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Abstract—Deep learning is becoming an indispensable 
tool for imaging applications, such as image segmentation, 
classification, and detection. In this work, we reformulate a 
standard deep learning problem into a new neural network 
architecture with multi-output channels, which reflects 
different facets of the objective, and apply the deep neural 
network to improve the performance of image 
segmentation. By adding one or more interrelated auxiliary-
output channels, we impose an effective consistency 
regularization for the main task of pixelated classification 
(i.e., image segmentation). Specifically, multi-output-
channel consistency regularization is realized by residual 
learning via additive paths that connect main-output 
channel and auxiliary-output channels in the network. The 
method is evaluated on the detection and delineation of 
lung and liver tumors with public data. The results clearly 
show that multi-output-channel consistency implemented 
by residual learning improves the standard deep neural 
network. The proposed framework is quite broad and 
should find widespread applications in various deep 
learning problems.  

 
Index Terms—Artificial intelligence, cancer detection, 

neural networks, regularization, residual learning, 
segmentation 

I. INTRODUCTION 

ELINEATION via pixel-level understanding (e.g., 

semantic segmentation) is one of the basic tasks among 

many applications of computer vision [1, 2] and biomedicine 

[3-9]. However, manual delineation of objects is labor-intensive, 

time-consuming, and suffers from inter-/intra-operator 

variations that often appear in radiomic features [10-12]. 

Especially, medical image analysis requires more expert-level 

delineation and higher coherence among the results. Therefore, 

significant efforts have been devoted to automate segmentation 

algorithms to cope with limitations of manual delineations.  

Algorithms based on Deep learning (DL) have attracted 

much more attention in image segmentation, due to their 
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intrinsic ability to learn complex relationships to incorporate 

prior information into network models in a data-driven manner 

[9, 13]. For example, Li et al. [14] devised a hybrid network 

that takes advantage of both 2D and 3D networks for liver and 

liver tumor segmentation in CT images. Multiple cascaded 

networks have been introduced for better performance [15]. Seo 

et al. [8] designed a network for liver tumor segmentation that 

can efficiently use object-edge information to cope with the 

boundary loss in the pooling operation. A modulation scheme 

of the loss function has been studied to handle class imbalance 

problems [16]. The increasing number of challenges (e.g., 

BraTS [17], LiTS [18], KiTS [19]) show widespread use of DL 

algorithms in semantic segmentation of medical images. While 

promising, the performance of DL-based methods is often 

hindered by insufficient training data or imperfect network 

architecture design. This situation is aggravated for medical 

image analysis, as the training dataset is much more limited 

than that for natural image applications. 

In general, a neural network learns from a large set of training 

data under the guidance of a loss function, which drives the 

search for optimal network parameters by quantifying the 

difference between the model prediction and the ground truth. 

Nevertheless, minimizing a pre-defined loss function alone for 

a given set of training data does not always yield the optimal 

prediction. One of the major problems that affect the learning 

procedure is overfitting [20]. It has long been known as a 

bottleneck that degrades the performance of resultant inference 

model in the testing data and hinders the maximal utilization of 

the DL technique. Many techniques have emerged to reduce 

overfitting [21], such as dropout [22] and batch normalization 

[23]. However, further increasing the network training 

efficiency under limited training data remains an open problem. 

In this paper, we design an effective network architecture to 

improve the network performance under limited training dataset 

for medical image analysis. To this end, we present an effective 

regularization scheme based on multi-output-channel 
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consistency. The key idea here is to address the segmentation 

problem by a neural network architecture with multiple output 

channels, reflecting different facets of the original learning task. 

Specifically, we formulate the original segmentation task as the 

main-output channel and additionally incorporate other closely 

related tasks as auxiliary-output channels while maintaining the 

consistency between the channels. Algorithmically, it is 

realized by sharing the encoders and adding additive paths 

connecting the main-output and auxiliary-output channels in the 

network. By sharing the representation between the main-

output channel and related auxiliary-output channels, we enable 

the network to learn more discriminative and generalizable 

features and thus achieve better performance on the original 

segmentation task. Notably, the proposed scheme requires no 

additional datasets for model training, since the labels for 

auxiliary outputs are derived from the input images with 

original labels. Recently, Zamir et al. [24] have presented the 

study of cross-task consistency at CVPR 2020, but a major 

difference with the proposed method is that their model 

concentrates on consistency constraint between the output tasks 

for different objectives. On the other hand, we use relevant tasks 

under the same objective and adopt a residual-learning-based 

strategy to achieve such consistency regularization. The 

performance of our method is demonstrated on the lung and 

liver tumor delineation problems. The experimental results 

clearly show that our network outperforms the state-of-the-art 

DL networks by a considerable margin, i.e., an average 10% 

Dice improvement in segmentation tasks. 

The main contributions of this paper are summarized as 

follows. 

• We establish an efficient DL framework for medical 

image segmentation tasks. Our framework improves the 

network performance under limited medical training 

data scenarios. 

• We formulate the original segmentation task as by 

introducing a deep neural network with consistency 

regularization of multi-output channels (i.e., the main-

output channel and additionally leverage auxiliary-

output channels) for more discriminative and 

generalizable feature extraction. We further design 

additive paths connecting the main-output channel and 

auxiliary-output channels to adopt residual learning for 

multi-output channel consistency.  

• Extensive experiments on two representative and 

challenging tumor-delineation tasks demonstrate the 

effectiveness of our method and outperforms the state-

of-the-art methods by a large margin. 

The remainders of this paper are organized as follows. We 

discuss the related works in Section II and elaborate the 

proposed framework in Section III. We present the 

experimental conditions and results in Section IV, and further 

discuss the key points of our method in Section V. Then, we 

draw the conclusions in Section VI. 

II. RELATED WORK 

A. Medical Image Segmentation 

Previous research on tumor segmentation was primarily 

focused on image-based modeling, which includes intensity-

based thresholding [25], atlas-based models[26], deformable 

models [27, 28], or super-pixel method [29]. Although these 

approaches can produce good results, their performance 

depends heavily on the design or manual selections of heuristic 

model component(s), such as the choice of hand-crafted 

features (e.g, the lesion diameter and volume annotated by a 

radiologist) and the more robust radiomics features extracted 

via feature engineering [30, 31]. To incorporate statistical 

distribution of the patient data to improve the image 

segmentation problem, graph model-based methods [32, 33] 

were applied. Recent advances in DL tapped more potential in 

machine learning [34-37]. DL algorithms have been applied to 

various semantic segmentation problems, such as liver 

segmentation [38, 39], organ-at-risk segmentation in head and 

neck [40, 41], prostate segmentation [42], and brain structure 

and tumor segmentation [43, 44]. Most of the recent DL-based 

segmentation algorithms are based on U-Net architecture [45] 

with skip connections, e.g., dense structure [46]. It is 

worthwhile to note that generative adversarial network (GAN) 

that adversarially train two networks [47] has also been applied 

to image segmentation. 

B. Network Regularization 

DL usually provides better solution than classical algorithms 

for semantic segmentation. Nonetheless, it has room for 

improvement and there is a need to explore feature space more 

efficiently, especially when the network contains too many 

parameters to be optimized or when it is trained with 

insufficient training data. Several advanced network 

regularization techniques have been developed for improved 

learning, such as dropout [22] and batch or group normalization 

[23, 48]. Regularization on the loss function during the 

optimization process has also been sought after [49, 50]. 

Recently, shakeout [51] extended the dropout regularization 

and achieved a slight gain via a careful hyper-parameter 

selection. Regularization by latent space e.g., the least absolute 

shrinkage and selection operator (LASSO)-based algorithms 

has also been investigated [52, 53]. Finally, prior information 

can also be utilize to regularize the deep neural network [54]. 

These regularization mechanisms steadily improve the network 

performance on various image recognition tasks. 

III. METHOD 

A. Overview 

To conduct tumor detection and delineation, in general, the 

network can directly predict the tumor binary masks from the 

input image. However, only predicting the binary mask of 

tumors may not always produce the optimal results, as the 

network could be biased to that task. The semantic 

segmentation typically requires visual expression to show the 

results of pixelated classification. Finding the binary mask is 
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one way to proceed. In reality, other representations of the 

pixelated classification may exist. Including these 

representations by introducing auxiliary tasks related to the 

original one would provide guidance in learning and ease the 

model training (i.e., regularization). Here, we propose to take 

advantage of different facets of the original tumor delineation 

task with multiple output channels via residual learning scheme. 

Figure 1 is an overview of our proposed consistency 

regularization network. Besides predicting the tumor binary  

masks in the main-output channel, the network also 

incorporates several auxiliary-output channels for relative 

prediction tasks. These auxiliary-output channels restore the 

information of input images in different ways (e.g., the original 

input image or clustered input images) as well as output the 

tumor delineation. Both the main and auxiliary-output channels 

are incorporated in the end-to-end learning so that each output 

channel is able to utilize the multiple-output-channel 

consistency to facilitate their predictions.   

In the following subsections, we elaborate (1) how to 

incorporate the multi-output-channel consistency into network 

training, and (2) how to efficiently combine the information 

acquired from multiple output channels in the feature space. In 

our network, the encoding parts of each output channel are 

shared [55, 56], which extracts representative and generalizable 

features from multiple output channels. In addition, each output 

channel is bound by skip connections, i.e., additive paths. The 

skip connections between the different outputs of networks ease 

the residual learning to achieve multi-output-channel 

consistency. 

B. Residual Learning for Multi-Output-Channel 
Consistency 

Residual learning has been studied previously [57, 58]. The 

introduction of a skipping path in the residual learning 

simplifies the network architecture and reduces the need for 

training data. Here, we adopt the residual learning of correlated 

multiple tasks that can effectively reduce the search range in the 

feature space. In our proposed network the consistency 

regularization scheme is implemented by the additive paths 

among relevant multiple-output tasks. Assume that 𝑓𝑧(𝐱; 𝜽) is 

the parameterized function to map the input vector 𝐱 to right 

before the additive paths in each output channel. Here, 𝑧 ∈
{0,1, ⋯ 𝑐0 − 1}, 𝑐0 is the number of output channels or tasks 

taken in account, and 𝜽 is the network parameters. Given the 

𝑓𝑧(𝐱; 𝜽), we can define the output (prediction) of each channel 

as follows, 

 

𝐏0 = 𝑓0(𝐱; 𝜽) for the main-output channel,       (1) 

𝐏𝑧 = 𝐏0 + 𝑓𝑧(𝐱; 𝜽)|𝑧≠0 for the auxiliary-output channels.   

(2) 

Using Eqs. (1) and (2), 𝐏0 for the main-output channel can be 

rewritten as follows, 

 

𝐏0 =
1

𝑐0
[𝐏0 + ∑ {𝐏𝑧 − 𝑓𝑧(𝐱; 𝜽)}

𝑐0−1
𝑧=1 ] for the main-output 

channel.                                     (3) 

Eq. (3) suggests that the residual learning for 𝐏0  can be reached 

by the main-output channel (𝐏0) itself. Therefore, all output 

channels in our model conduct the residual learning for 𝐏0 , 

leading to refined 𝐏0. In other words, residual learning is an 

effective way to utilize multi-output consistency. In section VII 

(APPENDIX), the mathematical approach and associated 

optimization process for the proposed network is explained in 

detail. 

C. Network Architecture and Training Details 

A state-of-the-art segmentation architecture, mU-Net [8], 

was applied as the backbone network. To increase the network 

capacitance, the feature encoder for all output channels were 

shared, as shown in Fig. 2. We applied three different output 

types for tumor segmentation with three different decoding 

paths in our framework.  

As shown in Fig. 3, the main-output prediction 𝑝0  is the 

binary mask of tumors (i.e., tumor delineation with binary 

 
Fig. 1.  Illustration of multi-output-channel consistency scheme. The whole framework is composed of different but related output channels to guide network 

learning. 
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masking); the auxiliary-output prediction 𝑝1 is the combination 

of tumor-contour delineation and the original input image 

restoration; and the auxiliary-output prediction 𝑝2 is the tumor 

delineation with intensity-based input-image clustering. In 

other words, 𝑝2  has the simple structure information of the 

image and tumor-mask information. 

The convolution kernels were initialized using a truncated 

normal distribution with mean of zero and standard deviation of 

0.05, and constant bias values of 0.1. The parameters were 

updated by the adaptive moment (Adam) algorithm [59] with 

an adaptive learning rate to improve learning efficiency. The 

starting learning rate was empirically set as 0.001 to avoid 

divergence and improve convergence speed, and it was scaled 

by 0.97 for every 5 epochs. The decay of moving average for 

batch normalization was set to 0.9. The probability of dropout 

for regularization was set to 0.65. The batch size was set as 15 

to balance the GPU memory constraints and learning time. The 

samples were shuffled in each training epoch. 

We referred Myronenko’s study [55] to apply multiple loss 

functions and set weights for them. This study provided the 

analysis of multiple loss functions and their scaling factors, 

which is relevant to multi-task learning (MTL). We set loss 

functions for each output channel and the corresponding scaling 

factors as follows: dice loss for 𝑝0, combination of L2 loss and 

KL loss for 𝑝1. The L1 loss were applied to 𝑝2, as the prediction 

result for the second auxiliary-output channel includes two 

clustered regions and L1 loss works well for simple texture 

region [60] via imposing sparsity on loss calculation. The 

weights for the three output channels were initialized as 

𝜔0: 𝜔1: 𝜔2 = 1: 0.1: 0.1. Finally, the network was trained to 

minimize the total value of these loss functions. Furthermore, 

additional forward calculation was performed to check the 

feasibility of adaptive update for the weights in each loss 

function. Specifically, weights were adaptively updated by the 

rule in Fig. 4 according to the specific performance of three 

tasks at the current iteration. The weights were adjusted by the 

deterministic ratio at every iteration to get the best dice score 

for the prediction result of the main-output channel at every 

iteration. The network optimization was performed on a DGX 

Station from NVIDIA running Linux operating system with an 

 
1 Supplementary materials are available in the supporting documents. 
2 Supplementary materials are available in the supporting documents. 

Intel Xeon E5-2698 v4 2.2 GHz (20-Core) CPU and two Tesla 

V100 GPUs (32 GB memory for each GPU). The network 

architecture was implemented with the well-known DL 

framework TensorFlow [61]. The expanded network 

architecture to multi-class segmentation dataset is shown in 

Supplementary Figure 1(a)1 and to fully 3D model is shown in 

Supplementary Figure 1(b)2. 

IV. EXPERIMENTS 

A. Datasets and Preparation 

 The public dataset for the lung tumor segmentation in this 

study were obtained from the Decathlon Challenge [62]. The 

dataset includes 60 CT scans with small tumors. The image size 

is 512×512. In our study, we first randomly selected 48 patient 

scans for training, 4 for validation, and 8 for test. We then 

repeated the process with a different patient-level split of 

training, validation, and test datasets. The final results were 

obtained by averaging test results from five repetitions of data 

splits. The data-split policy is described in Supplementary 

Figure 23 . The method was also applied to the liver tumor 

segmentation with datasets from the Liver Tumor Segmentation 

Challenge (LiTS-ISBI2017) [18]. The dataset includes 130 

abdomen contrast CT scans. The image size of each CT slice is 

also 512×512. Total 104 patient scans were used for training, 5 

for validation, and 21 for test. Again, a patient-level split was 

performed in the same way as described earlier. To train the 

network, the original tumor-annotation mask images were 

3 Supplementary materials are available in the supporting documents. 

 
Fig. 2.  Multi-output-channel consistency regularized deep neural network. 

  

 
 

Fig. 3.  Various segmentation tasks applied to the proposed network.  

 
Fig. 4.  Illustration of weight generator for adaptive weights. First, the weights 

are reset before generating the new weights at each iteration. Then, dice scores 

of D0, D1, and D2 at every iteration are calculated from the main-output channel, 

auxiliary-output channel 1, and auxiliary-output channel 2, respectively. 

According to the relative comparison among dice scores, weights are changed 

to get the highest dice score for the main-output channel. e.g., if D0 is highest, 

all weights are fixed, and if D0 is not highest, w0 should be increased. The rates 

of change were determined empirically.  
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regenerated to the annotations for the two different auxiliary-

output channels, as shown in Fig. 3. The generated label images 

for auxiliary-output channels were based on the intensity level 

of the input and the corresponded label pair of the datasets. 

Supplementary Figure 34 describes the ways of each annotation 

is generated. 

B. Performance Evaluation 

To verify the performance of the proposed method, we 

compare the proposed method with three other different 

methods. The first case was the original mU-Net for only 

predicting 𝑝0. The second case was the (independent/separate 

training models) ensemble learning. Specifically, we trained 

one mU-Net for only predicting 𝑝0, another mU-Net for only 

predicting 𝑝1, and the other mU-Net for only predicting 𝑝2. At 

the final stage, the segmentation region was obtained by 

averaging the tumor masks from the three channel predictions. 

The third compared model (MTL) was the network with the 

encoder sharing from multiple-output channels, but without the 

additive paths, so that it is similar with the previous 

Myronenko’s method [55] and can be used to validate the effect 

of the additive paths in the network. Also, we conduct ablative 

study on our methods with and without the proposed adaptive 

 
4 Supplementary materials are available in the supporting documents. 

weight adjusting scheme in Section IV-C,D (denoted as P(A), 

and P(F), respectively). For the mU-Net in the first case, the 

loss function was defined as Dice loss. For the ensemble 

learning, the mU-Nets employed Dice loss for 𝑝0, (L2 loss + KL 

loss) for 𝑝1, and L1 loss for 𝑝2, respectively. For the MTL case, 

the same loss functions with the proposed method were applied. 

The evaluations were performed with the widely used metrics 

of precision, recall, and dice score for the prediction results. 

Here, MTL and proposed method used only 𝑝0 for evaluation. 

All methods adopted the same dropout and batch normalization 

scheme. In addition, the performance was also analyzed with 

respect to the size of training datasets and tumor sizes to show 

the effectiveness of the proposed network. All processing for 

data analysis were implemented using MATLAB 

(9.7.0.1261785, R2019b, The MathWorks Inc., Natick, MA). 

C. Results on Lung Datasets 

The averaged precision, recall, and dice score of lung 

datasets are shown in Tables I-III and Supplementary Figure 45. 

Precisions of all methods are more than 0.96, which means the 

detected tumors are well delineated. Furthermore, the proposed 

framework has the highest precision. As for the recall metric, 

the compared networks have values lower than 0.86, while the 

proposed network achieves 0.91 and 0.92 for fixed weights 

(P(F)) and adaptive weights (P(A)), respectively, suggesting 

that the proposed network has less chance to fail the tumor 

delineation. Note that the recall can vary up to 9 % depending 

on the different learning schemes. The proposed network 

produces the highest dice score (0.93) and the adaptive 

weighting manner has a slightly higher improvement. We show 

the distribution of the dice score across different tumor sizes in 

Fig. 5. This distribution shows the reason why the proposed 

network achieves a higher recall scores than other networks. As 

we can see, for the small size of tumor targets less than 30 pixels, 

all methods fail the target delineation. However, for the 

relatively larger tumor targets, only the proposed network 

successfully segments the tumors while the compared networks 

fail to locate the tumors less than 70 pixels. The dice scores are 

almost saturated when the size of tumors is larger than 100 

pixels. The other dice score plot with respect to the size of 

datasets in right side of Fig. 5 shows the performance of the 

proposed network under insufficient training datasets. When 

only 70 % training datasets were applied, the proposed network 

5 Supplementary materials are available in the supporting documents. 

TABLE I 

THE QUANTITATIVE RESULTS OF THE PROPOSED NETWORKS AND OTHER 

COMPARED NETWORK FOR THE LUNG-TUMOR DATASETS (AVERAGED 

PRECISION, RECALL, AND DICE SCORE).  

Network Precision Recall Dice score 

mU-Net 0.7941 0.6729 0.6776 

Ensemble 0.8006 0.6706 0.6754 

MTL(F) 0.8259 0.7192 0.7222 

MTL(A) 0.8183 0.7319 0.7400 

Proposed(F) 0.8727 0.8062 0.8279 

Proposed(A) 0.8873 0.8227 0.8429 

 

TABLE II 

THE 95 % CONFIDENCE INTERVAL FOR THE RESULTS IN TABLE I. 

Network Precision Recall Dice score 

mU-Net 0.00128  0.01398  0.01327  

Ensemble 0.00136  0.01306  0.01220  

MTL(F) 0.00121  0.01332  0.01240  

MTL(A) 0.00098  0.01220  0.00878  

Proposed(F) 0.00086  0.00743  0.00556  

Proposed(A) 0.00081  0.00722  0.00528  

 

TABLE III 

THE P-VALUES FOR THE PROPOSED METHOD WITH ADAPTIVE WEIGHTS (I.E., 

PROPOSED (A)) OF THE LUNG DATASET. WE PERFORMED T-TEST UNDER THE 

NULL HYPOTHESIS H₀: 𝜇PROPOSED (A) = 𝜇C, WHERE C STANDS FOR THE 

COMPARED METHODS AND 𝜇 IS THE MEAN VALUES IN TABLE I. WE CAN 

REJECT H₀ AT THE SIGNIFICANCE LEVEL 0.05 BECAUSE ALL P-VALUES ARE 

FOUND TO BE LESS THAN 0.05. THE PROPOSED (A) DO NOT HAVE P-VALUES 

BECAUSE THE T-TESTS WERE PERFORMED BASED ON HOW MUCH THE RESULTS 

OF OTHER METHODS WERE DIFFERENT FROM THAT OF THE PROPOSED (A). 

Network Precision Recall Dice score 

mU-Net <0.00001 <0.00001 <0.00001 

Ensemble <0.00001 <0.00001 <0.00001 

MTL(F) <0.00001 <0.00001 <0.00001 

MTL(A) <0.00001 <0.00001 <0.00001 

Proposed(F) <0.00001 0.00143 0.00009 

Proposed(A) - - - 

 

 
Fig. 5.  Dice scores with respect to the size of lung tumors and datasets are 

shown in the second row. U, E, M, P(F), and P(A) mean the mU-net, ensemble 

learning, multi-task leaning, proposed network with fixed weights, and the 

proposed network with adaptive weights, respectively. 
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still has a dice score higher than 0.8, while dice scores of other 

compared methods are around 0.7. The dice score of MTL(F) 

(M) is always higher than those of mU-Net (U) and Ensemble 

(E) cases when the available datasets are reduced. 

Figure 6 shows some visual segmentation results with respect 

to different sizes of the training dataset. As can be observed 

from Fig. 6, when training with small size of the datasets, all 

networks fail delineation of the small target tumor except the 

proposed network. The proposed network can successfully 

detect and segment the tumors even if only half of training 

datasets were applied. 

We can also see the effect of gain from the main-output 

channel and the auxiliary-output channels respectively, as 

shown in Fig. 7 (left side). The binary mask (𝑝0) served as the 

main-output channel provides the highest dice score. Figure 7 

(right side) also shows the relative computational costs of each 

method. Although the proposed network has twice larger 

computing cost than that of mU-Net, it has the highest accuracy 

with smaller cost than Ensemble learning and similar cost with 

MTL. 

D. Results on Liver Datasets 

The averaged precision, recall, and dice score of different 

methods on liver datasets are presented in Tables IV-VI and 

Supplementary Figure 4 6 . In this case, precisions were not 

sensitive to each network. All networks produce more than 0.99 

values on the precision, which implies that the delineated 
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tumors are extremely accurate. For the recall scores, the similar 

trend to lung tumor segmentation is observed. The proposed 

network has the highest recall value of 0.89 and 0.90 for P(F) 

and adaptive weights P(A), respectively, while other compared 

networks have values lower than 0.87. In other words, the 

proposed network hardly fails the tumor delineation in 

comparison to other networks. Besides precisions and recalls, 

the proposed network also achieves the highest dice score. On 

the other hands, the compared networks have dice score lower 

than 0.92. There are few small sizes of tumors in liver datasets, 

 
Fig. 6.  Segmentation images with respect to the size of training datasets for 

lung-tumor datasets. The first column in the magnified images (42 px) is the 

results of mU-Net (U). The second, third, fourth, and fifth columns are the 

results of Ensemble (E), MTL (M), proposed network with fixed weights P(F) 

and proposed network with adaptive weights P(A), respectively. The red 

contours denote the ground truth and the green contours represent the prediction 

results from each method. No green contours in the magnified images means 

the method fail to delineate the tumor. 

 
Fig. 7.  Performance of the proposed method with respect to order of the output 

channels in P(A) case (left side). For example, (p0, p1, p2) means p0 for main-

output channel, p1 for sub-output channel 1, and p2 for sub-output channel 2. In 

the same manner, (p0, p2, p1) means p0 for main-output channel, p2 for sub-

output channel 1, and p1 for sub-output channel 2. Relative cost for computing 

for each method (Right). The proposed network has higher cost than mU-Net 

case but not higher than those of other methods. 

TABLE IV 

THE QUANTITATIVE RESULTS OF THE PROPOSED NETWORKS AND OTHER 

COMPARED NETWORK FOR THE LIVER-TUMOR DATASETS (AVERAGED 

PRECISION, RECALL, AND DICE SCORE).  

Network Precision Recall Dice score 

mU-Net 0.8309 0.7087 0.7419 

Ensemble 0.8307 0.7126 0.7422 

MTL(F) 0.8557 0.7418 0.7755 

MTL(A) 0.8593 0.7575 0.7927 

Proposed(F) 0.8992 0.8070 0.8424 

Proposed(A) 0.9057 0.8178 0.8513 

 

TABLE V 

THE 95 % CONFIDENCE INTERVAL FOR THE RESULTS IN TABLE IV. 

Network Precision Recall Dice score 

mU-Net 0.00020 0.02576 0.02506 

Ensemble 0.00014 0.02493 0.02392 

MTL(F) 0.00014 0.02338 0.02230 

MTL(A) 0.00014 0.01316 0.01153 

Proposed(F) 0.00015 0.00625 0.00520 

Proposed(A) 0.00012 0.00600 0.00481 

 

TABLE VI 

THE P-VALUES FOR THE PROPOSED METHOD WITH ADAPTIVE WEIGHTS (I.E., 

PROPOSED (A)) OF THE LIVER DATASET. WE PERFORMED T-TEST UNDER THE 

NULL HYPOTHESIS H₀: 𝜇PROPOSED (A) = 𝜇C, WHERE C STANDS FOR THE 

COMPARED METHODS AND 𝜇 IS THE MEAN VALUES IN TABLE IV. WE CAN 

REJECT H₀ AT THE SIGNIFICANCE LEVEL 0.05 BECAUSE ALL P-VALUES ARE 

FOUND TO BE LESS THAN 0.05. THE PROPOSED (A) DO NOT HAVE P-VALUES 

BECAUSE THE T-TESTS WERE PERFORMED BASED ON HOW MUCH THE RESULTS 

OF OTHER METHODS WERE DIFFERENT FROM THAT OF THE PROPOSED (A). 

Network Precision Recall Dice score 

mU-Net <0.00001 <0.00001 <0.00001 

Ensemble <0.00001 <0.00001 <0.00001 

MTL(F) <0.00001 <0.00001 <0.00001 

MTL(A) <0.00001 <0.00001 <0.00001 

Proposed(F) <0.00001 0.01271 0.01232 

Proposed(A) - - - 

 

 
Fig. 8.  Dice scores with respect to the size of liver tumors. Here, 100 pixels 

and 1000 pixels correspond to 32 mm2 and 336 mm2, respectively. U, E, M, 

P(F), and P(A) mean the mU-net, ensemble learning, multi-task leaning, 

proposed network with fixed weights, and the proposed network with adaptive 

weights, respectively. 
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but the proposed network still achieves higher dice score across 

almost different size of tumors (see Fig. 8). For liver datasets, 

the plot of dice score with respect to different size of training 

datasets also shows that the proposed network outperforms 

other networks (Fig. 8). The visual segmentation results of 

different methods are shown in Fig. 9. The delineations for each 

network are pretty accurate, as the liver tumors are more 

obvious and larger than that of lung tumors, when full training 

datasets were applied. However, the accuracy gets worse when 

training datasets are decreased, while the proposed network 

provides more accurate delineations than other networks under 

the limited training dataset. 

V. DISCUSSION 

Although DL has achieved dramatically better performance 

than conventional machine learning models for many medical 

image analysis problems, there is still room for improvement. 

A bottleneck issue impeding the widespread applications of DL 

models is that the training process of deep neural networks is 

vulnerable to insufficient training data and the small tumor 

targets. This challenging issue can be alleviated by imposing 

regularization methods in the optimized objective. Batch or 

group normalization are widely used regularization techniques. 

Shibani et al. [63] have shown that real impact of the batch 

normalization is not internal covariance shift but smoothing of 

landscape in the underlying optimization problem. However, it 

may not work well in some scenarios (e.g., small size of mini-

batch and large variance of the dataset) [64]. Other 

regularization methods may be directly applied to the objective 

functions, but success has been limited because they usually 

rely on some prerequisites for regularization terms that are not 

easy to expand to general applications. In this study, we bring 

up a new network regularization scheme based on multi-output-

channel-consistency learning.  

In the proposed regularization scheme, the output channels 

are discomposed into two types: one is a main-output channel 

 
7 Supplementary materials are available in the supporting documents.  

 
8 Supplementary materials are available in the supporting documents. 

and the other are auxiliary-output channels relevant to the main 

task. Moreover, there are additive paths connecting the main-

output channel and the auxiliary-output channels for efficient 

joint learning. Through the additive paths, the regularization is 

achieved by interaction between the main-output channel and 

the auxiliary-output channels. The main-output channel and 

auxiliary-output channels regularize mutually during the 

network update process. In other words, in our learning model, 

multiple auxiliary-output channels can provide different facets 

of the inferred information, so that the network learning can 

effectively utilize multi-output-task consistency via residual 

learning. The residual images of the multiple outputs in our 

method are likely to improve the learning efficiency via the task 

consistency, as shown in Supplementary Figure 57. The grad-

CAM analysis based on [66] also suggests that the proposed 

network generates more discriminative representations to better 

describe the target tumor as compared to other methods 

(Supplementary Figure 68).  

Further performance improvement may be possible by 

adding more auxiliary-output channels until the information 

from auxiliary-output channels becomes redundant. However, 

due to the GPU memory limitation, we used the main-output 

channel and two auxiliary-output channels in our experiments. 

Notably, the proposed network is capable of delineating small 

tumors less than 100 pixels even with only 55 % of the training 

datasets. Furthermore, using the adaptive weighting, we can get 

slightly higher accurate delineations. The weight for each of the 

training steps is shown in Supplementary Figure 79 and more 

sophisticated weight policies can provide further improvement 

of the network performance. If we design the adaptive update 

rule more carefully, a better result would be expected. Training 

with a small sample size often causes overfitting to the dataset. 

To minimize the limitations caused by small data samples and 

ensure generality of this study, we repeated the learning process 

five times with different splits of training, validation, and test 

datasets (i.e., patient-level splits). We also expanded our 

network to multi-class segmentation dataset (BraTS). The 

performance of the proposed method is clearly better as 

compared with other methods without consistency 

regularization of multi-output channels (Supplementary Table 

110). In the future work, we would also investigate how to create 

a more efficient auxiliary output channel (task) and how to 

reduce the empirical choice for the adaptive update.  

While colossal advances have been made in using DL for 

medical image analysis, there is little guarantee that perfect 

inference will be resulted when a model is generalized to new 

data unseen in the training. The proposed methodology 

improves the robustness of DL model by leveraging the 

interaction of output channels applied to the network. From the 

results shown in this study, accuracy of the segmentation results 

reaches the highest values beyond limitation of other previous 

methods and provides new chances for other practical 

applications. 

9 Supplementary materials are available in the supporting documents.  

 
10 Supplementary materials are available in the supporting documents. 

 
Fig. 9.  Segmentation images with respect to the size of training datasets for 

liver-tumor datasets. The full length 512 pixels of the CT scan corresponds to 

30cm, the magnification window length 125px corresponds to 73mm. The first 

column in the magnified images (125 px) is the results of mU-Net (U). The 

second, third, fourth, and fifth columns are the results of Ensemble (E), MTL 

(M), proposed network with fixed weights P(F) and proposed network with 

adaptive weights P(A), respectively. The red contours denote the ground truth 

and the green contours represent the prediction results from each method. No 

green contours in the magnified images means the method fail to delineate the 

tumor. 
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VI. CONCLUSION 

This paper presents a multi-output-channel consistency 

regularization method for DL-based image segmentation. In the 

proposed strategy, the main-output channel and auxiliary-

output channels are connected through the additive paths and 

make a joint decision with consideration of the requirement of 

each individual channel. The evaluation performed with public 

lung- and liver-tumor segmentation datasets demonstrates the 

superiority of the proposed method. Finally, while the current 

study is focused on segmentation, the proposed residual 

learning methodology is quite general and can be applied to 

other practical applications which can be formulated as a 

problem with multiple output channels. 

VII. APPENDIX 

A. The Learning Process of Single Output Channel 

The deep neural networks are optimized to minimize the 

predefined loss objective function. To find the minimum loss 

value with respect to the network parameter 𝜽 =
[𝜃0 ⋯ 𝜃𝑑−1]𝑇 , the gradient descent method is usually 

leveraged in optimization, where the gradient of the loss 

function (𝛻ℒ) is calculated as follows, 

 

𝛉𝑖+1 → 𝛉𝑖 − 𝜆∇ℒ|
𝛉=𝛉𝑖 , 

∇ℒ = ∇ℒ0(𝐩0) ∙ 𝐩0
′ (𝛉), 

= [𝓵0
𝑝0 ∙ 𝓹0

𝜃0 ⋯ 𝓵0
𝑝0 ∙ 𝓹0

𝜃𝑑−1]
T

, 

≡ 𝓥 [𝓵0
𝑝0 ∙ 𝓹0

𝜃𝑞]
𝑞=0

𝑑−1

,                              (A.1) 

where 𝑖 is the iteration number, ∙ denotes the inner product, ℒ0 

is the specific loss function which is a function of 𝐩0, 𝐩0 =

[𝑥0
𝑝0 ⋯ 𝑥𝑟−1

𝑝0 ]
T

 is a vector of the prediction result at the 

specific network with parameters of 𝛉, and 𝜆 is a learning rate. 

𝓥  denotes a vector that is composed of its elements. For 

example, 𝓥[𝑎𝑗]
𝑗=0

𝑏−1
= [𝑎0 ⋯ 𝑎𝑏−1]T . 𝓵0

𝑝0  and 𝓹0

𝜃𝑞
 are 

defined as [
𝜕ℒ0

𝜕𝑥0
𝑝0 ⋯

𝜕ℒ0

𝜕𝑥𝑟−1
𝑝0 ]

T

 and [
𝜕𝑥0

𝑝0

𝜕𝜃𝑞
⋯

𝜕𝑥𝑟−1
𝑝0

𝜕𝜃𝑞
]

T

, 

respectively. In other words, each step to update network 

weights is affected by the selected loss function ℒ0, and the 

current network prediction result 𝐩0. 

B. Expanded Learning from Multiple Output Channels 

Eq. (A1) describes the gradient calculation of a single loss 

function and the general form of multiple loss elements with 

respect to multiple output channels can be expanded as follows, 

 

∇ℒ = 𝓥 [(∑ 𝛼0,𝑘𝓵0,𝑘
𝑝0

𝑐0−1

𝑘=0
) ∙ 𝓹0

𝜃𝑞]
𝑞=0

𝑑−1

, 

≡ 𝓥 [�̂�0
𝑝0 ∙ 𝓹0

𝜃𝑞]
𝑞=0

𝑑−1

,                          (A.2) 

where 𝑐0 is the number of the tasks taken in account. 𝛼0,𝑘 is a 

weight for scaling the 𝑘-th loss elements and 𝓵0,𝑘
𝑝0  is defined as 

[
𝜕ℒ0,𝑘

𝜕𝑥0
𝑝0 ⋯

𝜕ℒ0,𝑘

𝜕𝑥𝑟−1
𝑝0 ]

T

 when ℒ0 = ∑ 𝛼0,𝑘ℒ0,𝑘
𝑐0−1
𝑘=0 . Then, the 

weight vector for 𝓹0

𝜃𝑞
 is averaged by multiple 𝓵0,𝑘

𝑝0  so that the 

updating step can be toward more precise way than the case 

using a single loss element (i.e., noise vector smoothing). Now, 

we can explain how multiple loss aggregation in single output 

channel contributes to network learning. In other words, 

intuitively, there is no one-size-fits-all loss function that can 

include the multidimensional information with a scalar value. 

Next, the easiest way to combine multiple output channels 

with Eq. (A2) is to define the final loss function as weighted 

sum of the loss functions defined in each output channel as 

follows, 

 

∇ℒ = 𝓥 [∑ 𝜔𝑘�̂�𝑘
𝑝𝑘 ∙ 𝓹

𝑘

𝜃𝑞𝑚
𝑘=0 ]

𝑞=0

𝑑−1

 .              (A.3) 

Here, for k-th output channel, �̂�𝑘
𝑝𝑘 is defined as ∑ 𝛼𝑘,𝑗𝓵𝑘,𝑗

𝑝𝑘𝑐𝑘−1
𝑗=0 , 

and 𝓹
𝑘

𝜃𝑞
 is defined as [

𝜕𝑥0
𝑝𝑘

𝜕𝜃𝑞
⋯

𝜕𝑥𝑟−1
𝑝𝑘

𝜕𝜃𝑞
]

T

. In this case, it is 

expected to optimize the weighted sum of loss functions in 

different output channels. However, this straightforward 

scheme does not guarantee that predictions of all output 

channels can reach the optimal results at the same time. 

C. Expanded Learning from Multiple Output Channels 
with Additive Paths 

To achieve a better prediction result through the interaction 

among multiple output channels, in our proposed framework, 

the multiple output channels are categorized into two types: 

main-output channel (prediction result 𝐩0) and auxiliary-output 

channels (prediction results  𝐩1, ⋯ , 𝐩𝑛 ). In this way, we can 

focus on improving the main-output channel with the 

regularization from the auxiliary-output channels learning. To 

this end, the network outputs of different output channels are 

connected by additive paths from the main-output channel to 

other auxiliary-output channels, as shown in Fig. 1. With the 

additive paths, the gradient calculation of the final loss 

functions of the proposed network can be represented as follows, 

 

∇ℒ = 𝓥 [(∑ 𝜔𝑘�̂�𝑘
𝑝𝑘

𝑛

𝑘=0
) ∙ 𝓹0

𝜃𝑞]
𝑞=0

𝑑−1

 

+𝓥 [∑ 𝜔𝑘�̂�𝑘
𝑝𝑘𝑛

𝑘=1 ∙ (𝓹
𝑘

𝜃𝑞 − 𝓹0

𝜃𝑞)]
𝑞=0

𝑑−1

,        (A.4) 

where 𝓹
𝑘

𝜃𝑞 − 𝓹0

𝜃𝑞 = [
𝜕(𝑥0

𝑝𝑘−𝑥0
𝑝0)

𝜕𝜃𝑞
⋯

𝜕(𝑥𝑟−1
𝑝𝑘 −𝑥𝑟−1

𝑝0 )

𝜕𝜃𝑞
]

T

 means 

the derivative of difference in prediction results. In the 

proposed network, the weight for 𝓹0

𝜃𝑞
 is averaged by �̂�𝑘

𝑝𝑘 (i.e., 

regularization of main-output channel via loss functions of 

multi-output channels). For the auxiliary-output channels, we 

employ the residual learning technique [65] as shown (𝓹
𝑘

𝜃𝑞 −

𝓹0

𝜃𝑞) in Eq. (A4) so that the network can keep attention on the 

main-output channel prediction for more efficient learning. 

Consequently, the auxiliary-output channels and the 

corresponding loss functions are able to provide a 

regularization effect to the main-output channel, which is 

relevant to the first term in Eq. (A4). Also, the main-output 
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channel serves as an ‘anchor’ in the residual learning to make 

the learning of auxiliary-output channels easier, which is 

relevant to the second term in Eq. (A4). 

REFERENCES 

[1] [1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet 

classification with deep convolutional neural networks," in 

Advances in neural information processing systems, 2012, pp. 

1097-1105.  

[2] K. Simonyan and A. Zisserman, "Very deep convolutional 

networks for large-scale image recognition," arXiv preprint 

arXiv:1409.1556, 2014. 

[3] L. Xing, M. Giger, and J. Min, Artificial Intelligence in Medicine. 

Elsevier Science, 2020. 

[4] A. Esteva et al., "Dermatologist-level classification of skin cancer 

with deep neural networks," Nature, vol. 542, no. 7639, p. 115, 

2017. 

[5] D. S. W. Ting et al., "Development and validation of a deep 

learning system for diabetic retinopathy and related eye diseases 

using retinal images from multiethnic populations with diabetes," 

Jama, vol. 318, no. 22, pp. 2211-2223, 2017. 

[6] R. Poplin et al., "Prediction of cardiovascular risk factors from 

retinal fundus photographs via deep learning," Nature Biomedical 

Engineering, vol. 2, no. 3, p. 158, 2018. 

[7] B. Ibragimov, D. Toesca, D. Chang, Y. Yuan, A. Koong, and L. 

Xing, "Development of deep neural network for individualized 

hepatobiliary toxicity prediction after liver SBRT," Medical 

physics, vol. 45, no. 10, pp. 4763-4774, 2018. 

[8] H. Seo, C. Huang, M. Bassene, and L. Xing, "Modified U-Net 

(mU-Net) with Incorporation of Object-Dependent High Level 

Features for Improved Liver and Liver-Tumor Segmentation in CT 

Images," IEEE Transactions on Medical Imaging, vol. 

10.1109/TMI.2019.2948320, 2019. 

[9] H. Seo et al., "Machine Learning Techniques for Biomedical 

Image Segmentation: An Overview of Technical Aspects and 

Introduction to State-of-Art Applications," Medical Physics, vol. 

10.1002/mp.13649, 2019, doi: 10.1002/mp.13649. 

[10] Q. Dou et al., "3D deeply supervised network for automated 

segmentation of volumetric medical images," Medical image 

analysis, vol. 41, pp. 40-54, 2017. 

[11] H. Moradmand, S. M. R. Aghamiri, and R. Ghaderi, "Impact of 

image preprocessing methods on reproducibility of radiomic 

features in multimodal magnetic resonance imaging in 

glioblastoma," Journal of Applied Clinical Medical Physics, vol. 

21, no. 1, pp. 179-190, 2020. 

[12] S. Pati et al., "Reproducibility analysis of multi‐institutional paired 

expert annotations and radiomic features of the Ivy Glioblastoma 

Atlas Project (Ivy GAP) dataset," Medical Physics, 2020. 

[13] L. Shen, W. Zhao, and L. Xing, "Patient-specific reconstruction of 

volumetric computed tomography images from a single projection 

view via deep learning," Nature biomedical engineering, vol. 3, 

no. 11, pp. 880-888, 2019. 

[14] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P.-A. Heng, "H-

DenseUNet: hybrid densely connected UNet for liver and tumor 

segmentation from CT volumes," IEEE transactions on medical 

imaging, vol. 37, no. 12, pp. 2663-2674, 2018. 

[15] F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-

Hein, "nnU-Net: a self-configuring method for deep learning-based 

biomedical image segmentation," Nature Methods, vol. 18, no. 2, 

pp. 203-211, 2021. 

[16] H. Seo, M. Bassenne, and L. Xing, "Closing the Gap between 

Deep Neural Network Modeling and Biomedical Decision-Making 

Metrics in Segmentation via Adaptive Loss Functions," IEEE 

transactions on medical imaging, 2020. 

[17] B. H. Menze et al., "The multimodal brain tumor image 

segmentation benchmark (BRATS)," IEEE transactions on 

medical imaging, vol. 34, no. 10, pp. 1993-2024, 2014. 

[18] P. Bilic et al., "The Liver Tumor Segmentation Benchmark 

(LiTS)," arXiv e-prints,  

[19] N. Heller et al., "The KiTS19 Challenge Data: 300 Kidney Tumor 

Cases with Clinical Context, CT Semantic Segmentations, and 

Surgical Outcomes," p. arXiv:1904.00445 

[20] J. Brownlee, Better Deep Learning: Train Faster, Reduce 

Overfitting, and Make Better Predictions. Machine Learning 

Mastery, 2018. 

[21] X. Ying, "An overview of Overfitting and its solutions," in Journal 

of Physics: Conference Series, 2019, vol. 1168, no. 2: IOP 

Publishing, p. 022022.  

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. 

Salakhutdinov, "Dropout: a simple way to prevent neural networks 

from overfitting," The journal of machine learning research, vol. 

15, no. 1, pp. 1929-1958, 2014. 

[23] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep 

network training by reducing internal covariate shift," arXiv 

preprint arXiv:1502.03167, 2015. 

[24] A. R. Zamir et al., "Robust Learning Through Cross-Task 

Consistency," in Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, 2020, pp. 11197-11206.  

[25] M. Emre Celebi, Q. Wen, S. Hwang, H. Iyatomi, and G. Schaefer, 

"Lesion border detection in dermoscopy images using ensembles 

of thresholding methods," Skin Research and Technology, vol. 19, 

no. 1, pp. e252-e258, 2013. 

[26] D. Li et al., "Augmenting atlas-based liver segmentation for 

radiotherapy treatment planning by incorporating image features 

proximal to the atlas contours," Physics in Medicine & Biology, 

vol. 62, no. 1, p. 272, 2016. 

[27] G. Li, X. Chen, F. Shi, W. Zhu, J. Tian, and D. Xiang, "Automatic 

liver segmentation based on shape constraints and deformable 

graph cut in CT images," IEEE Transactions on Image Processing, 

vol. 24, no. 12, pp. 5315-5329, 2015. 

[28] G. Chartrand, T. Cresson, R. Chav, A. Gotra, A. Tang, and J. A. 

De Guise, "Liver segmentation on CT and MR using Laplacian 

mesh optimization," IEEE Transactions on Biomedical 

Engineering, vol. 64, no. 9, pp. 2110-2121, 2016. 

[29] J. Cheng et al., "Superpixel classification based optic disc and 

optic cup segmentation for glaucoma screening," IEEE 

transactions on medical imaging, vol. 32, no. 6, pp. 1019-1032, 

2013. 

[30] A. Vial et al., "The role of deep learning and radiomic feature 

extraction in cancer-specific predictive modelling: a review," 

Translational Cancer Research, vol. 7, no. 3, pp. 803-16, 2018. 

[31] R. Li, L. Xing, S. Napel, and D. L. Rubin, Radiomics and 

radiogenomics: technical basis and clinical applications. CRC 

Press, 2019. 

[32] Q. Luo et al., "Segmentation of abdomen MR images using kernel 

graph cuts with shape priors," Biomedical engineering online, vol. 

12, no. 1, p. 124, 2013. 

[33] W. Wu, Z. Zhou, S. Wu, and Y. Zhang, "Automatic liver 

segmentation on volumetric CT images using supervoxel-based 

graph cuts," Computational and mathematical methods in 

medicine, vol. 2016, 2016. 

[34] G. Chlebus, A. Schenk, J. H. Moltz, B. van Ginneken, H. K. Hahn, 

and H. Meine, "Automatic liver tumor segmentation in CT with 

fully convolutional neural networks and object-based 

postprocessing," Scientific reports, vol. 8, no. 1, pp. 1-7, 2018. 

[35] Ö . Ç içek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. 

Ronneberger, "3D U-Net: learning dense volumetric segmentation 

from sparse annotation," in International conference on medical 

image computing and computer-assisted intervention, 2016: 

Springer, pp. 424-432.  

[36] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional 

Networks for Biomedical Image Segmentation," arXiv e-prints,  

[37] F. Milletari, N. Navab, and S.-A. Ahmadi, "V-net: Fully 

convolutional neural networks for volumetric medical image 

segmentation," in 2016 Fourth International Conference on 3D 

Vision (3DV), 2016: IEEE, pp. 565-571.  

[38] P. Hu, F. Wu, J. Peng, P. Liang, and D. Kong, "Automatic 3D liver 

segmentation based on deep learning and globally optimized 

surface evolution," Physics in Medicine & Biology, vol. 61, no. 24, 

p. 8676, 2016. 

[39] W. Qin et al., "Superpixel-based and boundary-sensitive 

convolutional neural network for automated liver segmentation," 

Physics in Medicine & Biology, vol. 63, no. 9, p. 095017, 2018. 

[40] B. Ibragimov and L. Xing, "Segmentation of organs‐at‐risks in 

head and neck CT images using convolutional neural networks," 

Medical physics, vol. 44, no. 2, pp. 547-557, 2017. 



10 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. x, 2021 

 
[41] S. Nikolov et al., "Deep learning to achieve clinically applicable 

segmentation of head and neck anatomy for radiotherapy," arXiv 

preprint arXiv:1809.04430, 2018. 

[42] Y. Guo, Y. Gao, and D. Shen, "Deformable MR prostate 

segmentation via deep feature learning and sparse patch matching," 

IEEE transactions on medical imaging, vol. 35, no. 4, pp. 1077-

1089, 2015. 

[43] W. Zhang et al., "Deep convolutional neural networks for multi-

modality isointense infant brain image segmentation," 

NeuroImage, vol. 108, pp. 214-224, 2015. 

[44] S. Pereira, A. Pinto, V. Alves, and C. A. Silva, "Brain tumor 

segmentation using convolutional neural networks in MRI 

images," IEEE transactions on medical imaging, vol. 35, no. 5, pp. 

1240-1251, 2016. 

[45] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional 

networks for biomedical image segmentation," in International 

Conference on Medical image computing and computer-assisted 

intervention, 2015: Springer, pp. 234-241.  

[46] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, 

"Densely Connected Convolutional Networks," arXiv e-prints, p. 

arXiv:1608.06993 

[47] M. Majurski et al., "Cell image segmentation using generative 

adversarial networks, transfer learning, and augmentations," in 

Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition Workshops, 2019, pp. 0-0.  

[48] Y. Wu and K. He, "Group normalization," in Proceedings of the 

European Conference on Computer Vision (ECCV), 2018, pp. 3-

19.  

[49] S. Shalev-Shwartz and A. Tewari, "Stochastic methods for l1-

regularized loss minimization," Journal of Machine Learning 

Research, vol. 12, no. Jun, pp. 1865-1892, 2011. 

[50] A. Y. Ng, "Feature selection, L 1 vs. L 2 regularization, and 

rotational invariance," in Proceedings of the twenty-first 

international conference on Machine learning, 2004, p. 78.  

[51] G. Kang, J. Li, and D. Tao, "Shakeout: A new approach to 

regularized deep neural network training," IEEE transactions on 

pattern analysis and machine intelligence, vol. 40, no. 5, pp. 1245-

1258, 2017. 

[52] R. Tibshirani, "Regression shrinkage and selection via the lasso," 

Journal of the Royal Statistical Society: Series B (Methodological), 

vol. 58, no. 1, pp. 267-288, 1996. 

[53] Y. Shi, M. Lei, R. Ma, and L. Niu, "Learning robust auto-encoders 

with regularizer for linearity and sparsity," IEEE Access, vol. 7, pp. 

17195-17206, 2019. 

[54] M. Tofighi, T. Guo, J. K. Vanamala, and V. Monga, "Prior 

information guided regularized deep learning for cell nucleus 

detection," IEEE transactions on medical imaging, vol. 38, no. 9, 

pp. 2047-2058, 2019. 

[55] A. Myronenko, "3D MRI brain tumor segmentation using 

autoencoder regularization," arXiv e-prints,  

[56] S. Ruder, "An Overview of Multi-Task Learning in Deep Neural 

Networks," arXiv e-prints,  

[57] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for 

image recognition," in Proceedings of the IEEE conference on 

computer vision and pattern recognition, 2016, pp. 770-778.  

[58] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, 

"Densely connected convolutional networks," in Proceedings of 

the IEEE conference on computer vision and pattern recognition, 

2017, pp. 4700-4708.  

[59] D. P. Kingma and J. Ba, "Adam: A method for stochastic 

optimization," arXiv preprint arXiv:1412.6980, 2014. 

[60] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, "Loss functions for 

image restoration with neural networks," IEEE Transactions on 

computational imaging, vol. 3, no. 1, pp. 47-57, 2016. 

[61] M. Abadi et al., "TensorFlow: Large-Scale Machine Learning on 

Heterogeneous Distributed Systems," arXiv e-prints,  

[62] A. L. Simpson et al., "A large annotated medical image dataset for 

the development and evaluation of segmentation algorithms," 

arXiv e-prints,  

[63] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, "How does batch 

normalization help optimization?," in Advances in Neural 

Information Processing Systems, 2018, pp. 2483-2493.  

[64] X. Lian and J. Liu, "Revisit Batch Normalization: New 

Understanding and Refinement via Composition Optimization," in 

The 22nd International Conference on Artificial Intelligence and 

Statistics, 2019, pp. 3254-3263.  

[65] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for 

Image Recognition," arXiv e-prints,  

 


