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ABSTRACT Estimating the per-capita income and the household income at a fine-grained geographical
scale is critical but challenging, even across the developed economies. In this article, a novel Siamese-like
Convolutional Neural Network, integrating Ridge Regression and Gaussian Process Regression, has been
developed for fine-grained estimation of income across different parts of New York City. Our model (the
GP-Mixed-Siamese-like-Double-Ridge model) makes good use of the pairwise comparison of location-based
house price information, daytime satellite image, street view and spatial location information as the inputs.
Taking the per-capita income and the median household income in New York City as the ground truths, our
model outperforms (R2

= 0.72-0.86 for five-fold validation) other state-of-the-art income estimation models
and achieves good performance in cross-district and cross-scale validation. We also find that models which
partially share our model architecture, including the Spatial-Information-GP and the Mixed-Siamese-like
model, perform well under certain spatial granularity and data availability. Since such models rely on less
data input types and simpler architectures, they can be used to save resources on data collection and model
training. Hence, using our model for fine-grained income estimation does not mean excluding these models
that share similar architectures. Our fine-grained income estimation model can allow the per-capita and the
household income data generated in fine-grained resolution to couple with other types of data, such as the air
pollution or the epidemic data, of the same scale, to ensure that any location-specific socio-economic-related
study and evidence-based decision-making at the fine-grained resolution can be conducted. Future research
will focus on extending our model for fine-grained income estimation in developing metropolises, and for
developing other socio-economic indicators.

INDEX TERMS Daytime satellite image, developed metropolis, fine-grained resolution, GP-mixed-
Siamese-like-double-ridge model, house price, household income, per-capita income, Siamese-like convo-
lutional neural network, street view.

I. INTRODUCTION
Measuring income1 distribution at a high spatial res-
olution is critical but challenging, even for developed

The associate editor coordinating the review of this manuscript and

approving it for publication was Jinjia Zhou .
1According to the definition of American Community Survey, ‘‘Total

income’’ refers to the sum of incomes reported separately for wage or salary
income; net self-employment income; interest, dividends, or net rental or
royalty income, or income from estates and trusts; Social Security or Railroad
Retirement Income; Supplemental Security Income (SSI); public assistance
or welfare payments; retirement, survivor, or disability pensions; and all
other incomes [3].

economies [1]–[3]. Accurate income data aremainly obtained
from field surveys, which can be highly capital intensive [2].
Over the past few decades, attempts have been made to over-
come data scarcity and to estimate fine-grained income dis-
tribution across developing or non-urban areas [4]–[7]. Few
studies have attempted to make good use of proxy data and
deep learning models for high accuracy, fine-grained income
estimation in developed and urban contexts. Such studies
should advance our understanding of income distribution and
variation at the fine-grained geographical level, so far as the
developed and urban contexts are concerned [2], [8].
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Income is an important indicator critical for socio-
economic studies in the developed world. First, income can
largely reflect citizens’ accessibility to a number of goods and
services in most developed economies [9]. Second, income
is closely related to ones’ living standards in developed
economies. Given better welfare allocation (e.g. retirement
plans, free health care, unemployment compensation), citi-
zens of developed economies have less incentives to save
their income to mitigate future financial risks due to ill-
ness and unemployment etc., and more incentives to spend
their income over the short-term to maintain their stan-
dards of living [10]–[13]. In the United States, the savings
rate has substantially fallen to below 3% during the late
2000s [14], [15]. Third, collecting income data is a relatively
easy task across the developed economies when field sur-
vey resources/services are freely provided/supported by the
government and other NGOs [9].

In this article, our fine-grained income estimation study
estimates income at the district-level of a city. Estimating
income at such a level is beneficial for our understanding of
the relationship between income and other socio-economic
variables, such as air pollution exposure or COVID-19 pan-
demic. Such fine-grained analysis can allow policymakers
to provide recommendations on any socio-economic related
environmental/public health challenges that are location-
specific [16]. However, the validity of the analysis will ulti-
mately be dependent upon the accuracy of income estimation
at the fine-grained resolution.

Collecting accurate fine-grained income data/conducting
accurate income estimation is crucial for developed
economies. First, as compared to developing economies
characterized mostly by low-income distribution, devel-
oped economies are facing a higher risk of intra-city
income inequality. Specifically, some citizens of developed
economies may earn extremely high levels of incomes,
whilst other citizens who lack the needed capabilities may
be forced to accept extremely low levels of incomes [17].
Second, developed economies usually are associated with
a higher level of democracy, and a higher social aware-
ness and demand for data transparency [18]. Publishing
fine-grained income data can meet the public demand
and can facilitate better understanding of such issues as
socio-economic-related environmental exposure inequality
or COVID-19 infection imbalance.

In any developed economy, such as the United States,
the income data obtained via large-scale surveys are not
immediately updated; data collection is highly expensive
[19], [20]. In fact, the United States spends more than
USD250 million per year on discharging the American
Community Survey (ACS), a door-to-door survey that col-
lects statistics such as per-capita income and household
income [21]. Due to high manpower, smaller geographical
units (areas having <65,000 residents) are investigated less
frequently, and income data surveyed are not published until
one or two years later [19]. Delays in data-reporting may

impede timely policy decisions and weaken the effectiveness
of public resource allocation [22].

To reduce the manpower needed for fine-grained income
surveys and to speed up fine-grained income data collection,
researchers have used house price as a proxy for income.
Previous studies have identified a positive correlation
between house price and income [23]–[29], whilst house
price data are easily accessible and downloadable online
in the developed world. However, estimation models that
depend on house price as the input and income as the out-
put have yielded a low estimation accuracy. A study that
estimates yearly household income with a kernel regres-
sion model, using as inputs the household-level house price
information of six cities across the United States, has
achieved very low estimation performance [30]. The Spear-
man rank correlation between house price and income at the
household-level has achieved a correlation coefficient as low
as 0.38 to 0.52 [30]. In another study, a polynomial model is
used to estimate the household income in London, also taking
house price as an explanatory variable, but no validation accu-
racy has been provided [31]. Furthermore, in most developed
metropolises, house price data distribution is uneven. Some
parts of the city may have more house price data points
than others. Due to data skewness, income estimation using
house price as the input may be inaccurate. More obstacles
have to be overcome when alternative advanced machine
learning techniques that use house price as the input are being
considered.

In addition, as house price to income ratio can vary greatly
across different times and spaces [32], [33], other auxiliary
factors may need to be properly taken into account. To bet-
ter capture the interactions between house price and other
variables, scholars have suggested that an advanced machine
learning method may be useful for overcoming the com-
pounding effect/multi-collinearity of input variables, which
are commonly found in traditional statistical models [34].

Apart from the house price-based income estimation
model, other resource-efficient methods for fine-grained
district-level income estimation in the developed economies
have been identified. In Table 1, we classify these models
into four different categories. The first category is based
on the visual appearance of the district, which is nor-
mally captured by the night-time/daytime satellite image
or street view [2], [35]–[37]. The assumption being that
buildings, roads, vegetations and nightlight intensities can
vary from place to place, when the income level of these
places vary [2], [35]–[37]. Some researchers have claimed
that combining the visual data with the spatial data of indi-
vidual districts can contribute to higher income estimation
accuracy [1]. The second category focuses on transporta-
tion [19], [38]–[40]. Some studies have extracted features of
human mobility or car attributes of a small area to represent
an average income level of that area [19], [32], [38]–[41].
The third category is based on the quality of local food
restaurants/stores, as an area with low-end restaurants or food
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TABLE 1. Literature review on fine-grained income estimation across the developed world.

stores is assumed to have lower-income residents [42], [43].
The fourth category is based on data collected from the online
social network platforms [44]. It assumes that people having
more complex social networks may earn higher incomes due
to better accessibilities to higher paid jobs [45]–[49], or bet-
ter entrepreneurship opportunities [50], [51]. However, such
fine-grained income estimation models are yet to address the
followings:

First, these studies are highly dependent on non-public
data, and that some of these data are not easily obtainable
and may invite privacy concerns. For instance, transportation
card records [40] have been used to extract features of social
network structures and human mobility patterns but can be
hardly accessible without making prior agreements with the

relevant organizations, such as the transport authorities. The
models that rely on social media records, such as Twitter [44],
might expose the personal information of Twitter users and
raise privacy concerns.

Second, some of these estimation studies have been
based on indicators which have low correlations with the
district-level incomes. For example, indicators derived from
the distributions of fast-food restaurants [43] and business/
restaurant reviews, or profiles from Yelp [42], have
relatively low correlations with district-level incomes.
Besides, the nightlight intensity has been widely used to
estimate Gross Domestic Product (GDP) in developing
economies [52]–[57], but its application on fine-grained
income estimation tends to achieve low accuracy across
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developed economies [36], [58]–[61]. As both rich and poor
parts of cities in the developedworld have been equippedwith
sufficient lighting facilities, nightlight intensity can hardly be
used to differentiate the poor areas from the rich areas in the
developed cities [36], [58]. To cite an example, in New York
City (NYC), the nightlight intensity is high across all districts;
hence, the intensity variation appears to be too low to signify
any change in income at the fine-grained resolution [59].
Some researchers have developed a nightlight-based trans-
fer learning methodology relevant for estimating assets [62]
and consumer expenditures in African countries [4], but
such studies may not be directly applicable to cities in the
developed economies [2].

Third, regarding district-level income estimation, previ-
ous studies have yet combined daytime satellite image with
street view as a model input. Some studies have shown
that combining daytime satellite image with street view can
contribute to good model performance in house price esti-
mation [63], which may be extended to income estimation.
Further, previous visual-based income estimation methods
have yet exploited features extracted from both aerial and
ground-level street view [1], [2], [35], [37].

II. NOVELTY
Given such background, we propose the adoption of a
transfer learning methodology for fine-grained per-capita
income and median household income estimation in devel-
oped economies, which outperforms state-of-the-art models
and achieves a higher estimation accuracy at a district-level of
a city. Specifically, our proposed method combines four data
categories, including house price, daytime satellite image,
street view, and spatial information (latitude and longitude
of district centroid) as data inputs. Based on pair-wise com-
parison results of house price information, we develop a
novel Siamese-like Convolutional Neural Network (CNN) to
enhance the effectiveness of image feature extraction. The
model does not require one to input all house price informa-
tion from all parts of a city, which may solve the problem of
house price data sparsity due to information skewness. Our
model presents high generalizability.

The rest of the paper is organized as follows. Section III
details the methodology of our Siamese-like CNN model.
Section IV reveals and discusses our income estimation
model results. We further compare the performance of our
model with our selected state-of-the-art income models.
Finally, Section V concludes our study and puts forward
suggestions for future research.

III. METHODOLOGY
Our overall methodology consists of four parts (see Fig. 1).
In Part 1, we develop a Siamese-like CNN to extract house
price-related features from the daytime satellite images and
the street views collected fromNYC. In Part 2, our image fea-
tures are averaged at the district-level and taken as the inputs
to the Ridge Regression model for district-based income
estimation. Since house price is positively correlated with

FIGURE 1. Methodological framework.

income, it is expected that our house price-related features
would be correlated with the income values (ground truths)
obtained from NYC. Given the richer information derivable
from the daytime satellite images and the street views, they
are expected to outperform house price information in income
estimation, given their better spatial representation. In Part 3,
we take the latitude and the longitude of a district centroid
as the inputs to a Gaussian Processes (GP) model to extract a
scalar value from the spatial information for income estima-
tion. In Part 4, we concatenate the scalar outputs generated by
Part 2 and Part 3 and feed them into another Ridge Regression
model for final income estimation. We take NYC in the
United States, a metropolis with a highly developed economy
as our case study. We use a Siamese-like CNN to estimate the
district-based income levels of NYC in 2018.

A. LABELLED DATA
The ground truths of the district incomes in 2018 in NYC
are obtained from the 2014-2018 American Community Sur-
vey (a 5-year estimate), a national-level door-to-door field
survey [21]. Two types of district-level average income data
in NYC are used as labels: per-capita income and median
household income. The average income data at two different
geographical levels are used to test the model performance
at different granularities: the tract-level (2067 tracts), and
the ZIP code-level (211 ZIP codes). Specifically, the data is
gathered from Census Reporter2 [64].

B. INPUT DATA
Four types of inputs are used in this research: the house price,
the daytime satellite image, the street view, and the spatial
location information of each district (see Fig. 2). The house
price information in 2018 is obtained from NYC Department
of Finance, which is the official and a highly comprehensive
information source [65]. Each piece of house price data corre-
sponds to one real estate transaction, and the exact location of
the building is used. 21,144 items of house price information
(sales price divided by gross square feet) are extracted after
data cleaning (excluding sale price 0, gross square feet 0,
or location not found). The latitude and the longitude of each
building is located by the official map searching tool [66].

2Table B19301 for per-capita income, and B19013 for median household
income.
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FIGURE 2. Four types of input data to the Siamese-like CNN.

Daytime satellite images, captured in 2018, are gathered from
the NYC government [67]. All satellite images are gath-
ered at zoom-level 18; successive images are taken approx-
imately every 0.001 degree with no overlappings (a total
of 89889 images, at 256× 256 pixels per image). The spatial
resolution of the daytime satellite image is approximately
4 × 10−7 degrees per pixel. Although many previous studies
have obtained the daytime satellite image from Google Static
Maps API, we do not collect our images from these data
sources as the API does not provide the exact year of the
image captured. Our street views are directly obtained from
Google Street View Static API which provides the captured
year of the street views. One image is taken with a change in
view every 0.001 degree if it exists (within a default 50 meter
searching radius, 640× 640 pixels per image, 54246 images).
Data cleaning is conducted to filter any street views that
are invalid/dark/interior/blurred/duplicated/ obstructed by an
object [63], [68]. Only the street views taken between 2017 to
2019 are used. It is assumed that the physical appearance
of NYC did not change significantly from 2017 to 2019.
The spatial location information refers to the latitude and the
longitude of any district centroid in NYC, which is obtained
from the district boundary shapefile via Census Reporter [64].

C. TRANSFER LEARNING
Transfer learning is a machine learning technique that learns
certain knowledge during one process of problem-solving,
then transfers such knowledge to another area of problem-
solving [69]. In this study, we adopt the method of transfer
learning and extract image features to compare house prices
in NYC, then apply the knowledge learnt from house price to
income estimation. The overall framework of transfer learn-
ing consists of four steps, as detailed below (see Fig. 1).

The first step of our study aims at extracting the house
price-related features from the daytime images and the street
views. Before training, each piece of house price data is
matched with the nearest daytime satellite image and street
view. To extract image features, an intuitive approach is to
establish a Regression model between the image and the
house price information (normalized by the maximum value).
Following this method, amodel based on CNN is constructed.
As shown in Fig. 3, the image is inputted to a Resnet-50
(a 50-layer residual CNN) and a tensor consisting of 2048 fea-
tures is extracted [70]; the predicted house price is generated
after a dense layer (with activation function tanh). The mean
square error is used as the loss function. However, there are

FIGURE 3. Architecture of non-Siamese-like CNN.

limitations with regard to this method during the training
process. In particular, the loss function can hardly converge
without excluding the outliers of the house prices. Experi-
mental results show that the features extracted are not highly
correlated with the actual income values.

To improve the feature extraction performance, we design
a novel Siamese-like CNN to more effectively extract house
price-related features for fine-grained income estimation.
The traditional Siamese CNN has been a few-shot learning
technique, designed originally for image classification [71].
As shown in Fig. 4, the inputs to Siamese CNN normally
cover a pair of images; each image can be treated by one
CNN, and the outputs of the two CNNs can be concatenated.
After some fully connected layers with the Rectified Linear
Unit (ReLU) activation function, the model produces a scalar
value indicating the similarity between two images [71].
A unique characteristic of a Siamese-like CNN is that the two
CNN models always share the same architecture and weight.
Researchers have designed a Siamese-like CNN to predict the
human judgment of pairwise image comparisons [72]. In this
study, we develop a novel Siamese-like CNN for extracting
house price-related image features for fine-grained income
estimation.

FIGURE 4. Architecture of Siamese CNN.

Fig. 5 shows the architecture of our newly designed
Siamese-like CNN. It is a classification model that predicts
the comparison results of the house prices at two locations.
Specifically, the input consists of a pair of daytime satellite
images, or a pair of street views. Each house price-related
image is treated by a Resnet-50, and two Resnet-50s always
generate the same weights. The Resnet-50 can extract one set
of 2048 features from each image (see x1 and x2 in Fig. 5),
with the two image feature sets being subtracted element-wise
and fed into a dense layer to generate a 3-element vector
for representing the image captured in the location with a

FIGURE 5. Architecture of Siamese-like CNN.
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higher house price. In Fig. 5, p1, p2, p3 represent the three
elements and each of them ranges from 0 to 1 to represent
the likelihood of each of the three possible results; Image 1 is
higher in house price, Image 1 and Image 2 are equivalent in
house price, or Image 2 is higher in house price. The label
used in our study is transformed to a one-hot vector with
3 values ([1,0,0] indicates that Image 1 is higher in values,
[0,1,0] indicates that Image 1 and 2 are equivalent in values,
and [0,0,1] indicates that Image 2 is higher in values).

There are reasons why features extracted by Siamese-
like CNN can outperform non-Siamese-like CNN for
fine-grained income estimation. Siamese-like CNN is a clas-
sification model and converges more easily as compared
to Regression. Non-Siamese-like CNN requires that image
features extracted estimate the exact house price, whereas
Siamese-like CNN relaxes this requirement and allows the
image features to be less strongly correlated with the exact
house price. Such difference leads to the next question: Are
features that are good for house price estimation also good
for income estimation? In reality, studies have shown that
given the same house price, difference in the income level
can still be significant [73], [74]. Hence, the expectation for a
one-to-one correspondence between house price and income
is unrealistic (which is the underlying assumption taken by
non-Siamese-like CNN), whereas it is much more likely that
any districts having a higher house price would have a higher
income level (which is the underlying assumption of the
pairwise comparison adopted by Siamese-like CNN). Hence,
though the features extracted by Siamese-like CNN are less
strongly correlated with the exact house price values, they can
better capture any factors that simultaneously influence both
house price and income (instead of factors that only influence
house price), and eventually achieve a higher correlation with
the actual income. The better performance of Siamese-like
CNN (see Section IV) also confirms our intuition that by
relaxing some irrelevant and redundant restrictions on feature
extractions, the classification model can obtain features more
relevant to the income values of the local contexts. Our model
consists of four steps:
Step 1: We train our Siamese-like CNN. The compared

results of 100,000 house price-related image pairs are ran-
domly generated based on daytime satellite images and street
views separately. The cross-entropy loss is used as the loss
function for classification and the Resnet-50 is initiated by the
weights pre-trained on ImageNet [75]. The batch size is 32,
the training epoch is 10, ReLu is used as the activation func-
tion, except for the softmax layer that is used for calculating
the cross-entropy loss. The optimizer is Stochastic Gradient
Descent (SGD) (momentum = 0.9; initial learning rate =
0.001, reduced by a factor of 10when the loss value increases,
minimum learning rate = 0.0000001) and L2 regularization
(0.01) is applied.
Step 2: Second, a Ridge Regression model is trained

for dimension reduction via supervised learning, to reduce
overfitting. Ridge Regression can be taken as Linear Regres-
sion with L2 regularization (without penalizing the intercept

term) [76], which has been verified as an effective model
in tackling a large number of image features extracted for
income estimation [2]. The district income gathered from a
field survey can be used as the label of the Regression model,
and themodel can generate a scalar output. Our inputs contain
two sets of data: the first input is obtained from the daytime
satellite images, and the second input is obtained from the
street views. As each district (tract/ZIP code) contains multi-
ple daytime satellite images, 2048 features are calculated for
each district, by averaging the features of all images within
the same district. The features of street views are calculated
in the same way.
Step 3: Third, a GP model is used to extract a scalar value

from the spatial information for income estimation. The GP
model is a non-linear model built upon a Bayesian approach
which specifies a Gaussian prior over the parameters [77].
Suel et al. have pointed out that adding the spatial data by
the GP model can further enhance the income estimation
accuracy of the district [1]. The inputs to the GP model cover
both the latitudes and the longitudes of the district centroids.
The labels of the model are the district income collected by
field surveys. The GPy package is used to fit GP with the
Matern-3/2 kernel [78], based on [1]. Following the default
settings in the package sample codes, training has been
repeated twice and the mean output scalar value is further
used for income estimation.
Step 4: Finally, a new Ridge Regression model, Image-

Spatial-Info-Ridge-Regression model, is used to combine the
image features with the spatial features, and to estimate the
final income via supervised learning. The scalar outputs gen-
erated from Step 2 and Step 3 are concatenated for each
district and taken as the inputs. The district income data
collected from the field surveys are taken as the ground truths.
Ridge Regression is used here due to its ability to avoid
overfitting and achieve good estimation performance.

Three types of cross-validation are used to evaluate
model performance, including R2, the Root Mean Square
Error (RMSE), and the Mean Absolute Error (MAE)
[2], [4], [79], [80]. First, a five-fold validation is used to
evaluate the model’s overall income estimation accuracy [4].
Here, our five-fold validation, which masks the income data
representing one-fifth of the districts in each fold, is limited
to Steps 2 to 4, since Siamese-like CNN conducted in Step 1
does not require any income data input. To ensure compara-
bility, the same set of five-fold district division is used across
all experiments. Second, a cross-district validation is utilized
to test our model’s spatial generalizability. Here, in each fold,
all four parts of our model are trained on the data obtained
from only one-fifth of the districts and validated using the
data from the rest of the districts. Third, a cross-scale vali-
dation is conducted by applying the ZIP code-level (coarse-
scale) model to tract-level (fine-scale) income estimation [2].
The hyperparameter of the Ridge Regression model in each
fold is determined by a grid-searching procedure, that aims at
maximizing the R2 of another five-fold validation conducted
on the training dataset [2], [4].
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TABLE 2. Comparison of The Mixed Siamese GP Model with Models of Alternative Data Inputs and Architectures (Five-fold Validation R2, RMSE, MAE).

IV. RESULT AND DISCUSSION
A. FIVE-FOLD VALIDATION
1) COMPARISON OF SIAMESE-LIKE CNNS
VS NON-SIAMESE-LIKE CNNS OF DIFFERENT DATA INPUTS
AND ARCHITECTURES
In Table 2, the models of different data inputs and
architectures are compared. It shows that our proposed
GP-Mixed-Siamese-like-Double-Ridge model achieves out-
standing performance (R2

= 0.72 − 0.86), as compared to
other models, which only use part of the available data.

Specifically, we compare our Siamese-like CNN models
with different input image datasets. The Mixed-Siamese-like
model is based on imagery features from both the daytime
satellite image and the street views, the Satellite-Siamese-
like model and Street-view-Siamese-like model are merely
based on one type of image corresponding to their name. It is
observed that the Mixed-Siamese-like model always attains
the highest R2 value at both the tract-level and the ZIP
code-level. Besides, the Mixed-Siamese-like model achieves
a higher R2 on the per-capita income-level as compared to
the median household income-level. In addition, it should
be mentioned the Satellite-Siamese-like model has a wider
applicability as compared to the Mixed-Siamese-like model,

as street views may not be available across all small districts,
while satellite images are. This would not present a major
challenge for NYC, as the street views are available across
most of the districts.

We also compare with the models that are only based
on the house price or the spatial location information. The
House Price model only estimates district income based
on the local average house price. The Satellite-Siamese-like
model, the Street-view-Siamese-like model and the House
Price model all generate the estimated income value by
Ridge Regression in the final step, but the former two per-
form much better than the House Price model. This indi-
cates that the house price-related image features extracted
by Siamese-like CNN can outperform the house price for
income estimation. It is worth noting that, when GP is used,
the Spatial-Information-GP model [1], which only takes the
latitudes and the longitudes of district centroids as the inputs,
achieves a high five-fold validation accuracy, especially for
the per-capita income estimation. Intuitively, there is hardly
any direct causal relationship between the latitudes, the lon-
gitudes and income. Hence, the efficacy of the spatial infor-
mation for income estimation can be attributable to the spatial
autocorrelation of the income distributions. Specifically, our
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TABLE 3. Comparison of state-of-the-art models.

results have shown that for the people living in nearby
districts, their per-capita income might be more similar.

The performance of models with and without Siamese-like
CNN architecture is compared. We compare the perfor-
mance of the Mixed-Siamese-like model vs. the Mixed-non-
Siamese-like model; the Satellite-Siamese-like model vs. the
Satellite-non-Siamese-like model; the Street-view-Siamese-
like model vs. the Street-view-non-Siamese-like model. Given
the same input data, Siamese-like CNN always outperforms
non-Siamese-like CNN that extracts the house price-related
features via Regression (see Section III).

We combine Ridge Regression and GP as a multi-step
regressor in our study (see Steps 2 to 4). With the prior
knowledge that individual image feature (among 4096 image
features) is less important than individual spatial feature
(i.e. the latitude or the longitude) for income estimation,
we believe a multi-step approach is desirable. If all features
are fed into a regressor indiscriminately, we will not be able
to make full use of this prior knowledge. Specifically, we test
the Mixed-Siamese-like-Random-Forest model by taking all
4098 features (i.e. 4096 image features and 2 spatial features)
as the inputs to a Random Forest model in a single step [81].
The model tends to overfit. In addition, we compare our
Mixed-Siamese-like-Double-Ridge model with the Mixed-
Siamese-like-GP model, which excludes Step 3 and Step 4
from our model, and takes the scalar output of Step 2,
the latitude and the longitude as the inputs to a GP model for
income estimation. The results show that our proposed model
outperforms the Mixed-Siamese-like-GP model, indicating
that Step 3 and Step 4 are capable of reducing overfitting.

We test theMixed-Spatial-Siamese-like model, which takes
the spatial information as an input to a Siamese-like CNN.
In this model, the latitude and the longitude of each image
are combined with 2048 image features by a dense layer
in each branch of a Siamese-like CNN, and the dense layer

produces 2050 outputs. Other architectures of this Siamese-like
CNN are the same as the one described in Section III. All
features are then taken as the inputs to a Ridge Regression
model for income estimation. It performs less well than the
Spatial-Information-GP model. One reason being that the
Siamese-like CNN aims at extracting the house price-related
features. Taking the latitude and the longitude as the inputs
to the model, and by transforming the spatial information to
house price-related features, it increases the difficulty for the
model to directly comprehend the spatial autocorrelation of
the income distributions.

2) COMPARISON OF SIAMESE-LIKE CNNS WITH
STATE-OF-THE-ART MODELS
To compare our Siamese-like CNNs with state-of-the-art
models, we select five district-level income estimation
Regression models by the following criteria. For each of the
four methods shown in Table 1, at least one model is selected,
and the model shall deploy state-of-the-art methodology and
achieve outstanding performance when compared to other
studies of the same class. The architectures of the selected
models are summarized in Tables 3 and 4.

The comparison analysis shows that our model outper-
forms the five state-of-the-art Regression models. Specifi-
cally, as shown in Table 3, model performance is compared
across four dimensions, including, data availability, privacy
protection, transferability between the developed and the
developing countries, and the overall expected estimation
accuracy. Details of our proposed model’s major advantage
over the other models are outlined in Table 4. In addition,
given the available data, we obtain the performance of three
state-of-the-art models on income estimation in NYC, and
show that their validation R2 values are lower than our
proposed model (see Table 5). Benchmark Model 1 utilizes
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TABLE 4. Advantage of Mixed Siamese-like CNN relative to state-of-the-art models.

TABLE 5. Comparison of state-of-the-art models (five-fold validation R2, RMSE, MAE).

CNN for street view feature extraction and uses the spa-
tial location information and GP for performing a residual
regression task to boost the income estimation accuracy [1].
The model takes the four street views of each location
as the inputs (views of the north, east, south, and west),
Whereas in our model, we only take one street view of
each location (views facing the searching center). Hence,
we keep the street view locations constant between the two
models to ensure model comparability.3 Benchmark Model
2 extracts 7480 pre-defined features from each street view
(i.e. GIST [82], texton, and color histogram features [83])
and deploys a Support Vector Regression model for income
estimation [35]. The same street views deployed in our model
are taken as the input. The implementation is slightly different
from the original work due to the training speed limitation.

37 locations are excluded as some locations do not have pictures covering
four directions and some are lost when theGoogle database has been updated.

The original work first trains an image-level Support Vector
Regression model and then averages the income estimation
of each image at the district-level. Since our model feeds
in a large number of images, our training speed becomes
extremely slow. Hence, we first average the image features
at the district-level, then train a district-level Support Vector
Regression model to generate district-level income estima-
tion. Benchmark Model 3 is an income estimation model
that utilizes the daytime satellite image and different CNN
techniques [2]. To ensure comparability, the same daytime
satellite image dataset used by our model is used as the input
dataset for Benchmark Model 3. Specifically, Benchmark
Model 3 is based on a transfer learning technique, which
uses CNN to first extract imagery features that are useful in
estimating nightlight intensity, then applies the features for
income estimation by Ridge Regression [2], [4]. It is seen in
Table 5 that theGP-Mixed-Siamese-like-Double-Ridgemodel
significantly outperforms the benchmark models.
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TABLE 6. Cross-district validation.

TABLE 7. Cross-scale validation.

B. CROSS-DISTRICT VALIDATION
The cross-district validation results are presented in Table 6.
The cross-district validation is conducted by randomly sepa-
rating the small districts (tract/ZIP code) into five sets each set
containing the same number of districts. Each time, the model
is trained on input data (the daytime satellite image, the street
view, the house price and the spatial location information)
from one set of districts and is evaluated based on a vali-
dation dataset composed of all other districts. The average
R2, RMSE and MAE of five models trained on the five
sets of district data are calculated and presented in Table 6.
Here we find models sharing partially the architecture of our
model, including the Spatial-Information-GP model and the
Mixed-Siamese-like model, may outperform other models
under different circumstances. Specifically, the Spatial-
Information-GP model has achieved very good tract-level
cross-district validation performance, when such valida-
tion is based on the per-capita income. However, it per-
forms less well in ZIP code-level cross-district validation.
As the optimal performance of the Spatial-Information-GP
model depends on the availability of a relatively large train-
ing dataset, one-fifth of the ZIP code-level regions is too
small a training dataset to maintain the model performance.
Besides, theMixed-Siamese-like model, which relies on satel-
lite images, street views and house prices, has achieved an
outstanding performance on ZIP code-level cross-district val-
idation. Hence, when data of different spatial granularities
are available, different models may be preferred. We would
discuss this further in Section IV Part E. Further, our results
also imply that when performing income estimation, instead
of conducting a labor-intensive door-to-door survey across
all districts, researchers can instead develop a CNN that
estimates the income levels of a subset of all districts, say one-
fifth, then use the trained CNN to estimate the income levels
across the remaining four-fifths of the districts of the city.

C. CROSS-SCALE VALIDATION
Table 7 presents R2, RMSE and MAE when the model
trained on a less fine-grained spatial scale (ZIP code-level)
is applied to income estimation at the more fine-grained
scale (tract-level). With the same statistical significance, the
less fine-grained scale model requires a smaller number of
households to be interviewed, hence more resource friendly.
The comparison results imply that the combined use of satel-
lite images and street views can enhance the cross-scale
validation accuracy. The Spatial-Information-GP model has
achieved a good performance on cross-scale validation based
on both per-capita and median household income.

D. ESTIMATED INCOME DISTRIBUTION
Fig. 6 presents the estimated income distribution, generated
by the GP-Mixed-Siamese-like-Double-Ridge model follow-
ing a five-fold validation procedure.We notice that our model
generates a negative estimated median household income for
a tract in the center of NYC. We investigate this problem
by first checking the intermediate model outputs generated
by the images and the spatial information. We find the
scalar output generated by image features in Step 2 of our
model is negative for this tract, and this leads to the final
negative estimation. Hence, we further check the images
in this tract. The street views in this tract look normal,
whereas the satellite images in this tract contain some large
shadows caused by high buildings. This indicates that dark
building shadows might bring extra noises and reduce the
model’s estimation accuracy. We verify this idea by checking
the estimated median household income generated by the
Satellite-Siamese-like model and the Street-view-Siamese-
like model. The Satellite-Siamese-like model also generates
a negative estimated median household income for this tract,
and the Street-view-Siamese-like model could generate a
normal positive income estimation. Those results also support
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FIGURE 6. Predicted income distribution of NYC by Siamese-like CNN.

that abnormal satellite images would lead to low income
estimation accuracy. Hence, we would suggest scholars filter
out the daytime satellite images with large shadows before
using our model, and we also encourage scholars to further
investigate more specific criteria used for filtering abnor-
mal daytime satellite images. Besides, any district that does
not have ground truth data is not included in the Figure.
Since some of these areas are covered/surrounded by water,
whereas our model is trained on the ground truths collected
from the land areas, the estimated income values in these
districts are considered not credible and discarded.

E. DISCUSSION
Our study brings forth an important question, can we input
additional data types as proxies to income, or integrate more
powerful techniques to our model to improve our income
estimation accuracy? First, as illustrated in Section I, other
types of data that have been used in existing literature
present various challenges; transportation card records are

not open to the public [40], social media records can induce
privacy concern [44], nightlights have a low correlation
with incomes in developed countries [36], [58]–[61], and
restaurant/business information exhibits a low estimation
power in previous studies [42], [43]. Second, more powerful
techniques, or additional data input types do not guarantee
a higher estimation accuracy. For instance, studies from the
Stanford University have shown that a powerful Generative
Adversarial Network (GAN) and multiple types of data
inputs may perform more poorly than a simple CNN, also
perform less better than GAN with fewer input types, and
have suggested that the failure may be attributable to the
model’s propensity of overfitting, as the model may be fitted
to noise [80]. Third, an important performance evaluation
criterion is whether the model maintains a good balance
between simplicity and accuracy [84]. Our model achieves a
relatively high R2 of 0.72-0.86 (a five-fold validation), indi-
cating that integrating more powerful models or providing
extra inputs to this study may increase model complexity,
but hardly improve estimation accuracy. However, income
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TABLE 8. Computational burden of the income estimation models.

estimation models tend to overfit when combining image
features with spatial information. Hence, estimation models
that better fit the spatial information with other regional
features without overfitting, such as Graph Neural Network
(GNN), are recommended for the future study [85].

Besides, the computational burdens of different models are
compared and presented in Table 8. We divide the computa-
tional burden of our assessed models into three levels, ‘high’,
‘medium’ and ‘low’. Models of a ‘high’ computational bur-
den are models that concatenate a number of sub-models and
spend long time on training andmaking inference (>6 hours).
Models of ‘low’ computational burdens aremodels of a single
sub-model and the results are generated within a short time
(<1 hour). Othermodels falling between the two extremes are
categorized as ‘medium’. In our baseline models, many have
been rated as ‘‘high’’ in computational costs. Unlike some
real-time model training and inference operations, regional
income estimation usually does not require high compu-
tational speed. Hence, such shortcoming might not affect
income estimation operation seriously, even though efforts

to reduce the computational costs can be further pursued in
future studies.

Although our GP-Mixed-Siamese-like-Double-Ridge
model has achieved a good estimation performance,
several models sharing partially our proposed architecture
can achieve comparable or even better performance under
different circumstances (i.e. different spatial granularities
and data availability). Hence, when data of different spa-
tial granularities are available, different models may be
preferred (see Table 9). Specifically, the high-performance
models under high income data availability are selected
according to the five-fold validation results (where field
survey-based income data from 80% of districts are avail-
able). The high-performancemodels suitable to be used under
low income data availability are selected according to the
cross-district validation results (where 20% of the ground
truth income data are available).

V. CONCLUSION AND FUTURE RESEARCH
We propose a novel methodology, Mixed Siamese-like CNN,
which integrates Ridge Regression and GP for the fine-
grained, district-level per-capita income and median house-
hold income estimation for NYC in the United States.
Our new model (the GP-Mixed-Siamese-like-Double-Ridge
model) makes good use of a rich array of data types, including
the house price, the daytime satellite image, the street view
and the spatial location information. Our model outperforms
other state-of-the-art income estimation Regression models
(R2

= 0.72-0.86 under a five-fold validation). A good
performance has been achieved with regard to cross-district
and cross-scale validation, which can be used to replace field
surveys to reduce manpower and financial resources. We also
identify models that share partially the architecture of our
model, including the Spatial-Information-GP model and the
Mixed-Siamese-like model. Each of them can perform better
than other baselines under certain spatial granularity and
data availability. Since each of those models relies on less
data input types and simpler architectures, utilizing them can
save resources spent on data collection and model training.
We recommend that these model architectures can be flexibly
utilized under different circumstances to optimize the estima-
tion performance.

TABLE 9. Suggested models under different conditions.
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Even though our income estimation model is applicable to
the developed economies, it can be modified and extended to
developing countries where no historical fine-grained income
data is readily available. First, instead of estimating the
exact income, due to the lack of accurate ground truths,
one can transform this model into an income classification
model based on unsupervised learning. Second, other types
of fine-grained data inputs can be utilized in the developing
metropolises. Third, field surveys can be conducted in some
districts of the targeted developingmetropolis to verify model
accuracy. To apply our model to estimate the fine-grained
income values in other cities, it is necessary to perform verifi-
cation. First, when any cities to be examined are lying within
the same country, one may wish to check whether the geo-
graphical features, the population densities, the house prices
and socio-economic status are showing similar characteris-
tics. If the differences are significant, the model parameters
trained in one city may not be directly transferrable. Even
if the city characteristics are similar, field surveys are best
conducted beforehand across some parts of the new city to
be examined. Second, for cities located in a different coun-
try, it is desirable to examine if the general socio-economic
features of the two countries are similar first.

In future, we plan to study how to transfer our proposed
Siamese-like CNN to other unsupervised learning-based
models. Our proposed Siamese-like CNN enjoys the follow-
ing advantages. First, training a Siamese-like CNN does not
need income data collected from field surveys, rendering
it suitable for unsupervised learning. Second, house price
is highly correlated with other socio-economic indicators,
such as wealth [86]. Hence, the house price-related features
extracted from Siamese-like CNN can facilitate the estima-
tion of composite indicators that represent multi-dimensional
concepts [87]. In reality, comprehensive house price informa-
tion like that available in NYC may not be readily available
in all cities. Hence, our model can still work well even
when only a fraction, for instance, when one-fifth of house
price information is available (see the cross-district validation
result). Further, our Siamese-like CNN can also be used for
estimating other socio-economic indicators. Depending on
the nature and the type of the socio-economic values to be
estimated, instead of using the house price for image feature
extraction, multi-modal big data can be used for transfer
learning. The features extracted from relevant dimensions can
then serve as the inputs for unsupervised learning model (e.g.
Principal Component Analysis [88]).
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