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Abstract
Individuals with severe tetraplegia frequently require to control their complex assistive devices using body movement with the
remaining activity above the neck. Electromyography (EMG) signals from the contractions of facial muscles enable people to
produce multiple command signals by conveying information about attempted movements. In this study, a novel EMG-
controlled system based on facial actions was developed. The mechanism of different facial actions was processed using an
EMG control model. Four asymmetric and symmetry actions were defined to control a two-degree-of-freedom (2-DOF) pros-
thesis. Both indoor and outdoor experiments were conducted to validate the feasibility of EMG-controlled prostheses based on
facial action. The experimental results indicated that the new paradigm presented in this paper yields high performance and
efficient control for prosthesis applications.
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1 Introduction

With the growing number of traffic accidents, spinal cord
injuries (SCIs), and neurological diseases, approximately
18,496 people lose their hand function every year [9].
Hence, various prostheses-control methods have been devel-
oped to aid these individuals to restore some degree of func-
tional ability to interact with their surroundings. Several types
of prostheses have been developed, ranging from passive cos-
metic prostheses to body-powered limbs, and from electromy-
ography (EMG)-based to electroencephalographic (EEG)-
based prostheses [20].

With the development of prosthetic technology, one of the
most promising advancement is neural signal control
strategies, such as EMG and EEG. These are effective system
inputs to control prostheses because of their ability to repre-
sent a person’s intention [39]. In recent years, several efforts
have been conducted to apply brain–computer interface (BCI)
technology to prosthesis control [23, 31]. The BCI control
uses signals recording from the cortex, which provides direct
information related to a person’s intention. Several EEG-
based brain-controlled prostheses that utilize various brain
activities have been developed, such as steady-state visual
e v o k e d p o t e n t i a l s ( SSVEP ) o r e v e n t - r e l a t e d
(de)synchronization (ERD/ERS)-based prostheses [30, 34].
The advantages of brain-controlled strategies can be two-fold.
First, they convey information about subject’s intention.
Second, they do not rely on a peripheral nerve pathway.
However, despite the remarkable success in BCI systems,
these approaches often fail to achieve clinical use owing to
the instability of invasive EEG signals for long-term
applications.

EMG control is widely used as an effective method for
assistive prostheses to convey the subject’s intention from
muscle contractions [27]. In the 1970s, myoelectric prostheses
became significant in rehabilitation and were routinely fitted
to upper-limb-deficient clients; clinical evaluations of the
functional benefits were conducted [12]. Notably, a real-time
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myoelectric pattern recognition method was successfully pro-
posed that developed the practical multifunctional prostheses
[21]. Hence, EMG-controlled prostheses proved to be some of
the most important methods to restore lost limb function [37].
The group of Zhu employed two novel features from discrete
Fourier transform and muscle coordination to control upper-
limb prosthesis; the classification accuracy was increased by
approximately 11% compared with the traditional method in
2015 [15]. To optimize the online performance of EMG-
controlled prostheses in real-world scenarios, Al-Angari se-
lected distance and mutual information to discriminate five
hand postures with nine different arm positions [2]. In 2017,
Li et al. investigated the effect of mobility on decoding limb-
motion intentions of amputees and the non-disabled, and pro-
posed the dual-stage sequential method to increase the robust-
ness of multifunctional myoelectric prostheses [38]. In 2019,
Michele et al. succeeded in controlling precise artifact hand
movements using an EMG linear envelope and muscle acti-
vation mapping features, which yielded an online classifica-
tion accuracy of 91% [7]. Recently, Alexandre presented a
real-time gesture recognition system for EMG-controlled
prostheses employing an embedded convolutional neural net-
work, and achieved an accuracy of 98.15% [41]. However,
most myoelectric prostheses have used the amplitudes of sur-
face EMG signals from residual muscles after amputations,
which can only be effective if they satisfy two premises.
First, the residual limbmuscle can provide sufficient myoelec-
tric signals. Second, the repeated and distinct EMG signal
patterns for different motor tasks associated with their limb
movements can be activated [2, 19].

Considering the aforementioned challenges, sufficient mo-
tivation remains to develop novel methods to improve the
performance ofmultifunctional prosthetic hands. Hence, some
assistance studies using multiple-source signals were conduct-
ed, and their results demonstrated that it is a possible solution
for the problem of insufficient information in the recognition
of different types of grasps, particularly for SCIs. A previous
study recorded EMG signals from jaw muscle contractions to
direct the movement of neuro-prostheses [13]. Recently, a
new method combining standard EMG with an inductive
tongue control system was implemented to control the five
grasp types of a prosthesis [17]. Moreover, other modalities
have been proposed to improve the quality of life for disabled
people, such as throat microphones, shoulder joysticks, mag-
netic sensors, and artificial vision [8, 10, 25].

This paper presents a novel control scheme for a two-
degree-of-freedom (2-DOF) prosthesis using EMG signals
from different facial actions. We hypothesized that the pro-
posed technique can provide an alternative scheme for ampu-
tees to control an actual prosthetic device. The rest of the paper
is organized as follows. Section 2 addresses the methodology,
including the mechanism of EMG responses of facial action
and the EMG-control prosthesis system based on a facial-

action paradigm. Furthermore, the experimental setups and
signal processing method to recognize EMG responses are
also described in this section. The experimental results are
discussed in section 3. The discussion and conclusion are
presented in sections 4 and 5, respectively.

2 Materials and methods

The neural pathway mechanism of different muscle responses
provides the theoretical foundation for the control of neuro-
prosthetic devices. This section first introduces the description
of the neural mechanism of facial action. Subsequently, the
construction of the EMG prosthesis system based on a facial
action control scheme is presented. Finally, the experimental
protocol and EMG signal processing methods are discussed,
respectively.

2.1 Mechanism of EMG-based facial action and its
control model

The research on the relationship between emotional process-
ing and facial action has increased. Previous studies proved
that brain activity from the prefrontal and motor cortexes pro-
vides a biological foundation to distinguish the movements of
facial actions [11, 14, 24, 29, 32, 33]. For expected facial
muscle contraction, many factors contribute to the mechanism
of a person’s facial action. These include EEG signals re-
sponse, nervous system transmission, motor neuron genera-
tion, and facial nerve transmission [28]. As shown in Fig. 1,
information about the anatomy of facial action was examined
and a physical model was built to guide the prosthesis-
controlling strategy based on the facial-action paradigm.

During the entire facial-action process, the cell column
with the same function from the prefrontal and motor cortexes
and limbic system are integrated through an inner loop struc-
ture; the firing rates of action potentials contain detailed infor-
mation for the plan and execution of a specific facial action.
Part of EEG signals transmits to the low-level central neural
system; substance α motor neuron is released by a special
spinal motor neuron, which will translate the information to
the facial nerve terminals. For EMG delivery and action units,
a series of anatomy-based studies on facial action proposed
that the movements of muscles during face actions can be
divided into two groups with respect to their musculature
and unique nerve tracts: upper and lower facial muscle move-
ment in certain combinations [35, 36]. The upper facial mus-
cles control the upper facial movement, which primarily oc-
curs around the brows and eyes. For example, brows can rise
from the coordinated contraction of the corrugator, procerus,
and orbicularis oculi. The lower facial muscles control the
lower facial movement, which primarily occurs around the
cheek and mouth. For example, a smile relies heavily on the
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depressor anguli oris and zygomaticus. Interestingly, re-
searchers observed that electrical muscle activity from facial
action can be detected broadly across the scalp and sides of the
face because of the extended distribution of facial musculature
in those areas [13].

The aforedescribed theory analysis demonstrates that the
EMG signals from different facial actions can be distin-
guished. The characteristics of the facial action mechanism
indicated that the signals from facial muscles may eventually
have clinical utility. Hence, considering the mechanism of
facial action and symmetry of different facial muscle contrac-
tion, we constructed the control model for a 2-DOF prosthesis
hand. The prosthesis control strategy based on facial action is
also introduced in Fig. 1. In this model, a subject was allowed
to use four facial actions to complete the grasping exercises of
the prosthesis. Table 1 presents the detailed corresponding
relationship between the prosthesis movement and facial
actions.

2.2 Description of EMG-controlled prosthesis system

According to performance criteria and previous experiences
for prosthetic application, the traditional scalp surface

recording equipment (Neuracle-W8, Neuracle, China) was
used to acquire a subject’s scalp muscle (not brain) activity
in this study, which was transformed from facial muscle con-
tractions [16]. In the biological method, the movements of
muscles during the actions in the face are measured either by
EMG recording or EEG equipment.

The hardware of the EMG-controlled prosthesis system
based on facial action is shown in Fig. 2(a) and comprised
an EMG data acquisition module, an EMG signal processing
module, and a prosthetic module. A microprocessor with an
Intel (R) Core (TM) i7-9700 CPU was selected as the EMG
signal processing unit. The prosthetic module was composed
of a prosthetic hand controller, Bluetooth device, prosthetic
hand, etc. In this study, a 2-DOF prosthesis with wrist and
finger joints custom-made by Danyang Artificial Limb Co.,
Ltd. was employed as the control target. The driving and con-
trol circuit board was a 4 cm × 4 cm circuit board that we
designed, and the main control module selected was an
STM32F103C8T6 chip, which satisfied the requirements of
the 2-DOF prosthesis control.

The overview of the prosthesis-control strategy is shown in
Fig. 2(b). The EMG-controlled scheme enabled a subject to
select grasp gestures and directly change the type using

Table 1 Corresponding
relationship between prosthesis
movement and facial actions

Hand movement Hand opening Hand closing Wrist rotating right Wrist rotating left

Facial action Raising brow Furrowing brow Left smirking Right smirking

Fig. 1 EMG-controlled
prosthesis system based on facial
action and its schematic
description
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different facial actions. When the subject has an intention to
operate the prosthesis, the EMG equipment detected the facial
EMG contractions and transformed them through Wi-Fi.
Subsequently, the EMG processing unit decoded the signals
with a corresponding algorithm and a control command was
generated to drive and control the unit. Finally, the prosthesis
was triggered by the control command and changed its gesture
for other facial EMG contractions.

2.3 Subject and data acquisition

A total of nine healthy volunteers between the age of 22 and
30 years old participated in the experiments (7 males and 2
females). All of them had no cognitive deficits. None of them
had prior experience with facial action of the EMG paradigm
or the proposed experimental procedure. Written informed
consent was obtained from each subject before the experi-
ment. The Institutional Review Board of Xi’an Jiaotong
University approved the proposed experiment, and all exper-
iments were conducted in accordance with the Declaration of
Helsinki.

The previous studies demonstrated that extracting an EMG
signal on the scalp using a typical non-invasive BCI was an
effective method to record the facial and neck muscle contrac-
tion [13]. Surface EMG activity from the movements of mus-
cles during facial actions can be detected broadly across the
scalp due to the extended distribution of facial muscles in
those areas. Moreover, the facial muscle system is muscular,
and the EMG activity is particularly strong near the forehead
owing to the underlying facial nerves, which are composed of
sensory, motor, and parasympathetic fiber components.

Hence, eight electrodes with two references that were set near
the facial muscles were used to record EMG signals; the sam-
pling rate was set at 1000Hz. The electrode setting at AFz was
employed as the ground potential, and another electrode set-
ting at CPz was selected as the reference potential. To record
robust EMG responses over the scalp, we placed four elec-
trodes on F7, F8, FC5, and FC6 to detect the EMG activity
from different facial actions because of their locations near the
facial muscles. The electrode description and their placement
are shown in Fig. 3(d). The impedances for all electrodes were
maintained below 5 kΩ. For lower noise contamination, a
Butterworth bandpass filter was applied to the raw signals,
and the EMG data in the 50–500 Hz frequency bands were
obtained. Furthermore, a notch filter was selected to eliminate
power interference.

2.4 Experimental setup

Each subject was asked to complete both offline and online
experiments to verify the feasibility of the EMG-controlled
method based on facial action. During the experiment, the
subjects sat on a comfortable chair stationed 60 cm from the
front desk and without body movement. Figure 3(a) depicts
the experimental scene from one subject (S3). S3 agreed to
have his experiment images published, and a written informed
consent was obtained from him.

2.4.1 Offline experiment

The offline experiment was conducted in a room. Each subject
was asked to repeat four facial actions (raising brow, left

Fig. 2 EMG-controlled
prosthesis system based on facial
action and its schematic
description. a Hardware of 2-
DOF facial EMG-controlled
prosthesis system. b Schematic of
the EMG-controlled prosthesis
system based on facial action
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smirking, right smirking, and furrowing brow) for ten sessions
with a comfortable and consistent level of effort. Every ses-
sion consisted of six trails. Each trial lasted for 3.5 s including
1 s of preparation, 1.5 s of performing one of four facial
actions, and 1 s of a break. The detailed time sequence of
the offline experiment is shown in Fig. 3(b). A 5-min rest time
was included between every two sessions to avoid mental and
muscle fatigue. The indoor experiment focused on investigat-
ing the performance of the proposed paradigm, such as recog-
nition accuracy.

2.4.2 Online experiment

Because the grasp pattern is one of the most important func-
tions of the human hand movement, the online experiment
aimed to imitate drinking water. For the first time, we con-
ducted the online experiment in the outdoors. In the online
experiment, four types of hand movements were selected to
complete the task of drinking water, which were hand open-
ing, hand closing, and wrist rotating right and left, respective-
ly. The arrangement of the online experiment is shown in Fig.
3(c). During the online experiment, the action sequence was
preset and saved on the computer. The subject was asked to
perform drinkingmovements as aforementioned. Each subject
was instructed to repeat ten sessions.

Throughout the online experiment, the subjects were
instructed to control the 2-DOF prosthesis using facial ac-
tion tasks, namely, the opening and closing of the prosthe-
sis with the brow actions and rotating the prosthesis wrist
with the corresponding mouth actions as detailed in
Table 1.

2.5 Methods

The fast Fourier transform (FFT) steadily transforms a
time-domain signal into different frequency scales. Hence,
the FFT was selected to extract EMG features in this study.
Furthermore, artificial neural networks (ANNs) have been
examined as possible solutions to solving complex prob-
lems such as biological signal processing. The back propa-
gation neural network (BPNN) is a hierarchical feed-
forward ANN consisting of three or more fully intercon-
nected layers of neurons and is currently the most widely
used ANN architecture. The BPNN classifier is well-known
to provide good performances when classifying non-linear,
self-adaptive, and self-learning sample sets. Thus, BPNN
was selected for the EMG signal classification in this study.
Figure 4 depicts the entire overview diagram of the signal
processing method.

Fig. 3 Experimental setup. a Experiment scene with one subject (S3) to
illustrate the four facial expression tasks used for prosthesis movements.
Raising brow corresponds to hand opening, furrowing brow corresponds
to hand closing, Left smirking corresponds to wrist rotating to the right,
and right smirking corresponds to wrist rotating to the left. Written

informed consent for the publication of identifying images was obtained
from the subject (S3). b Offline experimental time sequence of one ses-
sion. cOnline experimental time sequence of one session. d Illustration of
head amplifier and electrode placements
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2.5.1 Feature extraction

FFT has been widely used in EMG signal processing and is an
effective method of extracting the characteristics of random
surface EMG data because facial muscle contractions have
their unique motivation and spatiotemporal characteristics.
Hence, the energy of three frequency bands (64–128 Hz,
128–256 Hz, and 256–512 Hz) from four selected channels
(F7, F8, FC5, and FC6) produced by FFT were selected as
feature vectors. The statistical parameter of FFT energy coef-
ficients can be obtained using the following equation:

P j ¼ ∑
n

i¼1
y2i j ¼ 1; 2; 3; 4ð Þ ð1Þ

where j represents the FC5, FC6, F7, and F8 channels, i is the
FFT coefficient of each sub-rhythm, n is the total number of
FFT coefficients in each rhythm, and Pj is the energy of the
FFT coefficients of each sub-rhythm from each channel.

Using Eq. (1), features of the three frequency domain
ranges (the power of frequency) were extracted on each se-
lected channel. After the feature sets of all channels were
concatenated, a 3 × 4 vector of all feature points was provided
to the classifier in each facial action trail. Hence, the training
database of each subject contained four types of facial actions
and each action recorded 6 trails × 10 sessions = 60 trails dur-
ing the offline experiment. In more detail, the training data-
base of each subject contained 4 × 60 = 240 samples in total.
In each sample, a 3 × 4 feature point was computed by the
FFT algorithm. The effectiveness of the selected feature ex-
traction method was compared with a wavelet transform
(WT) with a mallet algorithm to estimate the effectiveness
of the feature extraction of multi-channel EMG data [40].
Based on the frequency band of the EMG signal in 50–
500 Hz band, the decomposition of the WT was set at 3,
and the wavelet function at Daubanchie 5 (db-5) was adopted
to perform the discrete WT.

2.5.2 Neural network model based
on the Levenberg-Marquardt back propagation algorithm

The pattern recognition of an EMG signal is a method to
increase the amount of information gleaned from muscles
and eliminate the requirement for isolated EMG signals. In
the literature, the majority of studies on different pattern rec-
ognition have been used for biological signals [3]. The BPNN
has become a popular machine learning model for EMG sig-
nal classification owing to its good ability to identify a com-
plex non-linear relationship between input and output
datasets. The advantage of this method is that an algorithm
for optimal parameter-learning can be used to decrease the
mean square errors of performance, which further increases
the separability of selected feature vectors [42]. However, the
standard BPNN has some defects such as slow convergence
rate and easily getting into local dinky value. The performance
of the BPNN is highly dependent on its optimal parameter
values, which are calculated by a parameter-learning algo-
rithm [4, 5]. Hence, the novel optimization algorithm by
Levenberg-Marquardt used in a majority of pattern recogni-
tion studies, which is derived from the steepest-descent meth-
od in combination with Gauss-Newton methods for network
weights and the optimization of bias variables [26], was used
in this study.

The design of the BPNN for the EMG recognition system
involved three factors: network design, training datasets, and
learning algorithms.

For the network structure, the input layer depended on the
result of feature extraction and the output layer denoted by the
number of control types. Because the input feature set of each
trial from each subject with the energy of three frequency
bands (64–128 Hz, 128–256 Hz, and 256–512 Hz) from four
selected channels, the input vector x = [x1, x2,…, x12] of each
sample, the corresponding input layer of the BPNN had 12
nodes. In this study, the number of classes in the training
datasets was four types of EMG signals from different facial

Fig. 4 Overview scheme of signal processing method

2690 Med Biol Eng Comput (2020) 58:2685–2698



actions for prosthesis control. For a binary system classifica-
tion, the predicted label value y from 2 output nodes can dif-
ferentiate the input feature vector x, where y = [y1, y2] and yi ϵ
(− 1, 1). In more detail, the output vectors y = [0, 0], [0, 1], [1,
0], and [1, 1] represented the furrowing brow, raising brow,
left smirking, and right smirking classes, respectively. Hence,
the output layer of the proposed LMBP model had 2 nodes.
The hidden numbers of neurons have a significant effect on
the generation of the training mode, hence, selecting the ap-
propriate value in the course of the experiment is very impor-
tant. Referencing the empirical rules of hidden node descrip-
tion presented byAdamowski J [1], the range of the number of
hidden nodes was obtained. Then, the exhaustive search strat-
egy was used to find the optimal value of the number of
hidden nodes based on the better performance of proposed
LMBP. After the experiment’s repeated results, the number
of hidden neurons in the hidden layer that must be optimized
through the error procedure is defined as 16. Hence, the struc-
ture of the LMBP model used in this study consisted of an
input layer with 12 neurons in a single hidden layer composed
of 16 neurons, and an output layer consisting of 2 neurons
denoting the different facial actions.

Preparing the training and test data for the LMBP classifier To
detect the robustness of the proposed BPNN and prevent an
over-fitting problem, we used a ten-fold cross-validation to
investigate the classification accuracy: the input vectors and
target vectors were randomly divided into ten sets, and the
cross-validation was repeated four times. During each valida-
tion, nine subsets of data were used for training and one for
testing. During the experiment, each subject’s data were used
to train his or her own classifier.

Parameter optimization has a significant effect on the clas-
sification performance of BPNN. In this study, the adaptive
gradient search strategy combined with Gauss-Newton
searched strategy, which is called Levenberg-Marquardt opti-
mization or LMBP algorithm, was used to optimize the super-
vised model parameters. The Levenberg-Marquardt optimiza-
tion algorithm has two advantages. First, it retains the local
optimal characteristics of Newton’s method and has the global
benefits of the gradient method, which speeds up the conver-
gence of the BPNN. Second, this algorithm exhibits global
convergence, a guaranteed rate of local convergence for both
zero and non-zero small residual problems, and it decreases
the time complexity of the predictive model compared with
the traditional BPNN parameter adjustment method [22].
Hence, the LMBP neural network model served as a recogni-
tion approach to identify the accuracy of the prosthesis ges-
tures in this research.

The basic element of an ANN is the neuron, which is a
logical mathematical model that simulates the behavior and
functions of a biological neuron [26]. In the LMBP-
optimization algorithm, the log-sigmoid activation is adopted

to compute the forward output of neurons, which can be com-
puted by:

f s j
� � ¼ 1

1þ exp − ∑
m

i¼1
wljxi þ θ j

� � ð2Þ

where ωlj is the connection weight from the l to the l + 1 layer,
θj is the bias value for the jth hidden node in l + 1, and j is the
number of nodes in the hidden layer.

In LMBP, the mean square error is the key aspect affecting
the performance of network; it can be given by the following
expression:

E Qð Þ ¼ 1

2
∑
M

m¼1
Pm−Ymk k2 ¼ 1

2
∑
M

m¼1
e2m Qð Þ ð3Þ

where M is the number of input features and em (Q) is the
error.

The gradient of the Jacobian matrix and Hessian matrices
in the LMBP algorithm are:

∇E Qð Þ ¼ JT Qð Þe Qð Þ
H Eð Þ ¼ JT Qð ÞJ Qð Þ þ K Qð Þ ð4Þ

where e is the unit matrix and J(Q) is the Jacobian matrix.
Subsequently, the correction ΔQk of each training can be

given by:

ΔQk ¼ − JT Qð ÞJ Qð Þ þ μE
� �−1

JT Qð Þe Qð Þ ð5Þ

When seeking the optimal-parameter solution of a func-
tion, the LMBP algorithm exhibits the ability of fast local
convergence of the Gauss-Newton method. In addition, if it
diverts from the optimal values, the algorithm has character-
istics of a global search strategy with the gradient-descent
method. This ensures that each update of the weight and bias
value decreased the error and avoids network fluctuations.

In Eq. (5), if the correction satisfies the condition ΔQk< ε, the
training is ended; otherwise, it is continued. After the parameters
and training are selected, the LMBP classifier is generated. The
flow of the LMBP algorithm is shown in Fig. 5.

The steps to realize the LMBP algorithm are as follows:

1 Initialize parameters, including network weight, learning
rate, and threshold error. Set iterations and total error to
zero.

2 Collect the input data and feed it to the input layer units.
3 Calculate the outputs of hidden layer units using LMBP

optimization.
4 Calculate the outputs of output layer units using LMBP

optimization.
5 Calculate the error and total error.
6 Calculate the output layer units, and adjust the weights

between the output and hidden layer units.
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7 Calculate the hidden layer units, and adjust the weights
between the hidden and input layer units.

8 If there are more feature vectors in the file, go to step 4.
9 If threshold error ≥ total error, stop; else, go to step 3.

The parameter-optimization method was compared with
the Adam algorithm to estimate the effectiveness of the
Levenberg-Marquardt optimization in the recognition of
multi-channel EMG data.

2.5.3 Statistical analysis

Before statistically comparing classification accuracy between
two methods (WT vs FFT), data were statistically tested for
normal distribution (one-sample Kolmogorov Smirnov test)
and sphericity (Mauchly’s test). A post hoc comparison was
performed using Tuckey–Kramer tests. A significant analysis
is generally based on the hypothesis testing of normal distribu-
tions. A student’s paired t test method was applied to assess the

Fig. 5 Scheme of classifier
training for the LMBP-
optimization algorithm

Fig. 6 Feature sets of four facial
actions from prominent subject
(S6)
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differences in the recognition accuracy of four facial actions.
The one-way ANOVA was applied to assess differences in the
energy coefficients among four facial actions. The
Greenhouse–Geisser correction was applied for p value
adjustments.

3 Experimental results

Before addressing whether our EMG-based facial action
strategy could be used to control a 2-DOF prosthesis out-
door, the feasibility of the proposed paradigm required to be
thoroughly validated through the offline experiment.
Subsequently, the online experiment was conducted to val-
idate the effectiveness of our proposed system to control
prostheses.

3.1 Offline analysis

To demonstrate the effectiveness of the proposed facial
EMG-controlled system, we compared the averaged fre-
quency domain and time-frequency domain features from
one prominent subject (S6). Other subjects indicated simi-
lar results. Figure 6 depicts the results of the calculation of
both the energy coefficients from WT and FFT using the
averaged data from F7, F8, FC5, and FC6. The detailed
information of each session for S6 was plotted, and all fa-
cial actions were investigated. We observed that the

difference in feature sets from the FFT was more remark-
able than the feature sets from the WT in the same facial
action. Furthermore, the EMG activities of four facial ac-
tions indicated significant differences in characteristics of
selected feature sets of each action and all offline experi-
ments indicated similar performances.

The performance of the LMBP classifier was investigat-
ed to better understand the effectiveness of the selected
recognition algorithm. Figure 7(a) depicts the performances
of the LMBP classifier in the training and validation stages
from S6. During the offline training stage, the validation
performance attained its maximum at 12 epochs and the
root mean squared error between the output and the predict-
ed targets varied slightly. Moreover, the linear regression
performance of the trained model is shown in Fig. 7b; the
training and test regression results were 0.99331 and
0.93735, respectively.

The experimental results indicated that the LMBP model
with 16 hidden neurons could accurately estimate the type of
facial action through selected features. Furthermore, the per-
formance obtained through the aforedescribed spatiotemporal
analysis also demonstrated that the FFT combined with
LMBP was an efficient algorithm to distinguish different fa-
cial actions, and the selected FFT coefficients were the more
effective features to describe the characteristics of facial
action.

Table 2 presents the comparison results of all subjects and
conditions; the averaged accuracies of WT and FFT were

Fig. 7 Performance of the LMBP model during training and validation for S6. a Classification performance. b Regression performance
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83.05 ± 5.67% and 95.45 ± 3.10%, respectively. The paired sam-
ple t test was used to test the performance of four facial actions,
and the analysis results indicated that the accuracy of FFT
methods increased significantly compared with WT. In the
EMG-based facial action paradigm, all accuracies were higher
than 73.47% during the period. For the EMG-based facial action
paradigmwith FFT, the highest recognition accuracywas obtain-
ed by S7, which was up was 98.89 ± 1.33%; the lowest accuracy
was 91.11 ± 4.95% for S9. In particular, the accuracies from three
subjects (S2, S6, and S7) were significantly higher than 97%. All
the subjects indicated similar results in the proposed paradigm.
However, despite these general experimental results, some inter-
subject variability occurred. This phenomenon may have been
caused by attention attenuation or mental fatigue for the facial
repetitive tasks.

To determine the efficiency of the selected parameter-
optimization method in the EMG-controlled system based on

facial action, we estimated the offline classification accuracy
using two different optimization methods. As shown in
Table 3, the grand average offline accuracy obtained for all sub-
jects was higher than 84.87 ± 14.94%. The performance of the
proposed optimization algorithm indicated a higher classification
rate and better robustness for all subjects. Statistical analysis was
used to assess the performance under two conditions. Significant
differences were observed among the two conditions using a
student’s paired t test (p< 0.05). The experimental results vali-
dated the efficiency of the proposed method in detecting the
characteristics of EMG signals from different facial actions.
Overall, the offline analysis result proved that the proposed
system indicated good performance and could be further used
in practical applications.

1.1 The aforedescribed results demonstrated the feasibility of the
proposed EMG control method based on facial actions. Hence,
the online experiments focused on the practical performance of
our proposed system. An EMG-controlled prosthesis based on
facial action was used to imitate the normal daily tasks such as
water drinking.

The online task asked subjects using the 2-DOF prosthesis to
complete a water-drinking process with four facial actions. The
subjects had to produce different control commands to operate
one complete drinking cycle with four discrete prosthetic ges-
tures. In the prosthesis operating stage, subjects were required to
hold on one same facial action before a prosthesis movement
decision was generated at the end of 1.5 s. Moreover, the pros-
thesis would remain in the previous gesture before any new
control commands were generated. In the online experiment,
each subject had his or her own classifier, and all the offline data
were applied to train the LMBP classifier. The best recognition
performance within a single session for S7 is shown in Fig. 8,
which further demonstrated the feasibility of the EMG based
facial action paradigm for prosthesis control.

Table 4 summarizes the recognition results from all subjects
across all sessions. It indicated that the averaged accuracy was
95.39 ± 3.13% from nine subjects across all sessions. The highest
and lowest ones were 100.00 ± 0 and 86.78 ± 10.31%for S7 and
S9, respectively. Furthermore, the classification error ratewas less
than 10.31% on all subjects, and the mean value was 3.13%. The
results indicated that these four facial actionscouldbeclassifiedby
an LMBP classifier even if the prosthesis handwasmoving.

To access the tendency of mental fatigue during all the
online tasks, we calculated the accuracy of each session for
all subjects in Fig. 9. No significant decrease in accuracy was
observed over the entire experiment. A one-way ANOVA
analysis for the session’s performance was conducted to fur-
ther analyze its feasibility. No significant difference was ob-
served in the accuracies from nine subjects during each ses-
sion (p > 0.05). Overall, all the results demonstrated the effi-
ciency of the proposed system, which can be further applied to
prostheses control.

Table 2 Offline accuracies of each subject in facial actions with two
feature extraction methods

Accuracy (%)

W T FFT

Subject 1 87.36 ± 5.43 96.25 ± 3.94

Subject 2 89.13 ± 5.69 97.92 ± 2.36

Subject 3 78.19 ± 5.33 96.81 ± 2.60

Subject 4 82.64 ± 5.93 93.33 ± 3.07

Subject 5 73.47 ± 6.75 95.83 ± 3.52

Subject 6 78.75 ± 6.92 97.50 ± 1.96

Subject 7 91.53 ± 4.88 98. 89 ± 1.33

Subject 8 90.28 ± 6.23 94.83 ± 4.24

Subject 9 76.11 ± 3.94 91.11 ± 4.95

Avg ± Std 83.05 ± 5.67 95.45 ± 3.10

Table 3 Offline accuracies of each subject in facial action with two
parameter-optimization methods

Accuracy (%)

LMBP Adam

Subject 1 96.25 ± 3.94 85.88 ± 15.66

Subject 2 97.92 ± 2.36 87.00 ± 10.16

Subject 3 96.81 ± 2.60 87.17 ± 14.04

Subject 4 93.33 ± 3.07 83.83 ± 13.88

Subject 5 95.83 ± 3.52 80.83 ± 14.81

Subject 6 97.50 ± 1.96 85.75 ± 12.63

Subject 7 98. 89 ± 1.33 88.78 ± 16.31

Subject 8 94.83 ± 4.24 85.00 ± 19.94

Subject 9 91.11 ± 4.95 79.58 ± 17.03

Avg ± Std 95.45 ± 3.10 84.87 ± 14.94
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4 Discussion

In this study, a novel EMG control scheme based on different
facial actions was proposed, and its efficiency and feasibility
applied in operating a 2-DOF prosthesis were assessed. Four
facial actions with distinctive facial muscle movements were
selected to generate different EMG signals, which were further
used to control peripheral devices. Both offline and online exper-
iments were conducted, and the experimental results demonstrat-
ed that the EMG-control prosthesis based on a facial action sys-
tem can be considered an alternative prosthesis control scheme
with good performance and feasibility. Compared with existing
studies, the superior performance obtained by the proposedmeth-
od can be illustrated by the following aspects.

4.1 Mechanism of EMG-based facial action

The mechanism of the EMG-based facial action and its control
model was analyzed from the brain responses of the cortexes
particular to facial muscle contractions. Our previous study dem-
onstrated that the prefrontal, motor, and limbic cortexes have a
fundamental function in the completion of different facial actions
[24]. Hence, the bio-signals from different facial muscles contain
abundant and sophisticated information during their actions. The
mechanism of people’s facial actions is composed of the EEG
signal generation, nerve system transmission, motor neuron gen-
eration, facial nerve transmission, and eventually the realization
of facial muscle contractions. Owing to the different involve-
ments of muscle segments for different facial actions, the face
can simply be divided into upper, lower, left, and right face [36].
Notably, the EMG signals from different facial actions can be
fully decomposed. Although the EMG response of facial action
cannot be limited to the proposed system, the mechanism of
EMG responses of facial action and its control model has its
unique value in the representation of facial action from various
aspects. Hence, using a physical model to analyze the facial-
muscle-contraction mechanism during the specific task provides

a further method to predict the feasibility of a novel EMG-
controlled system based on a facial action paradigm.

4.2 Performance of the proposed EMG control system
based on facial action

Unlike widely used EMG-decoding methods, a traditional
FFT with LMBP algorithm was proposed in this study for
feature extraction and pattern recognition to analyze the
EMG data from different facial actions. During each action,
the EMG signal was separated into three frequency bands to
investigate the detailed frequency characteristics. For the same
set of subjects, the features from the FFT algorithm
outperformed those from the WT in every scenario of the
proposed paradigm. Englehart [18] investigated three feature
extraction methods, (WT, wavelet transform packed, and
FFT). He demonstrated that using a wavelet-based feature
set exhibited better performance than others in traditional
EMG control prosthesis methods. Time-frequency analysis
methods (wavelet-basedmethods) are known to be more com-
plex than the frequency methods. In our proposed paradigm,
the data were essentially stationary in every analysis window;
thus, the feature set was computed using a simple method. For
the same reason, there is no advantage in using time-
frequency methods such as the wavelet packet feature set,
which was demonstrated to be significantly effective in the
classification of transient signals.

Furthermore, a robust classifier based on LMBP was con-
structed, which produced good classification performance on
both offline and online experiments, with averaging accuracy
values in 95.45 ± 3.10% and 95.39 ± 3.13%, respectively. In par-
ticular, the highest and lowest accuracies were 100% and 86.78
± 10.31% from S7 and S9, respectively, during the control of the
2-DOF prosthesis. These results theoretically indicated that the
EMG-controlled prosthesis based on facial action has the poten-
tial for practical applications.
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Fig. 8 Best recognition
performance within a single
session for S7

Table 4 Online accuracies of each subject in different facial actions

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Avg
Acc (%) 96.67 96.67 95.00 98.33 96.67 98.33 100 90.11 86.78 95.39

Std (%) 7.03 10.19 7.03 5.27 7.03 5.27 0 8.61 10.31 3.13
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4.3 Comparison with other methods

As aforedescribed, most previous EMG control prosthesis used
surface EMG signals from residual muscles after amputations,
and their application focused on static inter-scenarios. In the
work of Nasser et al., an anatomical shoulder and prosthetic
elbow joint were enabled with simultaneous movement via
EMG signals [6]. Michele et al. succeeded in controlling precise
artifact hand movements using surface EMG signals, and dem-
onstrated an accuracy of 91% [7]. However, these types of EMG-
controlled prostheses highly relied on residualmuscle conditions,
which, particularly for amputations, cannot provide sufficient
myoelectric signals. Moreover, most of these studies focused
on a fixed working environment.

To address this deficiency, this study proposed a novel pros-
thesis control strategy based on facial actions, and all data col-
lection did not rely on whether participants were amputated or
not. Furthermore, the purpose of this paradigm focused on mul-
tiple outdoor scenarios when undergoing activities of daily life in
addition to the classification performance. Its flexibility, stability,
and the effect of mobility had slight effects on the performance of
the classification. Participants were providedmore opportunity to
restore some degree of functional ability to interact with their
surroundings, particularly for some severely paralyzed patients.

4.4 Limitations and further work

All the aforedescribed experimental results demonstrate the ad-
vantages of the proposed method; however, there still have some
limitations should be considered. In this study, the results were
only evaluated from healthy subjects and individual variation
was not considered. In the future, more subjects should be in-
volved in the EMG-controlled prosthesis method based on facial
action, particularly for disabled people. Another limitation is that
only four facial actions were selected in this study. In a further
study, more facial action will be considered to realize more pre-
cise prosthesis action. In addition, alternative methods of EMG
decoding such as deep learning neural networks will be
employed to investigate whether they can aid in decreasing the
effect of individual variation and be more applicable to amputee

subjects. Moreover, some optimization algorithms of hyper-
parameters [4] will be utilized to optimize the ANN model to
obtain better classification accuracy, such as genetic optimization
based methods .

5 Conclusion

In this study, a novel prosthesis control method based on surface
EMG signals from different facial actions was proposed.
Compared with traditional EMG control methods, a significant
improvement was achieved in the proposed method on all the
subjects. By using FFT combined with LMBP algorithm, the
averaging classification accuracies were 95.45 ± 3.10% and
95.39 ± 3.13% in the offline and online experiments, respectively.
The results of this studymight be useful in realizing the control of
multifunctional myoelectric prostheses for disabled people.
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