A flat-tubular ceramic membrane consisting of alumina dioxide with a pore size of
0.5 um and an effective area of 0.1 m2 was applied. The membrane was submerged into
the AFMBR and operated by a peristaltic pump (Green Tech, GT-150d, Suwon-si, Korea)
at constant permeate flux. A sedimentation tank was installed at the upper part of the
membrane reactor to prevent the fluidized media from entering into the recirculation
pump (PAN WORLD, NH-150S, Ibaraki-ken, Japan). A recirculation pump was installed
at the bottom of the reactor for recirculating bulk suspension from the top of the settling
tank to the bottom of the membrane reactor to allow both media to be fluidized along the
membrane surface at 3 L/min (0.028 m/s). Synthetic feed wastewater was prepared by
using sodium acetate and sodium propionate with 300 mg/L of chemical oxygen demand
(COD). The 30 mg/L of ammonium nitrogen and 1 mg/L of phosphate was prepared by
using ammonium chloride and potassium phosphate, respectively. Sodium bicarbonate
with 100 mg/L was injected into a feed solution to maintain a neutral pH. A level sensor
was installed to maintain the water level in the reactor by controlling the feed pump.
The reactor was seeded by adding 200 mL of biomass, which is taken from the anaerobic
digester operated at the local sewage treatment plant. A Supernatant was added with
a 100 mL volume of 1% v/v into a feed tank to provide trace nutrients for the growth
of microorganisms. A Tedlar bag was installed at the top of the reactor to collect biogas
produced by AFMBR operated at room temperature.
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2.2. Selection of Fluidized Media

In this study, two types of media of GAC particles (Calgon Carbon, FILTRASORB 300,
Altoona, PA, USA) and ABS plastic beads (Terluran, GP-35, Frankfurt am Main, Germany)
were applied as fluidized media in AFMBR. Table 1 shows the characteristics of each media
used in this study. The specific gravity of GAC particles and ABS plastic spherical beads
was about 2.0 and 1.04, respectively. The size of ABS beads and GAC was about 2.5 and
1.5 mm on average, respectively. Each media was added at 25% of packing ratio into the
AFMBR reactor. Since the ABS plastic beads have a lower specific gravity, ABS could be
fluidized above the GAC particles at a constant bulk recirculation rate. In other words, the
bottom and the top half of the membrane area was covered by GAC particles and ABS
spherical beads fluidized, respectively, as demonstrated in Figure 1.

Table 1. Characteristics of fluidized media.

ABS Plastic Beads GAC Particles

Specific gravity 1.04 2.00
Diameter (mm) 2~3 1~2 (>0.84)
Surface area (m2/g) 0.28 700~1300
Moisture absorption (%) 0.95 2.00
Shape Flat-sphere Angular-sphere

2.3. Operation of AFMBR

Table 2 summarizes the operational conditions of the AFMBR during 180 d reactor
operation. Operational periods were classified into three phases, where different HRTs
were applied. The recirculation flow rate was fixed at 3 L/min to avoid the overflow of
ABS plastic beads from the reactor. In Phase I, the HRT was maintained at 8 h during the
initial three months of operation, which corresponded to 5.3 L/(m2h) of set-point flux. In
Phase 2, the HRT was reduced to 6 h by increasing the permeate flux to 7.1 L/(m2h). After
20 d reactor operation in Phase 2, the operational mode of the membrane was changed by
activating 1 min membrane relaxation every 9 min membrane filtration for 70 d (Phase 3).
Membrane relaxation was performed by maintaining the media fluidization along the
surface of the membrane without producing treated effluent (permeate).

Table 2. Operational conditions of AFMBR

Period 1 2 3

Day 0~90 91~110 111~180
Flux (L/m2h) 5.3 7.1 7.1
HRT (h) 8 6 6

Relaxation Filtration 9 min
Relaxation 1 min

Recirculation rate
(L/min) 3 3 3

Temperature (◦C) 25 25 25

2.4. Microorganism Analysis

Samples of bulk suspended liquid, GAC and ABS media were collected on day 168
during the steady-state condition, which is near the end of the operation. Samples were
preserved with ethanol and stored at −20 ◦C prior to DNA extraction. DNA extraction
was performed using PowerSoil DNA Isolation Kit (Qiagen, Venlo, Netherlands). 16S
rRNA gene sequencing was performed using Illumina HiSeq with universal primer sets
515F (5′-GTGCCAGCMGCCGCGGTAA-3′) & 909R (5′-CCCCGYCAATTCMTTTRAGT-
3′) for bacterial amplification and 519F (5′-CAGCMGCCGCGGTAA-3′) and 806R (5′-
GGACTACVSGGGTATCTAAT-3′) for archaeal amplification. Paired-end raw sequences
were processed using QIIME 2 v2020.6 [40]. High-quality sequences with a minimum
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quality score of 30 were obtained using DADA2 pipeline [41] for denoising. Taxonomic
classification was performed using pre-fitted sklearn-based taxonomy classifier [42] with
a SILVA 138 Ref NR database [43]. Visualization of the microbial composition was done
using Phyloseq [44]. Shannon index was selected to evaluate the alpha diversity. Principal
Coordinate Analysis (PCoA) was selected to evaluate the beta diversity using unweighted
UniFrac distance metrics.

2.5. Analytical Methods

In this study, SCOD and volatile suspended solids (VSS) of the bulk suspension, and
membrane permeate were measured by Standard Method [45]. The SCOD concentration
was measured after filtering the sample through a 0.45 µm pore size using cellulose nitrate
membrane filter (Whatman, CAT no.7184-004, Maidstone, UK). The VSS concentration was
measured by using a 1.2 µm glass filter (Whatman, GF/C, CAT no.1822-047, Maidstone, UK)
according to the Standard Method (No.2540). The removal efficiency (Rc) was calculated
according to the following equation.

RC = (1− CP
CF

)× 100% (1)

where CF is the concentration of the feed solution and Cp is the concentration of the
permeate solution, respectively. Composition of collected biogas was analyzed by us-
ing a Hewlett-Packard 6890 gas chromatograph (GC) equipped with a thermal conduc-
tivity detector (TCD) and a Hayesep D Packed Column 80/100 (Agilent Technology,
Santa Clara, CA, USA); 0.5 mL of gas from Tedlar bag was injected into the GC-TCD
by using the 1 mL gas-tight syringe (Hamilton, Reno, NV, USA). The methane production
was calculated with a collected biogas volume and methane composition [4]. The surface
of each media was observed by using a SEM (SU 8010, Hitachi Ltd., Tokyo, Japan) after
platinum coating. The soluble extracellular polymeric substance (EPS) concentration of
the bulk suspension was measured by a phenol-sulfuric acid colorimetric method [46].
Here, polysaccharides are assumed to be the major contributor to EPS and hydrolyzed by
sulfuric acid to react with phenol. A 50 mL of bulk suspension taken from the reactor was
centrifuged at 3200 rpm for 30 min. A deposit of the sample separated with supernatant
was then mixed with 2 mL of 5% phenol, after which 10 mL of 98% sulfuric acid was
added for about a 10 min reaction period at ambient temperature. Following the reaction,
a UV/visible spectrometer measured the absorbance at 490 nm. The absorbance was
compared against the calibration curve developed with glucose standard solution prepared
in the same way.

3. Results and Discussion
3.1. Effect of Fluidization of Combined Media on Membrane Fouling

Figure 2 shows the change of TMP with the time during the entire operational period
of the AFMBR system. During the initial 90 d of operation at 5.3 L/(m2h) of permeate flux,
which corresponds to 8 h of HRT, the TMP value was maintained at about 0.1 bar. After
that, an increase in permeate flux from 5.3 to 7.1 L/(m2h) accelerated membrane fouling,
showing a rapid increase in TMP to 0.45 bar at 110 d of AFMBR operation. Membrane
relaxation was then applied by performing combined media fluidization without producing
a membrane permeate for 1 min every 9 min of filtration. After that, the TMP was decreased
to the 0.25 bar gradually and then remained during the rest of the operational period.
However, further reduction in the TMP value below the 0.25 bar was not observed under
the periodic filtration/relaxation at 7.1 L/(m2h) of permeate flux.
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The reduction in membrane fouling due to the scouring effect caused by the fluidization of
GAC or plastic beads in AFMBR has been clearly shown in previous studies [22,24–26,38,47–51].
With a flat-tubular ceramic membrane, about 6 L/min of recirculation flow rate was needed
in AFMBR for the fluidization of GAC particles at 50 % of the packing ratio. With media
fluidization using the same membrane and reactor used previously, due to the lower
specific gravity of ABS plastic beads than GAC (1.04 vs. 2.0), the recirculation flow rate
needed to be reduced to 3 L/min to avoid the overflow of the ABS beads through the
recirculation line. That is, GAC particles could be fluidized along the bottom half of
the membrane only, while the above half of the membrane was covered by ABS plastic
beads (Figure 1). This fluidized stratification can be expected since the heavier particles
require a higher upflow velocity around the particles to cover the whole surface area of
the membrane [52]. In other words, the contact with lighter ABS plastic beads on the
membrane could result in a less physical impact to reduce membrane fouling.

There is a relationship between the diameter of fluidized media and scouring intensity
for the fluidized membrane reactor [53]. With bigger media, a higher recirculation flow rate
was needed and this resulted in an improvement of particle motion, thus enhancing the
cleaning efficiency on the membrane. In addition, more energy required to fluidize larger
media leads to higher critical flux below which membrane fouling does not occur [53].
Reduction in the recirculation flow rate to avoid the overflow of ABS plastic beads through
the reactor decreased a bulk upflow velocity along the membrane, and thus the fouling
mitigation efficiency could be decreased.

3.2. AFMBR Treatment Efficiency

Figure 3 shows the variation of SCOD concentration and biogas proportion in per-
meate and its removal efficiency with time observed during 180 d of AFMBR operation.
During the initial 30 d of operation, the SCOD removal efficiency was only 20 to 40% due
to the period required for microbial acclimation and the small rejection efficiency of organic
components by porous MF membrane as applied in this study. After 40 d of operation,
the SCOD removal efficiency started to increase gradually and then was maintained at
more than 90%. During the initial 30 days of operation, no biogas was produced from
the AFMBR, as shown in Figure 3b. At day 60, methane composed approximately 45%
of the biogas and then increased to about 65% after day 80. In addition, more than 90%
of SCOD removal efficiency was achieved and stabilized at this operational period, sug-
gesting that combined media fluidization consisting of GAC particles and ABS plastic
beads did not provide any adverse impacts on the organic removal efficiency. The SCOD
in bulk suspension and membrane permeate were almost similar, suggesting that most
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of the dissolved organic compounds should be removed by biodegradation rather than
membrane filtration.
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Table 3 shows the mean value of AFMBR performance for each operational period. As
a set-point flux was 5.1 L/(m2h), the bulk VSS concentration was maintained as 370.8 mg/L
on average under which the TMP value was only about 0.1 bar, probably due to the scouring
action of combined media to the clean membrane. Furthermore, it was also found that a
higher permeate flux resulted in a lower bulk VSS concentration. As the flux increased
to 7.1 L/(m2h), the bulk VSS concentration reduced to 60 mg/L, but the TMP jumped
to 0.45 bar. A possible explanation for this is the transport of VSS present in reactor
bulk toward the membrane surface could be more pronounced at a higher permeate flux,
resulting in a higher fouling rate [21,54]. In other words, fluidizing plastic ABS beads and
GAC particles together along the membrane surface was not very effective to reduce the
fouling rate at 7.1 L/(m2h) of permeate flux as applied in this study.
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Table 3. The mean value of AFMBR performance during each operational period.

Period 1 2 3

Day 0~90 91~110 111~180
SCOD removal (%) 58.5 ± 28.3 89.3 ± 4.4 95.3 ± 3.2
VSS in bulk (mg/L) 370.8 ± 100.0 60.0 ± 28.9 211.7 ± 92.5
Biogas (L/d) <1 1 1
Methane (CH4, %) 37.1 ± 27.3 60.1 ± 5.1 56.3 ± 2.5

After performing the membrane relaxation, bulk VSS concentration was increased
significantly to 211.7 mg/L, but TMP was reduced to 0.25 bar. This can support the fact
that the media fluidization with GAC and ABS beads on membrane without conducting
the permeation is effective to detach the foulant materials from the membrane. The VSS
concentration in membrane permeate was near zero during the whole operational period,
suggesting that the VSS should be rejected by the membrane almost completely. The EPS
concentration in the bulk suspension measured at the end of the operation was 106.4 mg/L.
This value was slightly higher than that measured under the fluidization of single GAC [55],
but lower than that measured by plastic bead alone as fluidized media in the AFMBR
treating the same synthetic wastewater [24]. Although a direct comparison is difficult, our
observation suggests that more biomass can be grown on the GAC particles, probably due
to the higher surface area provided, thereby lowering the concentration of EPS in bulk
suspension than when only the plastic bead is used. In the first 30 d of operation, no biogas
was produced by the reactor. From the 60 d of operation, however, methane composition in
the biogas produced by single AFMBR was increased gradually and approached about 63%
at 80 d of operation. After reactor stabilization, the methane composition in biogas was
maintained at a rate higher than 55% regardless of the change in bulk VSS concentration
under combined media fluidization.

3.3. Microbial Analysis

Figure 4 compares SEM images of GAC particles and ABS plastic beads taken from the
AFMBR after 180 d of operation. As expected, the surface of bare GAC particles appears
to be rougher and more porous than ABS plastic beads (Figure 4a,c). Thus, the biofilm
may be grown on the GAC particles favorably, as shown in Figure 4b. Interestingly, there
was considerable evidence that the ABS plastic beads provided a surface for the growth of
microorganisms with a spherical morphology (Figure 4d). The hydrophobic surface of ABS
beads may be involved in the adhesion of microorganisms [56–58]. However, more studies
are needed to better understand interactive biofilm formation on polymeric materials such
as ABS.

To further evaluate the microbial compositions in the combined media, we performed
16S rRNA gene sequencing on bulk liquid, GAC and ABS beads. The samples were
collected on day 168, during which the biogas production and methane composition had
reached a steady state. Thus, the samples can represent matured microbial communities.
Significant differences in the number of clean sequences between GAC (archaeal: 4788;
bacterial: 49918) and ABS beads (archaeal: 1681; bacterial: 15033) were observed, while
bulk (archaeal: 4817; bacterial: 57211) and GAC were comparable. Considering that the
samples were processed using the same protocol, it is most likely that the low sequence
count is attributed to the low DNA recovery from the ABS media. Although the SEM
images suggested that microbes adhered to the surface of both media, the 16S rRNA gene
data suggested that ABS harbored fewer microbes than GAC.

The Principal Coordinates Analysis (PCoA) visualized the difference in microbial com-
position among each sample (Figure 5). The separation among the three samples indicated
that their microbial composition was distinctively different. Based on bacterial composition,
the fluidized media were more similar than bulk liquid (Figure 5a), and this is mainly
attributed to the lower abundance of Proteobacteria on both media (28 to 30%) as compared
to bulk liquid (50%) (Table 4). Between GAC and ABS beads, compositional differences (2
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to 8%) in the phyla Firmicutes, Patescibacteria, Planctomycetes and Spirochaetes further
distinguished the two media. In terms of archaeal composition, on the contrary, GAC
and bulk liquid shared a more similar profile (Figure 5b). In particular, the uncultured
Ca. Methanofastidiosales was absent in both bulk liquid and GAC, but was present on
ABS (4.4%). These observations collectively suggest that biofilm and bulk communities
in AFMBR are distinct from each other, corroborating with previous studies [59,60]. Col-
lectively, biocarrier material is also a determining factor in how the microbial community
is shaped.
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Figure 6 illustrates the distribution of syntrophs, exoelectrogens, and methanogens to
focus on how these substrates were consumed in different media. Based on taxonomic clas-
sification, the microbial metabolism on GAC and ABS beads were examined and compared.
The syntrophs accounted for 9.29% of the bacterial population in the GAC sample, which
mostly consisted of propionate-degrading Syntrophobacter (8.46%). It also harbored exoelec-
trogens such as Desulfobulbus and Geobacter with relative abundances of 3.32% and 2.12%,
respectively. The sulfate-reducing Desulfobulbus reportedly utilizes propionate for growth
and produces acetate under a sulfate-limiting environment, as is the case with our sys-
tem [61]. This taxon was previously observed in an AFMBR system using polyvinylidene
fluoride (PVDF) as a scouring agent and biocarrier [59], but its role in AD metabolism is still
unclear. Aceticlastic Methanothrix (28.8%) and an unclassified Methanomicrobia (38%) were
dominant methanogens in the GAC; the remaining methanogenic community consisted
of hydrogenotrophic methanogens. Since acetate and propionate were used as carbon
sources in the synthetic feed, Syntrophobacter was likely to convert propionate into acetate
and hydrogen. While the hydrogenotrophic methanogens utilize hydrogen, acetate can
then be utilized by Methanothrix for acetoclastic methanogenesis. Moreover, Geobacter can
consume acetate and extracellularly release electrons that are used by Methanothrix via
direct interspecies electron transfer (DIET) [62]. Under such circumstances, Methanothrix
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could utilize CO2 as the carbon source for methanogenesis, which would otherwise be
impossible without its exoelectrongenic partner [60]. Although bulk liquid also contains
Geobacter (1.3%), the currently known mechanisms of DIET requires proximity to function
and is unlikely to occur in the suspension of liquid [62].

Membranes 2021, 11, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 5. Principal coordinate analysis (PCoA) performed on microbial community structure dissimilarity. A weighted 
UniFrac distance metric was used to evaluate the compositional difference with the account of the relative abundance 
distribution. Samples were colored by their sample type. The size of the node was based on the value of the Shannon 
diversity index, which measures the richness and evenness of the microbial community. Panel (a) shows the result of the 
bacterial communities; panel (b) shows the results of the archaeal communities. 

Table 4. A heat map of bacterial composition at the phylum level (relative abundance > 1%). 

Phyla Bulk GAC ABS 
Acidobacteria 0.0081 0.0351 0.0459 
Bacteroidetes 0.1964 0.1601 0.0987 
Caldiserica 0.0032 0.0187 0.0124 
Chloroflexi 0.0851 0.1701 0.1671 
Firmicutes 0.0099 0.0162 0.0423 
Omnitrophicaeota 0.0053 0.0345 0.0346 
Patescibacteria 0.0352 0.1611 0.0768 
Planctomycetes 0.0106 0.0197 0.0685 
Proteobacteria 0.5090 0.3071 0.2854 
Spirochaetes 0.0082 0.0090 0.0364 
Synergistetes 0.0031 0.0183 0.0180 

Figure 6 illustrates the distribution of syntrophs, exoelectrogens, and methanogens 
to focus on how these substrates were consumed in different media. Based on taxonomic 
classification, the microbial metabolism on GAC and ABS beads were examined and 
compared. The syntrophs accounted for 9.29% of the bacterial population in the GAC 
sample, which mostly consisted of propionate-degrading Syntrophobacter (8.46%). It also 
harbored exoelectrogens such as Desulfobulbus and Geobacter with relative abundances of 

Figure 5. Principal coordinate analysis (PCoA) performed on microbial community structure dissimilarity. A weighted
UniFrac distance metric was used to evaluate the compositional difference with the account of the relative abundance
distribution. Samples were colored by their sample type. The size of the node was based on the value of the Shannon
diversity index, which measures the richness and evenness of the microbial community. Panel (a) shows the result of the
bacterial communities; panel (b) shows the results of the archaeal communities.

Table 4. A heat map of bacterial composition at the phylum level (relative abundance > 1%).

Phyla Bulk GAC ABS
Acidobacteria 0.0081 0.0351 0.0459
Bacteroidetes 0.1964 0.1601 0.0987
Caldiserica 0.0032 0.0187 0.0124
Chloroflexi 0.0851 0.1701 0.1671
Firmicutes 0.0099 0.0162 0.0423
Omnitrophicaeota 0.0053 0.0345 0.0346
Patescibacteria 0.0352 0.1611 0.0768
Planctomycetes 0.0106 0.0197 0.0685
Proteobacteria 0.5090 0.3071 0.2854
Spirochaetes 0.0082 0.0090 0.0364
Synergistetes 0.0031 0.0183 0.0180
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Figure 6. Microbial compositions illustrated in relative abundance at the genus level. Panel (a) shows the propionate-
degrading syntrophic bacteria and exoelectrogens. Panel (b) shows the archaeal communities; non-methanogenic archaea
are excluded.

In the ABS sample, the relative abundance of Syntrophobacter (2.01%) and Geobacter
(0.65%) were lower than in the GAC, suggesting that the syntrophic synergy and occurrence
of DIET were relatively limited. While ABS harbored a higher percentage of Methanothrix
(38.32%), it is most likely to produce methane via the acetoclastic pathway, as the Geobacter
was in low relative abundance (0.65%). Besides, Syntrophobacter only accounted for 2.01%
of the bacterial population in ABS beads, and the total syntrophic population is about
3.15%. Such synergy helps to maintain a thermodynamically favorable environment for
the degradation of metabolites in the anaerobic digestion system [63]. While ABS beads
could act as a biocarrier to facilitate the development of a syntrophic relationship between
syntrophs and methanogens, the syntrophic synergy could be limited. It is plausible that
compared to GAC, a more extended enrichment period is required for the development
of a syntrophic population on ABS beads, although more studies would be needed to
verify this.

3.4. Energy Requirements

The energy requirement of the pump for operating AFMBR was estimated using a
power requirement equation as follows [55]:

P =
QγE
1000

(2)

where P is the power requirement of the pump (kW), Q is the recirculation flow rate of
bulk suspension (m3/s), γ is 9800 N/m3, and E represents hydraulic pressure head loss for
fluidization (mH2O).

Table 5 shows the calculation of the energy demand and energy production of AFMBR
applied with dual media fluidization in this study. Assuming that the efficiency of the
pump is 65%, the total energy requirement is calculated as 2.03 × 10−2 kWh/m3. When
converting methane in the generated biogas to electrical energy with an efficiency of 33%,
it was calculated as 1.62 × 10−1 kWh/m3 and the generated amount compared to the
consumed amount was 7.97 times higher than the energy required to operate AFMBR.
At 6 L/min of recirculation flow rate, as only GAC particles were applied as fluidized
media under 50 % of the packing ratio, the total energy required at this condition was
3.09 × 10−2 kWh/m3 [55]. As mentioned, combined use of GAC and ABS beads requires
less energy than that needed by using a single GAC under the same total packing ratio
(50%) due to a lower recirculation flow rate required. Therefore, the combined use of both
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media provides a beneficial effect on reducing the operational costs of AFMBR while the
fouling mitigation efficiency may be relatively low.

Table 5. Energy balance for electrical energy requirements and potential production with AFMBR.

Electrical Energy Required

- Energy for media fluidization and influent AFMBR
- Reactor head loss (mH2O) 1.00 × 10−2

- Reactor influent plus recirculation flow rate (m3/s) 5.01 × 10−5

- Fluidization energy requirement (kW) 4.92 × 10−6

- Required pumping energy (kWh/m3) 9.84 × 10−3

- Energy for permeation (permeate production)
- Average TMP (mH2O) 1.23984
- Permeate flowrate (m3/s) 1.47 × 10−7

- Permeate energy requirement (kW) 1.79 × 10−6

- Required pumping energy (kWh/m3) 3.38 × 10−3

- Total pumping energy (fluidization + permeation) (kWh/m3) 1.32 × 10−2

- Total electrical energy required for pumps
(fluidization + permeation (kWh/m3) (65%) 2.03 × 10−2

Electrical Energy Production Potential from Methane
- Methane production (mol/m3 wastewater) 2.23
- Methane energy content (kWh/m3) (0.22 kWh/mol CH4) 0.49
- Electrical energy production from methane (kWh/m3) (33%) 1.62 × 10−1

Required/produced energy 12.55%
Electrical energy produced/required 7.97

4. Conclusions

Combined media fluidization using GAC particles and ABS plastic beads in single
AFMBR exhibited fouling mitigation effectively while limiting the TMP value to less
than 0.2 bar at 6 h of HRT. Nevertheless, a high organic removal efficiency (>90%) was
achieved with the production of stable methane composition in the biogas as the two
solid media were fluidized together. Microbes adhered to both media, but the microbial
community was dependent upon the biocarrier material. The number of sequences was
similar between GAC and bulk suspension, while fewer sequences were observed for ABS.
Additionally, syntrophs and exoelectrogens population were more abundant on the GAC
particles than the ABS beads. Therefore, it was more likely that DIET was utilized for
methane production in GAC, while the microbes in ABS more heavily relied on traditional
methanogenic pathways. The electrical energy required with dual media fluidization was
only 0.02 kWh/m3, which was 87% lower than the energy produced by AFMBR system.
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