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Abstract: Deterioration of the urban thermal environment, especially in megacities with intensive
populations and high densities of impervious surfaces, is a global issue resulting from rapid urban-
ization. The effects of landscape patterns on the urban thermal environment within a single area
or single period have been well documented. Few studies, however, have explored whether the
effects can be adapted to various cities at different urbanization stages. This paper investigated the
variations of these effects in the five largest and highly urbanized megacities of China from 1990 to
2020 using various geospatial approaches, including concentric buffer analysis, correlation analysis,
and hierarchical ridge regression models. The results indicated that the effects of landscape patterns
on the urban thermal environment were greatly variable at different urbanization stages. Although
landscape composition was more important than landscape configuration in determining the urban
thermal environment, the standard coefficients of composition metrics continuously decreased from
1990 to 2020. However, configuration metrics, such as patch density, edge density, and shape com-
plexity, could affect the land surface temperature (LST) to a larger extent at the highly urbanized
stage. The urbanization process could also affect the cooling effect of urban green space. At the
initial stage of rapid urban expansion in approximately 2000, urban green space explained the most
variation in LST, with a value as high as 10%. To maximize the cooling effect, the spatial arrangement
of urban green space should be highlighted in the region that was 10-15 km from the city center,
where the mean LST experienced a significant decline. These results may provide deeper insights into
improving the urban thermal environment by targeted strategies in optimizing landscape patterns
for areas at different urbanization stages.

Keywords: urban thermal environment; landscape pattern; megacity; spatiotemporal analysis;
urbanization stage

1. Introduction

A megacity is generally considered a metropolitan area with a total population of more
than 10 million [1]. It is estimated that there will be 43 megacities in the world by 2030 [2].
Approximately 55.7% of the population lives in urban areas [3], and this proportion is ex-
pected to increase to 70% by 2050 [2]. The most recent advances in Geographic Information
Systems (GIS) provided us with substantial geospatial technologies, such as quantitative
measurement of urban shape and monitoring cities in near real-time by drone, to address
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environmental disturbances and promote urban sustainable development during rapid
urbanization [4,5]. China, as a developing country, has undergone large and continuous
demographic migration from rural areas to urban areas [6]. Land cover change caused by
urbanization is occurring at an unprecedented rate and results in changes in the structure
and function of urban ecosystems [7,8]. As an important part of the urban eco-environment,
the urban thermal environment is greatly affected by rapid urbanization, especially in
megacities [9]. A well-documented consequence of the urban thermal environment change
is the formation of urban heat island (UHI), referring to the phenomenon that the atmo-
spheric and surface temperatures in urban areas are higher than those in the surrounding
rural areas [10]. The urban thermal environment has a profound effect on the local climate,
human settlement, energy consumption, biodiversity, and ecosystem functions [11-14]. On
the one hand, continuous high temperatures will decrease the comfort of urban dwellers,
which may cause greater health risks [15,16]. On the other hand, excess heat will greatly
increase the energy consumption for building refrigeration, leading to economic burdens
on urban development [17]. Urban warming in hot climates exerts heat stress on organisms
and may thus reduce biodiversity and affect ecosystem functions [18]. Therefore, it is of
special importance to investigate the factors that affect the urban thermal environment.

Many studies have shown that there is a significant relationship between the urban
thermal environment and landscape patterns, which include composition and configura-
tion [19,20]. For example, vegetation is replaced by impervious surfaces such as asphalt and
cement, which represents a compositional change. The fragmentation of natural landscapes
increases because of land cover change, which represents a configuration change. Both
aspects result in radiation energy changes and provide an energy basis for the formation
of UHI [21]. Urban thermal environment problems caused by landscape pattern changes
have attracted widespread attention [10,22-25]. Land surface temperature (LST), which has
continuous spatial coverage, has been an important parameter in manifesting the urban
thermal environment in recent decades [26]. A series of studies have been carried out
to investigate the effects of landscape patterns on the urban thermal environment using
remotely sensed LST data. The results indicated that anthropogenic land cover types such
as asphalt-paved areas and building areas play an important role in increasing LST, while
natural land cover types such as green space, forests, and water bodies can mitigate high
temperatures even in urban central areas [27-29]. There is a strong positive correlation
between LST and the density of impervious land surfaces, which are generally accepted
as the main driving force of temperature increases [30-32]. In contrast, urban green space
has cooling effects on the urban thermal environment. Evidence reported in the reviewed
papers showed that landscape configuration, including the spatial characteristics of indi-
vidual landscape patches and the relationships among multiple areas, can also affect the
urban thermal environment [7,33-35].

It is worth noting that the effects of landscape composition and configuration on
the urban thermal environment are greatly variable due to the differences in the loca-
tions [36,37], the city size [38], and the urban development stage of the study areas [37].
Estoque et al. [39] examined the relationship between urban LST and the spatial patterns of
impervious surfaces and urban green space in the three megacity areas of Manila, Jakarta,
and Bangkok in Southeast Asia. The results showed that the correlation between the mean
LST and landscape composition fluctuated across the three areas, in which the correlation
coefficient of Jakarta (0.062) was larger than those of the other two areas (0.044 and 0.048).
In Turin, Italy, urban LST significantly increased by 4.0°C, where the high impervious
land surface increased by 10% in core areas [40]; however, for every one percent increase
in impervious land surface in Hanoi, Vietnam, the mean LST will increase by approxi-
mately 0.75-1.08°C [41], and a 7.69% decrease in impervious surface density in Beijing was
equivalent to a 1.1 °C decline in mean LST [42]. While landscape composition is much
more important than configuration, landscape configuration cannot be neglected. Chen
et al. [26] reported that the landscape shape index and mean gyration index, which were
calculated by Landsat images acquired in 2002, can explain approximately 12% of the mean
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LST by statistical analysis in Beijing. However, even in the same study area, Peng et al. [43]
reached different conclusions using Landsat images acquired in 2009. The correlation
results showed that the landscape shape index could explain approximately 35% of urban
LST, and the Pearson correlation coefficients of the shape index and fragmentation index
with LST were 0.594 and 0.510, respectively. However, a study carried out in Baltimore
using the same method showed that the Pearson correlation coefficients between LST and
these two indexes were —0.30 and 0.31, respectively [44]. Being limited to a relative-narrow
spatiotemporal range (the single city or single year), these studies mainly focused on the
effects of landscape patterns on UHI intensity. These results suggested that the same
landscape metric might play different roles and that some even showed contrary effects
on the urban thermal environment. Few studies, however, have explored the variations
in these effects using multiple thermal images for different years in different urban areas,
particularly in megacities of China.

Taking five megacities (Beijing, Tianjin, Shanghai, Guangzhou, and Shenzhen), which
are the core cities of the three most developed urban agglomerations in China [45], as
the study areas, this study sought to: (1) examine the effects of landscape patterns on the
urban thermal environment in the study areas, (2) and further investigated the variations
in the effects from 1990 to 2020 across different urbanization stages. As the home of more
than 10 million people, each of these five cities has experienced rapid urbanization and
presented intensive UHI [46-50]. Landsat series data and various geospatial methods,
including spatial metric-based approaches, land-use dynamic changes, and hierarchical
ridge regression models, were used to facilitate the research. The results from this study
can provide urban planners with deep insights into how to improve the urban thermal
environment through targeted urban green space management and impervious surface
design at specific urbanization stages.

2. Materials and Methods
2.1. Study Areas

The five largest megacities in China, Beijing, Tianjin, Shanghai, Guangzhou, and
Shenzhen, are illustrated in Figure 1. Among them, Beijing and Tianjin are located in the
Beijing-Tianjin-Hebei urban agglomerations, Shanghai is located in the Yangtze River Delta,
and Guangzhou and Shenzhen are located in the Pearl River Delta. These megacities are
similar in that they have dense and numerous populations, rapid urbanization, large GDP,
and an intensive UHI effect. However, there are still significant differences among them
in urban climate conditions, urbanization processes, and landscape patterns. Beijing and
Tianjin, both situated in the northern part of the North China Plain, have a hot and humid
summer because of the East China monsoon. Shanghai, as an economic center in China,
is situated in the estuary of the Yangtze River, in which the humid subtropical climate is
obvious in summer. Guangzhou and Shenzhen, located in coastal regions, are wet, with
high temperatures in summer influenced by the subtropical monsoon climate.

The city cores of each megacity determined by the administrative boundary were
selected as the study areas for two main reasons. On the one hand, the city cores covered
most parts of the urban extent and presented typical UHI effects. On the other hand, the
study areas can be covered by a single swath of satellite images to avoid the uncertainties
caused by mosaicking two or more images. The landscapes of the five megacities included
urban built-up lands, green space, and water bodies. However, the landscape patterns
varied with different modes of urban expansion. Beijing and Shanghai had a prominent ring
pattern and expanded in all directions due to the strong attractiveness of urban central areas.
In contrast, Tianjin, Guangzhou, and Shenzhen, which are all coastal cities, showed ribbon
patterns in the north-south (Guangzhou) or east-west (Tianjin and Shenzhen) directions
due to terrain constraints. The Digital Elevation Model (DEM) with 30-m spatial resolution
of five megacities were shown in Figure A1l. In most cases, the central areas of cities are
flat, while mountains and hills were basically located outside the study areas.
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Figure 1. The locations of five megacities: Beijing, Tianjin, Shanghai, Guangzhou, and Shenzhen.

2.2. Data Source and Pre-Processing

To acquire cloud-free Landsat images with highly clear atmospheric conditions de-
rived from three sensors, Landsat 5 TM6, Landsat 7 ETM+6, and Landsat 8 TIRSI, in
different study periods, the image acquisition dates ranging from July to September were
not strictly limited in the initial year of each decade, of which a deviation of two years was
acceptable (Table 1). Thermal images of Shenzhen in the summer seasons from 2018 to
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2020 were covered by large amounts of clouds; hence, the LST of Shenzhen was retrieved
in approximately 1990, 2000, and 2010, excluding 2020. Each swath of the Landsat image
covered the whole area of a single megacity. This study collected the meteorological data
of the image acquisition date to assure that the satellite images were both cloud-clean
and with similar weather conditions. From the acquired meteorological data (Table A1),
the differences among the five megacities were not obvious, especially in the aspect of
maximum temperature. Therefore, selected Landsat images, which were used to retrieve
land surface temperature, had similar weather characteristics. The satellite images were
composited by the method of standard false-color composition with Bands 2, 3, and 4
(Figure 1). Then, the false-color images were classified into four land cover categories,
namely, impervious surface, urban green space, water body, and other.

Table 1. A summary of satellite images used in research and nature-social characteristics of study areas in each period.

Megacity Image Acquisition Date Datasets Path-Row Population (Million) GDP (Billion $)

1992/09/07 GMT 02:15 Local time 10:15 Landsat 5 TM 123-32 10.86 10.47

Beifin 1999/08/02 GMT 02:46 Local time 10:46 ~ Landsat 7 ETM 123-32 13.64 38.80
yng 2010/08/08 GMT 02:43 Local time 10:43 Landsat 5 TM 123-32 19.62 211.50
2019/08/17 GMT 02:53 Local time 10:53  Landsat 8 TIRSI 123-32 21.54 512.82

1991/08/13 GMT 02:11 Local time 10:11 Landsat 5 TM 122-33 8.84 6.50

Tianiin 1999/08/11 GMT 02:40 Local time 10:40 Landsat 7 ETM 122-33 10.01 20.56
) 2011/08/04 GMT 02:36 Local time 10:36 Landsat 5 TM 122-33 12.99 135.10
2020/08/28 GMT 02:47 Local time 10:47  Landsat 8 TIRSI 122-33 15.62 204.49

1989/08/11 GMT 01:51 Local time 09:51 Landsat 5 TM 118-38 13.34 16.34

Shanehai 2000/08/01 GMT 02:15 Local time 10:15 ~ Landsat 7 ETM 118-38 16.09 58.12
& 2007/07/28 GMT 02:18 Local time 10:18 Landsat 5 TM 118-38 23.03 255.37
2020/08/16 GMT 02:24 Local time 10:24  Landsat 8 TIRSI 118-38 2428 553.18

1989/07/06 GMT 02:19 Local time 10:19 Landsat 5 TM 122-44 5.92 6.68

Guaneshou  2000/09/14 GMT 02:42 Local time 10:42  Landsat 7 ETM 122-44 9.95 30.26
& 2008/07/26 GMT 02:38 Local time 10:38 Landsat 5 TM 122-44 12.71 155.84
2019/09/27 GMT 02:52 Local time 10:52  Landsat 8 TIRSI 122-44 28.74 342,57

1989/07/06 GMT 02:19 Local time 10:19 Landsat 5 TM 122-44 1.68 3.59

Shengh 2000/09/14 GMT 02:42 Local time 10:42 ~ Landsat 7 ETM 122-44 7.01 26.80
enzhen 2008/07 /26 GMT 02:38 Local time 10:38 Landsat 5 TM 122-44 10.37 147.47
- - - 12.52 392.97

2.3. LST Retrieval

For LST retrieval, the procedure suggested by Wang et al. [51] was applied. In this
study, the emissivity-corrected LST was calculated as follows:

Cz/)\
T,= — 274 )
s 1n(7A51§%T5) +1)
with i 1
B(Ts),, = a0 +a1w + (a2 + azw + a4w2)g + (a5 + agw + a7w2)ELsm )

where T; represents LST, A represents the effective wavelength (11.457 um, 11.269 um,
10904 pm for Landsat 5 TM6, Landsat 7 ETM+6, Landsat 8 TIRSI, respectively),
c1 =1.19104 x 108 W-um* m~2-sr~! and ¢, = 1.43877 x 10* um-K, B(Ts)w represents the
Plank’s radiance at the temperature of Ts, w represents the atmospheric water vapor content,
e represents the land surface emissivity, L., represents the at-sensor radiance, and a0-a7 rep-
resent the coefficients for Landsat series data (as shown in [52]). Leen (W-m™2-sr™1-pm~1)
can be obtained from Landsat raw images after radiative calibration [53]; w (g-cm~2) can
be obtained from Landsat image data using the split-window covariance-variance ratio
method [54,55]; and € can be calculated by using the normalized difference vegetation
index (NDVI) threshold method (Equation (3)) [56] as follows:

8:€UPU+8]/I(17FU)' (3)
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In Equation (3), &, and ¢, represent the pure vegetation emissivity and urban sur-
face emissivity, respectively. F, represents the fractional vegetation cover, which can be

calculated as follows:
NDVI— NDVI,, >

NDV Lpax — NDVImm] ’

where NDVI was derived using the surface reflectance from Landsat images [57] and
NDVlay and NDVI,,;, were set to 0.5 and 0.2, respectively [58].

Fv:[ 4)

2.4. Interpretation of Land Cover

The false-color images were classified by morphology, tone, and texture into four land
cover categories, namely, impervious surface, urban green space, water body, and others.
Impervious surfaces refer to urban areas that have been covered by concrete, asphalt, or
buildings of various heights and densities. The images of impervious surfaces are mainly
cyan and grey, with a clear boundary and obvious geometric shape features. Urban green
space refers to the area grown for the groves of trees, shrubs, and bamboos, such as forests,
urban park, and urban green belt, of which the images are dark red, light green, uneven
yellow or light yellow, and the geometric shape is dominated by the terrain. Water bodies
include all bodies of water, such as rivers, lakes, reservoirs, and ponds. The characteristics
of patches in the images include uniform structure, a clear boundary, obvious geometric
features, and a blue color. Other refers to all lands not classified as the above five categories.

The extracted land cover categories were evaluated by comparing them with corre-
sponding QuickBird high-resolution images (0.61 m). During the study period, for each city,
130 samples were collected by the random sampling method, and at least 10 samples were
allocated to each land cover category. The overall interpretation accuracy of the classified
images was above 85% (86.15-94.61%).

2.5. Spatial Analysis
2.5.1. Quantification of Landscape Composition and Configuration

For the landscape composition metric, this paper selected the most frequently used
metric: percentage of landscape (PLAND). To describe the landscape configuration of
landcover features, nine spatial metrics (Table 2) were selected according to a previous
study [26]. All spatial metrics were calculated for both impervious surfaces and urban green
surfaces. Sample landscapes were divided into polygon grids of 3 km size at random. There
was a total of 140, 105, 230, 136, and 105 grids for Beijing, Tianjin, Shanghai, Guangzhou,
and Shenzhen, respectively, and these grids were extracted to calculate the class-level
spatial metrics using Fragstats v4.2 software.

Table 2. Spatial metrics used in this study to measure landscape patterns.

Spatial Metrics Abbreviation Description
Composition
Percent of landscape PLAND The percentage of each landscape type
Configuration
Patch density PD The patch number of each landscape per unit area
Edge density ED The total length of each landscape per unit area
Mean patch area AREA_MN Reflecting the patch area or size of each landscape type
Standard deviation of patch area AREA_SD A measure of the variability of patch area or size
Mean shape index SI_MN A straightforward measure of shape complexity
Standard deviation of shape index SI_SD A measure of the variability of shape complexity

Mean Euclidian nearest neighbor distance ENN_MN

The average distance of one landscape patch to its nearest
neighbor patch of the same landscape

Standard deviation of Euclidian nearest

neighbor distance
Patch cohesion

ENN_SD A measure of the variability of nearest neighbor distance

CI Reflecting the dispersion and interspersion of the landscape
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2.5.2. Concentric Buffer Analysis

Multiple concentric buffer zones have been widely used to analyse phenomenon
changes [39,59,60]. This paper created buffer zones with a 500-m interval around each city
center to investigate the spatiotemporal variation in LST and landscape composition across
an urban gradient. Relative LST (RLST) was used to clarify the contribution of each buffer
zone to the thermal environment and standardize the results between different years to
avoid bias. It was calculated as follows:

RLST;' - Ls:r;' — LST; (5)

where RLST represents the relative LST, i denotes the buffer zone, j denotes the thermal
image, LSTi]- denotes the LST in buffer zone i of thermal image j, and LST]- represents the
mean LST of thermal image j. The PLAND of impervious surfaces and urban green spaces
were determined to indicate the landscape composition in each buffer zone.

2.5.3. Hierarchical Ridge Regression Model

A bivariate correlation analysis by the Pearson matrix was first developed to examine
whether there were statistically significant relationships between LST and landscape spatial
metrics within the selected grid. Considering that a high variance inflation factor (VIF)
existed between the variables, a hierarchical ridge regression model was further established
to investigate the variation in the effects of landscape patterns on the urban thermal
environment in different areas from 1990 to 2020. The hierarchical models were divided
into two layers to quantify the respective roles of impervious surfaces and urban green
space. The variables in the first layer included only spatial metrics of impervious surfaces.
Based on the first layer, metrics of urban green space were then put into the models as the
second categories. All statistical analyses were conducted by SPSSTM (version 25).

3. Results
3.1. Variation in Land Cover Classifications

Based on the satellite images, land cover classification maps for the five megacities
were obtained. The results illustrated that the landscape pattern of each megacity had un-
dergone significant changes in the past four decades (Figure 2). Corresponding to previous
studies [61], impervious surfaces of the five megacities were concentrated in local central ar-
eas in 1990; then, they expanded outward rapidly and constantly invaded the surrounding
green space during rapid urbanization. Impervious surfaces showed a continuous increas-
ing trend in all five megacities, in which Shanghai and Beijing presented the most obvious
diffusion patterns. From 1990 to 2020, the proportion of expanded impervious surfaces
in Beijing, Tianjin, Shanghai, Guangzhou, and Shenzhen reached 47.12%, 40.63%, 56.70%,
42.79%, and 45.17%, respectively. In contrast, urban green space was greatly reduced, with
declines of 44.92%, 27.63%, 54.67%, 41.74%, and 38.01%, respectively. It was quite easy
to determine that the majority of urban built-up areas expanded at the cost of occupying
urban green space. Interestingly, this paper found that the urban expansion of the five
megacities presented similar characteristics, which could be divided into three stages:
low-speed expansion around the central area from 1990 to 2000, high-speed expansion
in the suburban area from 2000 to 2010, and low-speed expansion in the suburban area
from 2010 to 2020. However, the spatial patterns of urban expansion in the five megacities
were not consistent. Beijing and Shanghai showed classic ring-pattern expansion, while
the other three presented ribbon patterns expanding in different directions. Moreover, the
degree of fragmentation for impervious surface distribution in Shenzhen was the highest,
while the percentage of impervious surface was the lowest.
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Figure 2. Land cover classification maps for five megacities from approximately 1990 to approximately 2020. From the left

panel to the right panel: Beijing, Tianjin, Shanghai, Guangzhou, and Shenzhen.

3.2. Comparison of Urban Thermal Environment

According to the classification results of the remotely sensed LST, the spatial distri-
bution of the urban thermal landscape for five megacities from 1990 to 2020 is shown in
Figure 3. The real value of mean LST and the raw Landsat thermal images can be found in
Table A2. Figure A2 indicated the large-scale land-cover and thermal landscape maps of
Beijing in 1990 and 2020, which illustrated an obvious expansion of impervious surface
and more scattered sub-high temperature (S-H) areas (all large-scale images can be found
in Supplementary Materials, Figures S1-53). In 1990, the impervious surface as well as the
S-H area mainly concentrated in the urban center, which occupied only 50% of the entire
city area. While the impervious surface had continuously swallowed up the surrounding
green space and became the absolute dominant land use type during the last three decades.
Meanwhile, the S-H area dispersed with the increase of fragmentation degree of green
patches, evenly spread over in the city. In general, the dynamic development trend of high
(H) and sub-high temperature (S-H) areas in five megacities showed a similar trend. At the
early stage of urban expansion in 1990, the H and S-H areas were mainly distributed in
the urban central area. With the rapid expansion of impervious surfaces, the H and S-H
areas gradually filled the whole study area, which spread continuously along the previous
contour. In Figure 3, there is a clear phenomenon in which concentrated heat sources
were transformed into numerous scattered but tiny thermal centers, which indicated that
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Beijing

the spatial extents of UHI were no longer confined to megacity centers. However, the
distribution patterns of scattered thermal patches in the five megacities were significantly
different. In Beijing and Shanghai, which mainly expanded with the ring pattern, the H and
S-H areas gradually spread around the city center. While the other three megacities mainly
expanded in a ribbon pattern, the H and S-H areas generally expanded in one direction:
Tianjin moved to the southwest, Guangzhou moved to the north, and Shenzhen moved to
the northwest.

Tianjin Shanghai Guangzhou Shenzhen

B Sub-low
Low
Medium
B Sub-high
I High
a&e 0 15 3Okm
b&e&d Lome20d0yy

Figure 3. Spatial distribution of urban thermal landscape classified by remotely sensed LST for five megacities from
approximately 1990 to approximately 2020. From the left panel to the right panel: Beijing, Tianjin, Shanghai, Guangzhou,

and Shenzhen.

From the perspective of the proportion of various LST levels, the S-H area predomi-
nated over the urban thermal environment from 1990 to 2020 (Figure 4). In Guangzhou and
Shenzhen, the proportion of medium-, sub-high-, and high-temperature areas decreased
slightly from 1990 to 2020. In Beijing, Tianjin, and Shanghai, the area proportion increased
from 64.0%, 59.4%, and 55.2% to 68.7%, 65.0%, and 69.1%, respectively. Although the
proportion of high-temperature areas in most megacities showed a fluctuating downward
trend, it should be noted that the decrease in the proportion of high-temperature areas
was not due to improvement of urban thermal environment; rather, it was caused by the
increase in the mean LST in the whole study area.



Remote Sens. 2021, 13, 3415

10 of 22

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%

2000

2010

2020

Relative LST (°C)

EEEE R PEEE EeEEE .
12.09%
L 70w, 2935% 2334% 26999 18.68% 26.02% 24439 227% 22.48% 2518% 24.92% 25.40% 2467% 2624% 24.57% 25.12% 2764% 26.74%
IIII IIII I I I II I I M High area
Sub-High area
44.29% .
[31:20% 22.25% 35 563 24.07% 39.74% 3095% 30.89%, 31,429, 255% 51 10, B84% 263% o o 26779 011% 221% 15019 2652% % Medium area
Sub-low area
L 049% M Low area
1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010
Figure 4. The variation in the percentage of the five LST levels for each megacity from 1990 to 2020.
4. Discussion
4.1. Analysis of Landscape Composition and RLST within Buffer Zones
Concentric buffer zones were established to analyze the spatial patterns of both RLST
and landscape composition from the city center to rural areas. The results indicated that
there was a significant decreasing trend of RLST considering that the PLANDs of different
landscape types both had a strong correlation with the urban thermal environment along
the urban gradient (Figures 5 and 6), which was also observed in other cities [39,62]. A
rapid decrease in RLST corresponded to a sudden increase in urban green space in the
buffer zones, which were approximately 10-15 km from the city center of each megacity.
The highest decline in RLST of the four periods occurred in approximately 1990, and
after that, the slope of the RLST curve gradually became smoother. This phenomenon ex-
plained why the high-temperature area showed a decreasing trend, which was observed in
Section 3.2. The expansion of urban built-up areas intensified the UHI effect, and the
significant high-temperature area was no longer limited to the city center. Notably, the
largest increase in impervious surfaces for the five megacities started in 2000, and after
that, the shape of the RLST curve transformed from “cliff” to “plains”.
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Figure 5. A comparison of the variation in the RLST and PLAND of impervious surfaces and urban green spaces in

concentric buffer zones of five megacities.
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Although there were numerous “peaks”, “plains”, and “valleys” for all RLST curves,
only the curves of the three megacities with ribbon patterns in the last two decades, Tianjin,
Guangzhou, and Shenzhen, contained the “basins”, which denoted that the mean LST
within a certain buffer zone was lower than that of the whole study area (Figure 5). The
“basins” indicated that the heterogeneous features of the urban thermal environment may
be more sophisticated in a megacity with a non-ring-pattern because landscape composition
and configuration were relatively homogeneous in ring-pattern cities compared with the
ribbon-pattern or sector-pattern cities. It was interesting to note that there were two
peaks of the RLST curve for Shenzhen both in 1990 and 2000, but then the second peak
disappeared in 2010. Comparing this phenomenon with the urban expansion pattern in
Shenzhen, we found that the multicentric expansion mode had been proposed by urban
planning since the 1980s, and this mode lasted until the 2000s. Then, axial expansion
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dominated urban sprawl in Shenzhen after the 2000s, and the subcenter of Shenzhen was
no longer obvious [63], resulting in the disappearance of the second peak in 2010.

For further analysis, this paper selected Shanghai, one of the most developed megac-
ities in China and even globally, to establish two linear regression models between two
landscape types (impervious surface and urban green space) and RLST. The results con-
firmed that the RLST of the buffer zones was significantly correlated with the PLAND
of both landscape types (Figure 6). The intercept value of curves (a)—(d) represents the
RLST of a buffer zone with no impervious surface. The value decreased from —1.8583 to
—4.5504, suggesting that the UHI effect would be more significant at a highly urbanized
stage of the megacity due to the expansion of built-up areas. Interestingly, this paper found
that the slope value of curves (a)-(d) decreased from 13.436 in 1990 to 6.256 in 2020. The
decrease indicated that the PLAND, as the spatial metric of landscape composition, was
less important at a highly urbanized stage, which has seldom been studied in previous
research. To quantify the change in effects of landscape composition on the urban thermal
environment, this paper then established a multivariable regression model and analyzed
the variation in effects in the next two sections.

4.2. Effects of Landscape Patterns on LST

Landscape metrics can effectively quantify the structural composition and spatial
configuration characteristics of impervious surfaces and urban green spaces. This paper
selected 10 metrics for carrying out the bivariate analysis and establishing a ridge regression
model between landscape pattern and LST. The Pearson correlation analysis indicated that
most metrics were significantly related to LST at the 0.01 level, as shown in Table A4.

To compare the influence of impervious surfaces and urban green space on LST, this
paper chose a hierarchical statistical model and established two layers (Figure 7). Model 1
was only for impervious surfaces, and Model 2 included urban green space metrics based
on Model 1. Two layers both passed significance testing, which proved the effectiveness of
the method. The interpretation results of the two models for LST are shown as below.

Model 1: The results showed that Model 1 could explain 37.69-87.01% of the variation
in LST. Clearly, I PLAND was the most important factor controlling the LST in Model 1.
Among those configuration variables, I_PD and I_CI showed important but contrary effects
in the urban thermal environment, with I_PD being negatively related to LST and I_CI being
positively related to LST. Overall, LST increased with the growth of connectivity and edge
density for impervious surface patches and decreased with the decline of nearest neighbor
distances. Interestingly, the mean value and standard deviation of I_SI showed different
correlations, suggesting that the effects of shape complexity on LST were complicated.
The shape index should be maximized, but the variation in the shape index should be
minimized when planning urban form.

Model 2: After adjusting for the metrics of impervious surfaces, the spatial metrics of
the urban green space remained mostly significant. Among those spatial metrics, I PLAND
with a positive coefficient was still the most important. Meanwhile, G_PLAND was the
most significant metric among the urban green space metrics and had a strong negative
correlation with LST. In addition, G_AREA_SD and G_CI had a significant negative ef-
fect, indicating that LST decreased with increasing shape complexity and connectivity of
green patches. This result might be because the increase in AREA_SD and CI of urban
green space could increase shade and absorb heat from the surrounding environment
through transpiration.

The increase in the R-square value brought by the increase in metrics of urban green
space was relatively small. Approximately 1.84%~9.77% of the variation in LST was
explained jointly by the urban green space metrics. The discrepancies in the R-square
values between the two models confirmed that the importance of the impervious surface far
exceeded that of urban green space, which was also consistent with the results of previous
studies [39]. Despite the small variation in the R-square value, this paper surprisingly
found that the variation experienced the largest increase in 2000 among all five megacities
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(Figure 7), and the year 2000 was exactly the initial point of the rapid urban expansion
stage. This result indicated that the importance of the urban green space would reach its
peak at the beginning of the period in which the urban areas started to expand rapidly.
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4.3. Variations in the Effects of Landscape Patterns on the Urban Thermal Environment

In general, landscape composition was more important than landscape configuration in
predicting the variation in LST, which was in line with previous studies [26,33,44,64]. How-
ever, this paper found that the standard regression coefficient of the landscape composition
metric experienced an obvious decline from 1990 to 2020 (Figure 7). This tendency was
similar to the relationships between RLST and PLAND of the two landscape types for
Shanghai in Section 4.1. For example, the coefficient of I_PLAND in Model 2 decreased
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from the peak values of 0.27, 0.26, 0.20, and 0.29 to the minimum values of 0.09, 0.13, 0.18,
and 0.18 for Beijing, Tianjin, Shanghai, and Guangzhou, respectively. In contrast, some
landscape configuration metrics for both impervious surfaces and urban green spaces, such
as PD, SI_MN, and CI, played more important roles in determining the urban thermal
environment. The variation in the effects of landscape patterns on the urban thermal
environment indicated that the effect of a single metric could be easily changed during
rapid urbanization.

The year 2010 was a turning point, before which the speed of impervious surface
growth was very high (Table 3), indicating that megacities had experienced intensified
urban expansion from 1990 to 2010. During this period, the coefficients of PLAND in Model
1 basically remained unchanged or slightly fluctuated, presenting large values. After 2010,
megacities entered the mature urbanization stage [65] and the speed of urban expansion
flattened, in which the coefficients of the PLAND decreased significantly. Not only did
the value of the coefficients vary with urban development, but the negative/positive
correlations between some configuration metrics and LST also changed. ED, SI, and ENN
transformed from negative to positive or from positive to negative. It can be concluded
that the negative or positive correlation between one metric and LST was not constant but
varied in different cities of different years (Tables 4 and A3). This result may explain why
some studies found that the cooling effects of green space were not significant, or even
negative [66,67]. Previous studies noted that how to define the cooling effect may be related
to the positive or negative cooling effect of green space [68-70]. This paper emphasized
that the study area and data acquisition time may also affect the cooling effect, which may
be caused by urban terrain, urban climate conditions or urbanization stages.

Table 3. The proportion and annual growth rate of impervious surfaces and urban green spaces from
1990 to 2020 in five megacities.

Beijing Tianjin Shanghai Guangzhou Shenzhen
Proportion of urban green space
1990 60.44% 60.26% 80.43% 79.62% 82.34%
2000 50.33% 67.21% 67.59% 65.04% 63.73%
2010 28.85% 44.45% 44.49% 48.12% 50.97%
2020 15.52% 32.63% 25.76% 37.88% 44.33%
Annual growth rate of urban green space
1990-2000 —1.81% 1.10% —1.72% —2.00% —2.53%
2000-2010 —5.41% —4.05% —4.10% —2.97% —2.21%
2010-2020 —6.01% —3.04% —5.32% —2.36% —1.39%
1990-2020 —4.43% —2.02% —3.72% —2.45% —2.04%
Proportion of impervious surface
1990 36.00% 22.43% 15.74% 13.36% 10.04%
2000 47.19% 30.47% 28.47% 27.24% 31.88%
2010 70.20% 48.68% 52.87% 45.25% 48.01%
2020 83.12% 63.06% 72.44% 56.15% 55.21%
Annual growth rate of impervious surface
1990-2000 2.74% 3.11% 6.11% 5.38% 12.25%
2000-2010 4.05% 4.80% 6.39% 7.21% 4.18%
2010-2020 1.70% 2.62% 3.20% 2.18% 1.41%
1990-2020 2.83% 3.51% 5.22% 4.90% 5.85%

In addition to the processes of urbanization, urban patterns could bring variations in
the effects. Compared with the three ribbon-pattern cities, the configuration metrics were
more important, while the composition metric was less significant in ring-pattern megaci-
ties (Beijing and Shanghai). Further studies that investigated the relationships between
urban forms and the effects are desirable. In addition, comparison studies concentrating
on different climatic conditions are recommended.
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Table 4. Characteristics of the correlation between spatial metrics of two landscape types and LST in different years of

different cities.

Metric Correlation between Spatial Metrics and LST Study Area Acquisition Reference
Impervious Surface ~ Urban Green Space Year of Data
Bangkok, Jakarta, Manila,

N Southeast Asia 2014 (3]

Edge density N Baltimore, USA 1999 [44]
(ED) N Aksu, China 2011 [71]

P Hangzhou, China 2016 [72]

P Beijing, China 2002 [73]

N Aksu, China 2011 [71]

Patch density N Bang ok, Jakarta, Manila, 2014 [39]
D) P Beijing, China 2002 (73]

P Shanghai, China 2017 [74]

N Baltimore, USA 1999 [44]

N Isfahan, Iran 2002 [75]

Shape index N Nagoya, Japan 2004 [76]
(SD) P Hangzhou, China 2016 [72]

P Shanghai, China 2016 [74]

P Beijing, China 2002 [73]

Note: “P” denotes a positive correlation, “N” denotes a negative correlation, and “-” denotes that the metric was not mentioned in the study.

4.4. Management Implications

Many studies have emphasized the importance of both landscape composition and
configuration in mitigating UHI [39,44,71]. However, due to the absence of multicity and
multiperiod comparison studies, the suggestion was not specific to different urbanization
stages and was even contrary in how to improve landscape patterns. Thus, investigating
variations in the effects was very instructive in improving the urban thermal environment
by effective and targeted urban planning. For cities at a highly urbanized stage, such as
those global metropolises, optimizing landscape configuration should have a high priority.
On the one hand, transforming built-up areas into green space might be expensive and
impractical. On the other hand, the composition of the landscape was less important at this
stage than before. Simply changing the landscape composition, such as increasing the urban
green space and restricting impervious surface expansion, was not an effective method
to mitigate UHI. Considering the scarcity of land source in these megacities, constructing
small-area green corridors or green belts, isolated green spaces can be connected to improve
the area of a single patch, which can also increase connectivity and reduce the fragmentation
of green patches. In addition, green roofs can be used to increase the fragmentation of
impervious surface patches and thus reduce the area of a single impervious surface patch.
For cities at the stage of rapid urban expansion, such as some medium-sized cities in China
and some large cities in Southeast Asia, adequate urban green space should be reserved
in advance during the process of urban expansion because the landscape composition at
this stage has a crucial impact on the urban thermal environment. Compared with the
ring-pattern expansion, the ribbon-pattern expansion can better meet this requirement.
This pattern can retain enough green space around the impervious surface to improve
urban thermal comfort and mitigate the UHI effect of urban built-up areas.

By the analysis of concentric buffer zones, this paper suggested that the large urban
green park and green buffer zone may be constructed 10-15 km from the city center, such
as the Beijing Olympic Forestry Park, because the cooling effect was most obvious at this
distance. The urban green space within this range can effectively decrease the urban LST,
improve the urban thermal environment, and act as an urban microclimate regulator.
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5. Conclusions

Rapid urbanization has significantly changed landscape patterns and deteriorated the
urban thermal environment, especially in megacities. Understanding the variation in the
effects of landscape patterns on the urban thermal environment is critically important in
mitigating UHI by reasonable urban planning for megacities. This paper selected the five
largest megacities in China to quantitatively investigate the relationships between LST and
the composition and configuration of urban landscapes and further analysed the variations
in these effects from 1990 to 2020.

This comparative study indicated that landscape composition was more important
than configuration in determining the urban thermal environment of all five megacities.
However, the landscape configuration played increasingly important roles during rapid
urbanization. On the one hand, the variation in the standard coefficients for landscape
configuration indicated that not only did the value of coefficients fluctuate, but even the
positive or negative characteristics of correlations might change during rapid urbanization.
Spatial metrics that described shape complexity, patch density, and edge density showed
contrary effects in determining the LST from 1990 to 2020. On the other hand, the variation
in the R-square values between Model 1 and Model 2 indicated that for areas where rapid
but unmatured urbanization is still in progress, such as some medium-size city of China or
some cities of Southeast Asia, the ratio of urban green space to impervious surface should
be highlighted in urban planning because the cooling effects of urban green space were the
most significant in this period.

From the perspective of spatial arrangement, the analysis of concentric buffer zones
depicted a typical urban thermal environmental profile, suggesting that the LST in the
region approximately 10-15 km from the city center immediately declined from the peak
values. This phenomenon indicated that urban green space in this region could significantly
cool down the LST and improve the thermal environment in urban areas. The expansion
patterns of impervious surfaces for the five megacities provided insight into mitigating
UHI by transforming the ring-like form to the ribbon-like form. The ribbon pattern of
impervious surfaces in Tianjin, Guangzhou, and Shenzhen can effectively decrease extra-
high-temperature areas and balance the distribution of low-temperature areas. In addition,
a single-center pattern of urban expansion may be negative in terms of mitigating UHIs
compared with a multi-center or ribbon-form pattern.

Hence, for urban planners and natural resource managers, it is critically important
to choose flexible and targeted strategies according to the local development level and
urbanization stage. In the early stage of urbanization, the percentage of urban green
space should be emphasized. For highly urbanized megacities, optimizing landscape
configurations can improve the urban thermal environment efficiently at a relatively low
cost, such as roof greening, vertical greening, and small green corridors. While this paper
found variation in the effects on the urban thermal environment, it should be noted that this
conclusion was based only on satellite images of megacities without considering climate
conditions. Therefore, further research across cities of different sizes or under varied
climate conditions, using multi-seasonal thermal data, and creating multi-resolution grids
for analysis is recommended.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13173415/s1, Figure S1: Urban green space of megacities, Figure S2: Larger-scale of land
cover maps, Figure S3: Larger-scale of LST maps.
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Table A1l. Meteorological data for the image acquisition dates of the five megacities.

Maximum Air

Minimum Air

Megacity Image Acquisition Date Temperature Temperature Relative Humidity
1992/09/07 GMT 02:15 Local time 10:15 30.8 13.7 55
Beiiin 1999,/08,/02 GMT 02:46 Local time 10:46 325 18.8 64
e 2010/08,/08 GMT 02:43 Local time 10:43 30.7 21.1 74
2019/08/17 GMT 02:53 Local time 10:53 323 18.9 36
1991/08/13 GMT 02:11 Local time 10:11 28.9 21.3 74
Tianiin 1999,/08/11 GMT 02:40 Local time 10:40 31.8 226 66
) 2011/08/04 GMT 02:36 Local time 10:36 31.0 22.0 67
2020,/08/28 GMT 02:47 Local time 10:47 30.5 20.0 76
1989/08/11 GMT 01:51 Local time 09:51 35.3 26.1 77
Shanehai 2000/08/01 GMT 02:15 Local time 10:15 32.2 27.0 69
& 2007/07/28 GMT 02:18 Local time 10:18 37.1 289 61
2020/08/16 GMT 02:24 Local time 10:24 37.0 28.1 62
1989/07,/06 GMT 02:19 Local time 10:19 35.6 26.0 67
Guaneghou  2000/09/14 GMT 02:42 Local time 10:42 30.7 20.3 63
& 2008/07/26 GMT 02:38 Local time 10:38 37.7 275 77
2019/09/27 GMT 02:52 Local time 10:52 32.6 19.8 70
1989,/07/06 GMT 02:19 Local time 10:19 34.6 26.3 42
Shengh 2000/09/14 GMT 02:42 Local time 10:42 32.0 23.6 67
enzhen 2008/07/26 GMT 02:38 Local time 10:38 33.7 27.7 73

Table A2. The real value of mean LST derived from Landsat thermal images.

T/°C Beijing Tianjin Shanghai Guangzhou Shenzhen
1990 30.05 30.71 31.14 30.91 31.31
2000 30.90 30.94 31.22 30.59 30.58
2010 31.34 30.74 30.32 31.56 31.48
2020 30.64 30.59 31.49 30.58 -
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Table A3. Pearson correlation coefficients between the relative land surface temperature (RLST) and spatial metrics.
L;:ﬂ:::‘:e Spatial Metrics Beijing Tianjin Shanghai Guangzhou Shenzhen
1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010
Composition I_PLAND 0.941 ** 0.700 ** 0.814 ** 0.820 ** 0.905 ** 0.871** 0.882** 0.682** 0.964 ** 0.869 ** 0.874** 0.669 ** 0.838 ** 0.844 ** 0.767 ** 0.595 ** 0.846 ** 0.702 ** 0.471*
G_PLAND —0.916 ** —0.682 ** —0.799 ** —0.810** —0.765 ** —0.748 ** —0.775** —0.677 ** —0.938 ** —0.655 ** —0.832** —0.844 ** —0.596 ** —0.505 ** —0.800 ** —0.811** —0.152 —0.582** —0.823 **
Configuration 1.PD —0.789 ** —0.651 ** —0.744 ** —0.706 ** —0.193 * —0.492 ** —0.668 ** —0.617 ** —0.468 ** —0.625** —0.813 ** —0.787 ** —0.021 —0.133 —0.346 ** —0.373 ** 0.466 ** 0.073 —0.370 **
1_ED 0.123 —0.081 —0.627 ** —0.819** 0.539 ** 0.307 ** —0.215* —0.328 ** 0.599 ** 0.054 —0.158 ** —0.735** 0.431** 0.396 ** 0.222** 0.153* 0.615** 0.559 ** 0.378 **
I_AREA_MN 0.482 ** 0.400 ** 0.570 ** 0.638 ** 0.567 ** 0.586 ** 0.499 ** 0.429 ** 0.631 ** 0.325** 0.475** 0.580 ** 0.407 ** 0.336 ** 0.474** 0.515** 0.253* 0.475** 0.422
T_AREA_SD 0.761 ** 0.551 ** 0.735** 0.768 ** 0.773 ** 0.744 ** 0.700 ** 0.577 ** 0.790 ** 0.567 ** 0.715** 0.789 ** 0.516 ** 0.560 ** 0.678 ** 0.713 ** 0.277 ** 0.580 ** 0.670 **
I_SHAPE_MN 0.573 ** 0.428 ** 0.340 ** 0.139 0.523 ** 0.654 ** 0.382 ** 0.370 ** 0.768 ** 0.367 ** 0.472** 0.361 ** 0.363 ** 0.354 ** 0.366 ** 0.352 ** 0.436 ** 0.337 ** 0.301 **
I_SHAPE_SD 0.808 ** 0.563 ** 0.012 —0.448 ** 0.667 ** 0.645 ** 0.278 ** 0.108 0.832* 0.517 ** 0.621 ** 0.013 0.503 ** 0.482* 0.333 ** 0.281 ** 0.431* 0.495 ** 0.482 **
I_ENN_MN —0.781** —0.536 ** —0.557 ** —0.472* —0.342** —0.475** —0.389 ** —0.384 ** —0.687 ** —0.155** —0.121* —0.021 —0.394 ** —0.351** —0.443 ** —0.268 ** —0.395 ** —0.453 ** —0.476 **
I_ENN_SD —0.773 ** —0.552 ** —0.580 ** —0.544 % —0.377 ** —0.453 ** —0.388 ** —0.484 % —0.715** —0.142* —0.282* —0.157 ** —0.377 ** —0.375** —0.436 ** —0.439 ** —0.338 ** —0.427 ** —0.432*
I_COHESION 0.822** 0.656 ** 0.672** 0.704 ** 0.541 ** 0.637 ** 0.700 ** 0.500 ** 0.725** 0.539 ** 0.642 ** 0.629 ** 0.411* 0.472** 0.459 ** 0.627 ** 0.259 ** 0.448 ** 0.625**
G_PD 0.840 ** 0.612** 0.068 —0.450 ** 0.786 ** 0.707 ** 0.482 0.215* 0.873 ** 0.553 ** 0.710 ** 0.090 0.572** 0.605 ** 0.660 ** 0.599 ** 0.367 ** 0.608 ** 0.634 **
G_ED 0.053 —0.104 —0.630 ** —0.824 ** 0.511 ** 0.240 ** —0.307 ** —0.402 ** 0.587 ** 0.041 —0.179 ** —0.741** 0.431 ** 0.311** 0.175** 0.074 0.616 ** 0.546 ** 0.327 **
G_AREA_MN —0.688 ** —0.636 ** —0.704 ** —0.635** —0.605 ** —0.575** —0.708 ** —0.492 ** —0.683 ** —0.395** —0.518 ** —0.680 ** —0.375** —0.328 ** —0.449 ** —0.540 ** —0.212* —0.608 ** —0.455 **
G_AREA_SD —0.803 ** —0.679 ** —0.682** —0.595 ** —0.754 ** —0.742** —0.771** —0.584 ** —0.847 ** —0.577 ** —0.739 ** —0.706 ** —0.531 ** —0.394 ** —0.646 ** —0.695 ** —0.258 ** —0.674 ** —0.711**
G_SHAPE_MN —0.669 ** —0.471** —0.514** —0.646 ** —0.347 ** —0.558 ** —0.547 ** —0.515** —0.558 ** —0.416 ** —0.544 ** —0.647 ** —0.238 ** —0.280 ** —0.451** —0.511** 0.112 —0.216* —0.272**
G_SHAPE_SD —0.659 ** —0.518 ** —0.639 ** —0.610 ** —0.176 * —0.461** —0.594 ** —0.549 ** —0.344 ** —0.577 ** —0.755 ** —0.764 ** —0.092 —0.115 —0.297 ** —0.402 ** 0.424 ** 0.068 —-0.210*
G_ENN_MN 0.707 ** 0.489 ** 0.589 ** 0.648 ** —0.159 —0.163 * 0.178* 0.413* 0.435** 0434 ** 0.400 ** 0.468 ** 0.094 0.140 0.377 ** 0416 ** —0.323** —0.049 0.295 **
G_ENN_SD 0.702 ** 0.514 ** 0.588 ** 0.559 ** 0.517 ** 0.139 0.071 0.371* 0.759 ** 0.507 ** 0.397 ** 0.493 ** 0.173* 0.152* 0.391 ** 0.383 ** —0.066 0.243 0.354 **
G_ COHESION —0.702 ** —0.507 ** —0.708 ** —0.624 ** —0.677 ** —0.668 ** —0.645** —0.525** —0.754 ** —0.531** —0.623 ** —0.670 ** —0.517** —0.537 ** —0.653 ** —0.705 ** —0.156 —0.478 ** —0.575**

2 “I_" denotes that the metric is calculated based on the landscape of impervious surface. “G_" denotes that the metric is calculated based on the landscape of urban green space. ** Coefficient is significant at 0.01
level (two-tailed). * Coefficient is significant at 0.05 level (two -tailed). Bold denotes the spatial metric is not significant.

Table A4. Variations of R? between Models 1 and 2 in each megacity from approximately 1990 to approximately 2020.

) Beijing Tianjin Shanghai Guangzhou Shenzhen
R
1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010
Model1  0.8701 0.5186 0.6485 0.7557 0.8113 0.7435 0.7703 0.4687 0.9311 04813 0.7907 0.7585 0.3767 0.5150 0.6974 0.7012 0.4434 0.5804 0.6942
Model2  0.8760 0.6023 0.6581 0.7699 0.8279 0.8305 0.7747 05107 0.9449 05235 0.8051 0.7604 04310 0.6072 0.7121 0.7204 0.5136 0.6781 0.7042
Variation ~ 0.0059 0.0837 0.0096 0.0143 0.0166 0.0870 0.0044 0.0420 0.0138 0.0422 0.0144 0.0018 0.0543 0.0922 0.0146 0.0191 0.0702 0.0977  0.0099




Remote Sens. 2021, 13, 3415 20 of 22

References

1.  Kuang, W.; Chi, W.; Lu, D.; Dou, Y. A comparative analysis of megacity expansions in China and the U.S.: Patterns, rates and
driving forces. Landsc. Urban Plan. 2014, 132, 121-135. [CrossRef]

2. United Nations Department of Economic and Social Affairs (UNDESA). World Urbanization Prospects: The 2017 Revision; United
Nations Publications: New York, NY, USA, 2018.

3. The World Bank. Health Nutrition and Population Statistics by Wealth Quintile, World Bank Group. 2020. Available online:
https:/ /datacatalog.worldbank.org/dataset/health-nutrition-and-population-statistics-wealth-quintile (accessed on 2 July 2021).

4. Teneddrio, ]J.A.; Rebelo, C.; Estanqueiro, R.; Henriques, C.D.; Marques, L.; Gongalves, J.A. New developments in geographical
information technology for urban and spatial planning. In Technologies for Urban and Spatial Planning: Virtual Cities and Territories;
IGI Global: Hershey, PA, USA, 2016; pp. 196-227. [CrossRef]

5. Teneddrio, J.A.; Estanqueiro, R.; Henriques, C.D. (Eds.) Methods and Applications of Geospatial Technology in Sustainable Urbanism;
IGI Global: Hershey, PA, USA, 2016; pp. 34-56. [CrossRef]

6. Liu, Y.T.; He, S.J.; Wu, EL.; Webster, C. Urban villages under China’s rapid urbanization: Unregulated assets and transitional
neighbourhoods. Habitat Int. 2010, 34, 135-144. [CrossRef]

7. Gage, E.A,; Cooper, D.J. Relationships between landscape pattern metrics, vertical structure and surface urban Heat Island
formation in a Colorado suburb. Urban Ecosyst. 2017, 20, 1229-1238. [CrossRef]

8. Yin, CH,; Yuan, M,; Lu, Y.P,; Huang, Y.P; Liu, Y.F. Effects of urban form on the urban heat island effect based on spatial regression
model. Sci. Total Environ. 2018, 634, 696-704. [CrossRef]

9.  Cui, Y.P; Xu, X.L.; Dong, ].W.; Qin, Y.C. Influence of urbanization factors on surface urban heat island intensity: A comparison of
countries at different developmental phases. Sustainability 2016, 8, 706. [CrossRef]

10.  Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Rermote Sens. Environ. 2003, 86, 370-384. [CrossRef]

11.  Luck, M.; Wu, J.G. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona,
USA. Landsc. Ecol. 2002, 17, 327-339. [CrossRef]

12.  Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the impact of urban heat island and global warming on the power
demand and electricity consumption of buildings—A review. Energy Build. 2015, 98, 119-124. [CrossRef]

13.  Yang, X.C,; Leung, L.R.; Zhao, N.Z.; Zhao, C.; Qian, Y.; Hu, K.J.; Liu, X.P; Chen, B.D. Contribution of urbanization to the increase
of extreme heat events in an urban agglomeration in east China. Geophys. Res. Lett. 2017, 44, 6940-6950. [CrossRef]

14. Zang, J.L.; Guo, Q.Z.; Wu, X.X,; Sang, X.; Wu, H.H.; Qiao, Y. Integrated evaluation on multi-scale land surface temperature
grading and bio-temperature suitability-a case study in Tianjin China. Int. . Remote Sens. 2021, 42, 343-366. [CrossRef]

15.  Duneier, M. Ethnography, the ecological fallacy, and the 1995 Chicago heat wave. Am. Sociol. Rev. 2006, 71, 679-688. [CrossRef]

16. Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddell, B.L.; Myint, S.W.; Kaplan, S.; Li, X.X.
Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix,
AZ USA. Landsc. Ecol. 2016, 31, 745-760. [CrossRef]

17.  Li, X.M,; Zhou, Y.Y;; Yu, S,; Jia, G.S,; Li, H.D.; Li, W.L. Urban heat island impacts on building energy consumption: A review of
approaches and findings. Energy 2019, 174, 407—-419. [CrossRef]

18.  Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, ].G.; Bai, X.M.; Briggs, ] M. Global change and the ecology of
cities. Science 2008, 319, 756-760. [CrossRef] [PubMed]

19. Gustafson, E.]. Quantifying landscape spatial pattern: What is the state of the art? Ecosystems 1998, 1, 143-156. [CrossRef]

20. Turner, M.G. Landscape ecology: What is the state of the science? Annu. Rev. Ecol. Evol. Syst. 2005, 36, 319-344. [CrossRef]

21. Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat
island. Int. J. Clim. A ]J. R. Meteorol. Soc. 2003, 23, 1-26. [CrossRef]

22.  Alexander, C. Influence of the proportion, height and proximity of vegetation and buildings on urban land surface temperature.
Int. J. Appl. Earth Obs. 2021, 95. [CrossRef]

23. Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods,
and mitigation measures. Int. J. Appl. Earth Obs. 2018, 67, 30-42. [CrossRef]

24. Guha, S.; Govil, H. An assessment on the relationship between land surface temperature and normalized difference vegetation
index. Environ. Dev. Sustain. 2021, 23, 1944-1963. [CrossRef]

25. Zhang, Y.; Sun, L.X. Spatial-temporal impacts of urban land use land cover on land surface temperature: Case studies of two
Canadian urban areas. Int. J. Appl. Earth Obs. 2019, 75, 171-181. [CrossRef]

26. Chen, AL, Yao, L,; Sun, RH.; Chen, L.D. How many metrics are required to identify the effects of the landscape pattern on land
surface temperature? Ecol. Indic. 2014, 45, 424-433. [CrossRef]

27. Hart, M,; Sailor, D. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island.
Appl. Clim. 2009, 95, 397-406. [CrossRef]

28.  Zhao, X.F; Liu, ].H.; Liu, L.L. Cool island effects of urban green open spaces in the process of urbanization: A multi-temporal
study of Xiamen Island. Int. Workshop Earth Obs. Remote Sens. Appl. IEEE 2016. [CrossRef]

29. Zhao, Z.Q.; He, BJ.; Li, L.G.; Wang, H.B.; Darko, A. Profile and concentric zonal analysis of relationships between land use/land

cover and land surface temperature: Case study of Shenyang, China. Energy Build. 2017, 155, 282-295. [CrossRef]


http://doi.org/10.1016/j.landurbplan.2014.08.015
https://datacatalog.worldbank.org/dataset/health-nutrition-and-population-statistics-wealth-quintile
http://doi.org/10.4018/978-1-4666-4349-9.ch010
http://doi.org/10.4018/978-1-7998-2249-3
http://doi.org/10.1016/j.habitatint.2009.08.003
http://doi.org/10.1007/s11252-017-0675-0
http://doi.org/10.1016/j.scitotenv.2018.03.350
http://doi.org/10.3390/su8080706
http://doi.org/10.1016/S0034-4257(03)00079-8
http://doi.org/10.1023/A:1020512723753
http://doi.org/10.1016/j.enbuild.2014.09.052
http://doi.org/10.1002/2017GL074084
http://doi.org/10.1080/01431161.2020.1809026
http://doi.org/10.1177/000312240607100408
http://doi.org/10.1007/s10980-015-0284-3
http://doi.org/10.1016/j.energy.2019.02.183
http://doi.org/10.1126/science.1150195
http://www.ncbi.nlm.nih.gov/pubmed/18258902
http://doi.org/10.1007/s100219900011
http://doi.org/10.1146/annurev.ecolsys.36.102003.152614
http://doi.org/10.1002/joc.859
http://doi.org/10.1016/j.jag.2020.102265
http://doi.org/10.1016/j.jag.2017.12.009
http://doi.org/10.1007/s10668-020-00657-6
http://doi.org/10.1016/j.jag.2018.10.005
http://doi.org/10.1016/j.ecolind.2014.05.002
http://doi.org/10.1007/s00704-008-0017-5
http://doi.org/10.1109/EORSA.2016.7552830
http://doi.org/10.1016/j.enbuild.2017.09.046

Remote Sens. 2021, 13, 3415 21 of 22

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Bokaie, M.; Zarkesh, M.K.; Arasteh, P.D.; Hosseini, A. Assessment of urban heat island based on the relationship between land
surface temperature and land use/land cover in Tehran. Sustain. Cities Soc. 2016, 23, 94-104. [CrossRef]

Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. EQypt.
J. Remote Sens. 2017, 20, 125-145. [CrossRef]

Zhou, W.Q.; Qian, Y.G; Li, X.M,; Li, W.E; Han, L.J. Relationships between land cover and the surface urban heat island: Seasonal
variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landsc. Ecol.
2014, 29, 153-167. [CrossRef]

Connors, ].P; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship
between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271-283. [CrossRef]
Li, W.E; Cao, Q.W.; Lang, K.; Wu, J.S. Linking potential heat source and sink to urban heat island: Heterogeneous effects of
landscape pattern on land surface temperature. Sci. Total Environ. 2017, 586, 457-465. [CrossRef]

Masoudi, M.; Tan, P.Y. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface
temperature. Landsc. Urban Plan. 2019, 184, 44-58. [CrossRef]

Hung, T.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities.
Int. J. Appl. Earth Obs. 2006, 8, 34-48. [CrossRef]

Peng, S.S.; Piao, S.L.; Ciais, P.; Friedlingstein, P; Ottle, C.; Breon, EM.; Nan, H.J.; Zhou, L.M.; Myneni, R.B. Response to comment
on “Surface urban heat island across 419 global big cities”. Environ. Sci. Technol. 2012, 46, 6889—-6890. [CrossRef]

Yao, R.; Wang, L.; Huang, X.; Liu, Y.; Niu, Z.; Wang, S.; Wang, L. Long-term trends of surface and canopy layer urban heat island
intensity in 272 cities in the mainland of China. Sci. Total Environ. 2021, 772, 145607. [CrossRef]

Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban
heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349-359. [CrossRef]

Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafo, M. Surface urban heat islands in Italian metropolitan cities:
Tree cover and impervious surface influences. Sci. Total Environ. 2021, 751, 142334. [CrossRef] [PubMed]

Tran, D.X; Pla, F,; Latorre-Carmona, P.; Myint, S.W.; Gaetano, M.; Kieu, H.V. Characterizing the relationship between land use
land cover change and land surface temperature. ISPRS. J. Photogramm. 2017, 124, 119-132. [CrossRef]

Guo, L],; Liu, RM.; Men, C.; Wang, Q.R.; Miao, Y.X.; Zhang, Y. Quantifying and simulating landscape composition and pattern
impacts on land surface temperature: A decadal study of the rapidly urbanizing city of Beijing, China. Sci. Total Environ. 2019,
654, 430-440. [CrossRef] [PubMed]

Peng, J.; Xie, P;; Liu, Y.X.; Ma, J. Urban thermal environment dynamics and associated landscape pattern factors: A case study in
the Beijing metropolitan region. Remote Sens. Environ. 2016, 173, 145-155. [CrossRef]

Zhou, W.Q.; Huang, G.L.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on
land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54-63. [CrossRef]

Li, Y;; Ye, H;; Gao, X,; Sun, D.; Li, Z.; Zhang, N.; Leng, X.; Meng, D.; Zheng, J. Spatiotemporal patterns of urbanization in the three
most developed urban agglomerations in china based on continuous nighttime light data (2000-2018). Remote Sens. 2021, 13, 2245.
[CrossRef]

Meng, Q.Y.; Zhang, L.L.; Sun, Z.H.; Meng, F.; Wang, L.; Sun, Y.X. Characterizing spatial and temporal trends of surface urban heat
island effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sens. Environ. 2018, 204, 826-837.
[CrossRef]

Peng, J.; Jia, J.L.; Liu, Y.X,; Li, H.L.; Wu, ].S. Seasonal contrast of the dominant factors for spatial distribution of land surface
temperature in urban areas. Remote Sens. Environ. 2018, 215, 255-267. [CrossRef]

Qiao, Z.; Liu, L.; Qin, YW.,; Xu, X.L.; Wang, B.W,; Liu, Z.J. The Impact of urban renewal on land surface temperature changes: A
case study in the main city of Guangzhou, China. Remote Sens. 2020, 12, 794. [CrossRef]

Yue, W.Z,; Liu, X.; Zhou, Y.Y,; Liu, Y. Impacts of urban configuration on urban heat island: An empirical study in China mega-cities.
Sci. Total Environ. 2019, 671, 1036—-1046. [CrossRef]

Zhou, D.C.; Bonafoni, S.; Zhang, L.X.; Wang, R.H. Remote sensing of the urban heat island effect in a highly populated urban
agglomeration area in East China. Sci. Total Environ. 2018, 628, 415-429. [CrossRef]

Wang, M.; Zhang, Z.; Hu, T.; Liu, X. A practical single-channel algorithm for land surface temperature retrieval: Application to
landsat series data. J. Geophys. Res. Atmos. 2019, 124, 299-316. [CrossRef]

Wang, M.; Zhang, Z.; Hu, T.; Wang, G.; He, G.; Zhang, Z.; Li, H.; Wu, Z.; Liu, X. An efficient framework for producing landsat-
based land surface temperature data using Google Earth Engine. IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4689-4701.
[CrossRef]

Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends.
ISPRS ]. Photogramm. Remote Sens. 2009, 64, 335-344. [CrossRef]

Ren, H.; Du, C,; Liu, R; Qin, Q.; Yan, G,; Li, Z.-L.; Meng, J. Atmospheric water vapor retrieval from Landsat 8 thermal infrared
images. J. Geophys. Res. Atmos. 2015, 120, 1723-1738. [CrossRef]

Wang, M.; He, G.; Zhang, Z.; Wang, G.; Long, T. NDVI-based split-window algorithm for precipitable water vapour retrieval
from Landsat-8 TIRS data over land area. Remote Sens. Lett. 2015, 6, 904-913. [CrossRef]

Sobrino, J.A.; Jimenez-Munoz, J.C.; Soria, G.; Romaguera, M.; Guanter, L.; Moreno, ]J.; Plaza, A.; Martincz, P. Land surface
emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316-327. [CrossRef]


http://doi.org/10.1016/j.scs.2016.03.009
http://doi.org/10.1016/j.ejrs.2016.11.003
http://doi.org/10.1007/s10980-013-9950-5
http://doi.org/10.1007/s10980-012-9833-1
http://doi.org/10.1016/j.scitotenv.2017.01.191
http://doi.org/10.1016/j.landurbplan.2018.10.023
http://doi.org/10.1016/j.jag.2005.05.003
http://doi.org/10.1021/es301811b
http://doi.org/10.1016/j.scitotenv.2021.145607
http://doi.org/10.1016/j.scitotenv.2016.10.195
http://doi.org/10.1016/j.scitotenv.2020.142334
http://www.ncbi.nlm.nih.gov/pubmed/33182007
http://doi.org/10.1016/j.isprsjprs.2017.01.001
http://doi.org/10.1016/j.scitotenv.2018.11.108
http://www.ncbi.nlm.nih.gov/pubmed/30447581
http://doi.org/10.1016/j.rse.2015.11.027
http://doi.org/10.1016/j.landurbplan.2011.03.009
http://doi.org/10.3390/rs13122245
http://doi.org/10.1016/j.rse.2017.09.019
http://doi.org/10.1016/j.rse.2018.06.010
http://doi.org/10.3390/rs12050794
http://doi.org/10.1016/j.scitotenv.2019.03.421
http://doi.org/10.1016/j.scitotenv.2018.02.074
http://doi.org/10.1029/2018JD029330
http://doi.org/10.1109/JSTARS.2020.3014586
http://doi.org/10.1016/j.isprsjprs.2009.03.007
http://doi.org/10.1002/2014JD022619
http://doi.org/10.1080/2150704X.2015.1089363
http://doi.org/10.1109/TGRS.2007.904834

Remote Sens. 2021, 13, 3415 22 of 22

57.

58.

59.

60.

61.

62.

63.
64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.,; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195-213. [CrossRef]

Sobrino, J.A.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J.
Remote Sens. 2000, 21, 353-366. [CrossRef]

Seto, K.C.; Fragkias, M. Quantifying spatiotemporal patterns of urban land-use change in four cities of china with time series
landscape metrics. Landsc. Ecol. 2005, 20, 871-888. [CrossRef]

Tian, G; Jiang, J.; Yang, Z.; Zhang, Y. The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze
River Delta megalopolitan region, China. Ecol. Model. 2011, 222, 865-878. [CrossRef]

Kuang, W. 70 years of urban expansion across China: Trajectory, pattern, and national policies. Sci. Bull. 2020, 65, 1970-1974.
[CrossRef]

Xiao, R.; Ouyang, Z.; Zheng, H.; Li, W.; Schienke, E.W.; Wang, X. Spatial pattern of impervious surfaces and their impacts on land
surface temperature in Beijing, China. . Environ. Sci. 2007, 19, 250-256. [CrossRef]

Fei, W,; Zhao, S. Urban land expansion in China’s six megacities from 1978 to 2015. Sci. Total Environ. 2019, 664, 60-71. [CrossRef]
Li, X;; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of greenspace affects land surface temperature: Evidence from the
heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887-898. [CrossRef]

Li, Y.; Ye, H.; Sun, X.; Zheng, ].; Meng, D. Coupling analysis of the thermal landscape and environmental carrying capacity of
urban expansion in Beijing (China) over the past 35 years. Sustainability 2021, 13, 584. [CrossRef]

Santamouris, M.; Ban-Weiss, G.; Osmond, P,; Paolini, R.; Synnefa, A.; Cartalis, C.; Muscio, A.; Zinzi, M.; Morakinyo, T.E.;
Ng, E.; et al. Progress in urban greenery mitigation science—Assessment methodologies advanced technologies and impact on
cities. J. Civ. Eng. Manag. 2018, 24, 638-671. [CrossRef]

Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Spatiotemporal patterns and characteristics of remotely sensed region heat islands
during the rapid urbanization (1995-2015) of Southern China. Sci. Total Environ. 2019, 674, 242-254. [CrossRef]

Fan, H.; Yu, Z.; Yang, G.; Liu, T.Y; Liu, T.Y.; Hung, C.H.; Vejre, H. How to cool hot-humid (Asian) cities with urban trees? An
optimal landscape size perspective. Agric. For. Meteorol. 2019, 265, 338-348. [CrossRef]

Lin, W,; Yu, T.; Chang, X.; Wu, W.; Zhang, Y. Calculating cooling extents of green parks using remote sensing: Method and test.
Landsc. Urban Plan. 2015, 134, 66-75. [CrossRef]

Yu, Z.; Guo, X.; Jorgensen, G.; Vejre, H. How can urban green spaces be planned for climate adaptation in subtropical cities? Ecol.
Indic. 2017, 82, 152-162. [CrossRef]

Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F; Latorre-Carmona, P.; Halik, U.; Sawut, M.; Caetano, M. Effects of green space
spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS ].
Photogramm. 2014, 89, 59-66. [CrossRef]

Song, Y.; Song, X.; Shao, G. Effects of green space patterns on urban thermal environment at multiple spatial-temporal scales.
Sustainability 2020, 12, 6850. [CrossRef]

Chen, A.L.; Sun, R.H.; Chen, L.D. Applicability of traditional landscape metrics in evaluating urban heat island effect. J. Appl.
Ecol. 2012, 23, 2077-2086. (in Chinese).

Zhou, W,; Cao, F. Effects of changing spatial extent on the relationship between urban forest patterns and land surface temperature.
Ecol. Indic. 2020, 109. [CrossRef]

Asgarian, A.; Amiri, B.J.; Sakieh, Y. Assessing the effect of green cover spatial patterns on urban land surface temperature using
landscape metrics approach. Urban Ecosyst. 2015, 18, 209-222. [CrossRef]

Cao, X.; Onishi, A.; Chen, J.; Imura, H. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data.
Landsc. Urban Plan. 2010, 96, 224-231. [CrossRef]


http://doi.org/10.1016/S0034-4257(02)00096-2
http://doi.org/10.1080/014311600210876
http://doi.org/10.1007/s10980-005-5238-8
http://doi.org/10.1016/j.ecolmodel.2010.09.036
http://doi.org/10.1016/j.scib.2020.07.005
http://doi.org/10.1016/S1001-0742(07)60041-2
http://doi.org/10.1016/j.scitotenv.2019.02.008
http://doi.org/10.1007/s10980-012-9731-6
http://doi.org/10.3390/su13020584
http://doi.org/10.3846/jcem.2018.6604
http://doi.org/10.1016/j.scitotenv.2019.04.088
http://doi.org/10.1016/j.agrformet.2018.11.027
http://doi.org/10.1016/j.landurbplan.2014.10.012
http://doi.org/10.1016/j.ecolind.2017.07.002
http://doi.org/10.1016/j.isprsjprs.2013.12.010
http://doi.org/10.3390/su12176850
http://doi.org/10.1016/j.ecolind.2019.105778
http://doi.org/10.1007/s11252-014-0387-7
http://doi.org/10.1016/j.landurbplan.2010.03.008

	Introduction 
	Materials and Methods 
	Study Areas 
	Data Source and Pre-Processing 
	LST Retrieval 
	Interpretation of Land Cover 
	Spatial Analysis 
	Quantification of Landscape Composition and Configuration 
	Concentric Buffer Analysis 
	Hierarchical Ridge Regression Model 


	Results 
	Variation in Land Cover Classifications 
	Comparison of Urban Thermal Environment 

	Discussion 
	Analysis of Landscape Composition and RLST within Buffer Zones 
	Effects of Landscape Patterns on LST 
	Variations in the Effects of Landscape Patterns on the Urban Thermal Environment 
	Management Implications 

	Conclusions 
	
	References

