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1. Introduction

Competitive rules are widely observed in
the nature, which dictates the evolution
of organisms and cells via natural selec-
tion.[1] In the brain, a competition mecha-
nism exists among neurons wherein
synaptic connections with high spiking fre-
quencies and strong inputs are retained
and strengthened, while the connections
with low frequencies and weak inputs are
pruned or decayed[2–4] (Figure 1a).
Inspired by the information processing
mechanisms of the biological brain, com-
petitive learning neural networks
(CLNNs) have received widespread atten-
tion.[5–9] Their corresponding network
structure is shown in Figure 1b.[10] As a tra-
ditional artificial neural network (ANN)
model, CLNN is used to discover patterns
in the distribution of data mainly through
unsupervised learning, based on similarity
measurements between input samples and

weight vectors.[11–14] In the era of artificial intelligence and the
Internet-of-Things (AIoT), similarity measurements are com-
monly accepted in machine learning algorithms, and are exten-
sively used in recommendation systems, pattern recognition,
data queries, and other applications.[15–19] Euclidean distance
(ED) is one of the most well-established methods for similarity
measurements and has been frequently applied for image recog-
nition, natural language processing, data mining, wireless locali-
zation, and other applications.[20–24] It is used to quantitatively
represent the distance between two vectors in Euclidean space,
as shown in Figure 1c. The absolute value of the ED calculation
can be used to determine the degree of similarity, and the sample
with the smallest ED value is considered to yield the best match.

With the dramatic increase in data dimensions in the AIoT
era, ED-based applications have encountered huge challenges
on the resource-constrained edge computing platforms due to
serious bottlenecks in computing power and efficiency.[25]

Memristive in-memory computing has emerged as a promising
solution for energy-efficient non-von Neumann computing para-
digms.[26–28] The frequent vector-matrix multiplication (VMM)
operations in ANNs, such as multilayer perceptrons and convolu-
tional neural networks, have been accelerated considerably owing
to in-memory computing in which multiply-accumulate (MAC)
operations can be executed in a single step using Ohm’s and
Kirchhoff ’s laws in a memristive crossbar array.[29–34]
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Inspired by competitive rules of the nature, competitive learning contributes to
the specialization of the human brain and the general creativity of mankind.
However, the construction of hardware competitive learning neural network still
faces great challenges due to the lack of an accurate distance computation
method and a self-adaptive in situ training scheme. Herein, a fully memristive
Euclidean distance (ED) engine based on analog multiply-accumulate operation
in a 32� 32 TiN/TaOx/HfOx/TiN 1T1R array is demonstrated. The dual-layer
devices perform multilevel modulation under the target-aware programming
method with excellent read linearity in a dynamic range of 10–100 μS. The ED
calculation is verified experimentally on a test board with an O(1) temporal
complexity. Furthermore, in situ training and offline inference schemes for
competitive learning, based on the ED engine, are developed and the simulated
results show comparable success rates with those obtained by the CPU-based
software. Compared with a state-of-the-art RTX6000 GPU (0.5 TOPSW�1), the
energy efficiency of competitive learning models on ED engines can yield 100�
improvements by utilizing optimized memristive devices.
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Therefore, for CLNNs, building an ED engine utilizing a single-
clock VMM operation in memristor arrays (Figure 1d) is essen-
tial to overcome traditional computational limitations. Currently,
building a functional, fully memristive ED engine is challenging,
although there are initiatives to implement ED calculations on
memristor arrays.[35–38] Specifically, the remaining issues are
mainly the lack of 1) complete expression for ED calculation
on a hardware platform, 2) efficient in situ training scheme
for CLNNs with hardware ED engines, and 3) remarkable versa-
tility to different ED-based algorithms.

In this study, a fully memristive ED engine was demonstrated
for the first time that exhibited large hardware computational
efficiency and flexibility. ED calculations for data with five dimen-
sions were implemented on a TiN/TaOx/HfOx/TiN 1T1R array
to verify the reliability of the ED engine. The favorable analog
behavior and the excellent dynamic-range read linearity of the
memristor cells ensure the accurate data mapping as well as pre-
cise analog computing results. By utilizing the memristive ED
engine, CLNNs were demonstrated in prototype clustering tasks.
With in situ training and optional offline inference schemes, the
clustering task based on thememristive ED engine yielded equiv-
alent results for the IRIS and the breast cancer datasets compared
with that running on full-precision software. The memristive ED
engine provides a vigorous and general solution for the hardware

implementation of competitive learning, which completes ED
calculations within constant time and features in fully hardware
online weight updating.

2. Results and Discussion

2.1. Principle of Memristive Euclidean Distance Engine

Mathematically, the ED of two data vectors S and w is calculated
using Equation (1)

DðS,wÞ ¼ jS� wj2
¼ S2 � 2S·w þ w2

S ¼ ½s1, s2, : : : , sm�
w ¼ ½w1,w2, : : : ,wm�

8
>><

>>:

(1)

where S and w are the m-dimensional vectors in Euclidean space.
In CLNNs, S represents the set of sample vectors to be classified,
and w represents the weight vector of the networks. From
Equation (1), the ED calculation contains the dot product term
(�2S·w) and two non-negligible squared terms (S2, w2). Some
specific competitive learning algorithms, such as self-organizing
maps [35] and K-means,[36] have been implemented on the mem-
ristor crossbar array by ignoring one or two squared terms.

Figure 1. Schematic concepts of competitive learning. a) Illustration of neuronal competition in the brain. Input signals stimulate the receptor neurons.
The neuron with the heaviest weight connection outputs a spike with a higher intensity and suppresses the other channels. b) Structure of competitive
learning model with WTA as learning rule in which the distance (similarity) calculation plays the key role for the competitive process. c) Illustration of ED
in Euclidean space, which is essential for competitive learning. A point in an N-dimensional Euclidean space is represented by an N-dimensional vector.
d) Single-step vector-matrix multiplication operation on the memristor array owing to Ohm’s and Kirchhoff ’s laws.
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Sheridan et al.[37] revealed that the ED calculation was simplified
in the form of a dot product of vectors for pattern-matching
tasks. The intensive MAC operations were then accelerated by
memristor arrays by mapping weights to memristor conduc-
tance. However, in case the vectors are not normalized, the
dot product term could not accurately express the true distance
between vectors anymore. Subsequently, Jeong et al.[36] experi-
mentally proposed a scheme for the direct comparison of the
Euclidean distances without normalizing the weights on a mem-
ristor crossbar. The squared term of each input sample vector is
ignored in this scheme because it is a constant for all weight
vectors. Thus, a direct, single-step comparison of the ED can
be implemented on a memristor array by adding an extra row
on the array to store the squared term of the weight vectors.
Notably, this improved ED calculation solution can only perform
the forward inference of CLNN tasks, whereas the process of
online updating, which leads to the fully hardware implementa-
tion and self-adaption of the network, is almost hardly achieved
on the memristor. In addition, this scheme is only suitable for
applications that require a comparison of the relative ED values
while not for absolute ED values. Therefore, it is of great impor-
tance to compute the full expression of ED in memristor arrays
and to implement online weight updating. Herein, we focus on
these problems by devising a fully memristive ED engine. Based
on the traditional CPU architecture, the basic operation for ED
calculation involves a serial subtractor, multiplier, adder, and
accumulator, which can be replaced by the memristive ED
engine in a single-clock step (Figure 2a). First, Equation (1)
can be rewritten as Equation (2)

DðS,wÞ ¼ S2 � 2S·w þ w2

¼ S� ðS� wÞ þ ð�wÞ � ðS� wÞ (2)

By taking (S – w) as a whole, the ED calculation can be con-
verted into a sum of two dot product terms. Accordingly, based
on the principle of Equation (2), a fully memristive ED engine
was designed, as shown in Figure 2b. The item (S – w) was
mapped to the differential conductance rows in the memristor
array. The elements of the two vectors were mapped as the mem-
ristive conductance in the two rows. The dimension of the vec-
tors determined the number of columns of the array. The
subtraction of the two vectors was then achieved by the differen-
tial conductance pairs, which is the a common method used to
implement negative weights in various memristive neural net-
works.[39–41] To achieve the summation of the two dot product
terms in Equation (2), the two horizontal (S – w) conductance
kernels are iteratively programmed, and other vectors, namely,
S and –w, were mapped as input voltage signals (encoded as
the number of voltage pulses with a fixed amplitude, or single
pulses of varying amplitudes to denote different vector elements)
and multiplied by each of the two conductance kernels.
Therefore, similar to distributed kernels,[34] absolute ED calcula-
tions can be completely expressed on memristor arrays to lever-
age the parallelism of the VMM operations to achieve a
single-step operation. The time complexity of the ED calculation
is lowered from O(n) for CPU calculations to O(1) for our
designed memristive ED engine. That is, the feedforward pro-
cess of CLNNs that utilize the ED calculation can be accelerated
directly on the memristor arrays. Moreover, the fully calculated
EDs can find a wide spectrum of applications, such as kernel
functional calculations and wireless locations.[42–44]

Furthermore, the designed ED engine was also fitted to the
online updating rule of competitive learning tasks. In CLNNs
based on the learning rule of Winner Takes All (WTA), only
one winning neuron updates its weight while the other neurons

Figure 2. Illustration of the designed ED engine in the memristor array. a) Computing complexity of the memristive ED engine can be reduced to O(1),
compared with O(m) in traditional CPU. b) Forward step associated with the calculation of ED on the memristive ED engine. The two stored vectors, S
and w, are programmed twice in the horizontal direction on the memristor array in a repeated manner. The difference of the output currents indicates the
ED result between S and w. c) Backward read process used to obtain the updated values for competitive learning. By applying voltage signals proportional
to αðtÞ and �αðtÞ to the corresponding row, the output currents suggest the desired updated values determined by the gradient descent method.
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maintain their values. The updating rule can be demonstrated by
Hebb’s rule and expressed according to Equation (3)[45,46]

Δw ¼ α tÞ vIn � vwð Þð (3)

where α(t) denotes the learning factor of the network, vIn and vw,
respectively, indicate the input and the weight vectors that cor-
respond to the input pattern and winning neuron used for the
update. In general, the vectors in the sample set (S) are used
as the input pattern, and the weight vectors (w) are used as
the weight map for CLNNs. Therefore, as shown in Figure 2c,
a backward online update can also be performed on the designed
memristive ED engine. The learning factor α(t) was encoded with
a fixed voltage amplitude, which was input to the rows storing S
and w with positive and negative pulses, respectively. This

reverse VMM operation mapped exactly the calculation of
Equation (3). Therefore, in the designed memristive ED engine,
the complete expression of ED calculation was associated with
high computational parallelism and low time complexity, and
an online update for CLNNs also became possible.

2.2. Experimental Demonstration of a Memristive ED Engine

To experimentally verify the feasibility of the designedmemristive
ED engine, an field programmable gate array (FPGA) test board
consisting of a 32� 32 1T1R TiN/TaOx/HfOx/TiN memristor
array was used and the packaged 1T1R array is shown
Figure 3a. The optical image of the test board is shown in
Figure S1, Supporting Information. The 1T1R cell was formed

Figure 3. Experimental implementation of ED engine on a 1T1Rmemristor crossbar array. a) The packaged memristor array with the TiN/HfOx/TaOx/TiN
1T1R cell. b) Typical resistive switching characteristics of a 1T1R memristor cell. c) The testing structure of the proposed ED engine in a 1T1R array.
d) Pulse-induced conductance tuning behavior exhibits its potential for use in analog computing. e) The target matrix to be programmed in the array. The
conductance will be programmed by the target-aware method to achieve the target values. f ) The linear I–V relationship for a read voltage of 0.4 V. It
proves that the encoded input voltage below 0.4 V does not affect the conductance state. g) Ten-level retention properties for the measured memristor.
h) Experimental programmed values on the 1T1R test board. The maximum error for programming is less than 6% while the average error is approxi-
mately 2.8%.
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by growing a TiN/TaOx/HfOx/TiN memristor on the drain side
of an N-type metal–oxide–semiconductor transistor, and the
details of fabrication are illustrated in the Experimental
Section. Typical bipolar resistive switching characteristics of a
1T1R memristor cell are shown in Figure 3b. Utilizing the tran-
sistor as a selector and a current limiter, 1T1R arrays are immune
to the sneak path issue. The SET operation applied positive vol-
tages to the gate and drain, while RESET applied positive voltages
to the gate and source. Notably, negative drain or source voltages
are usually not available for 1T1R operations owing to the limit of
transistors. Subject to the constraint, the implementation of the
designed memristive ED engine on a 1T1R array is shown in
Figure 3c. Differential pairs of S and w were stored in two sepa-
rate kernels, and the positive voltage signals with different ampli-
tudes, encoded from S and w, and then inputted to each of the two
kernels. Finally, the two differential currents are passed through a
subtractor, and the output current was proportional to the actual
calculated ED value of the array. Our 1T1R cells have demon-
strated a continuously tuneable conductance, as shown in
Figure 3d, which indicates the analogue computing capability.
The conductive filament of the memristor cells will be enhanced
or weakened under SET or RESET pulses, respectively, and thus
resulting in cycling potentiation or depression behaviors. Taking
the target matrix shown in Figure 3e as an example, the ED cal-
culation was proved on the 1T1R array. The mapping lists for
memristive conductance and input voltage amplitudes are shown
in Table SI, Supporting Information. The voltage amplitudes
from 0 to 0.4 V were encoded vectors, and the linear I–V relation-
ship has been observed on memristors of different conductance

(Figure 3f ), yielding accurate readout results. The memristive
conductance exhibited 10 linear discrete levels from 11.1 to
100 μS. A target-aware method was adopted to program them
accurately, as shown in Figure S2, Supporting Information,
and the obtained stable ten-level retention is shown in
Figure 3g. The conductance of the cells was controlled by the
SET and RESET voltages with varying amplitudes until the pro-
gramming error was within the target error ΔG. The matrix was
then programmed on the 1T1R array with a maximum error of
6% and an average error of 2.8%, as shown in Figure 3h. The
detailed programming data can be found in Table SII,
Supporting Information.

Moreover, to investigate the correct rate of the ED engine,
input voltages were applied to the memristor crossbar array
via a programmed conductance to obtain the experimental
MAC results. Figure 4a shows the MAC values for 100 temporal
cycles, which represent the ED values of S and w. The tested val-
ues maintained stable fluctuations near the mean value. The
original truly tested MAC results in the 1T1R array are shown
in Figure S3a, Supporting Information. Owing to the differential
pair for ED calculation, the standard deviation of ED results is
larger than the original tested ones. But it remains two orders
of magnitude smaller than the measured data which indicates
the relatively stable measurement results. The analyzed test
results are shown in Figure 4b. The relative error (proportion
of the difference between the experimental MAC result and their
mean in the latter) was a Gaussian distribution with an average
value μ (�0) and a variance σ (�0.039), thus indicating a reliable
experimental ED calculation. More simulated EDs under the

Figure 4. Functional verification of the designed memristive ED engine. a–c) The experimental results of the ED engine on the 1T1R crossbar array.
a) Experimental MAC results spanning 100 temporal cycles. b) Distribution of the obtained MAC results. These are Gaussian distributed with a mean
relative error μ (�0) and a variance σ (�0.039). c) The test results of the ED engine in different array regions show the effect of device-to-device (D2D)
variation. d) The simulated tendencies of the relative errors for ED calculations as functions of increasing write variation and the number of conductance
states.
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same condition are analyzed in Figure S3b, Supporting
Information, where a similar distribution of the relative errors
is observed. In addition, this method performed well on the array
with 88.5% errors <0.1 at different points (programming on dif-
ferent array regions, namely, device-to-device), as shown in
Figure 4c. Furthermore, the effects of non-ideal factors of the
memristor device, including the available number of conduc-
tance states and write variations, on the ED calculation were
investigated via simulation (Figure 4d). The results suggest
that more accurate conductance programming and smaller
write–state fluctuations are beneficial to the accuracy of the cal-
culation. Specifically, the 6-bit precision of the conductance states
and 4% write variation for programming are sufficient to control
the relative error of the calculation within 10%. Notably, even if
the write variation is reduced to zero, or the conductance preci-
sion is as high as 10 bits, the relative error is not likely to be zero.
This is because the true values (real number) can only be stored
by discrete quantified conductance states. In addition, simulation

results considering more factors apart from device properties are
shown in Figure S3c and S3d, Supporting Information, includ-
ing the input encoding noise and the stuck-at fault (SAT) of the
memristor array.

2.3. Hardware Mapping of Competitive Learning Models

An in situ CLNN for clustering, as well as its optional offline
inference process, is demonstrated and simulated based on
the aforementioned investigation of the memristive ED engine.
The control logic and data flow during the training are shown in
Figure S4, Supporting Information. As shown in Figure 5a, the
mapping rule for the two-layer competitive learning model is
illustrated based on the ED engine. The input neurons represent
the input pattern, and the competitive mechanism is introduced
to neurons, where the output neurons of the network compete
with each other and adhere to the WTA principle by measuring
the EDs of the input vector and the adjustable weights. The M

Figure 5. Simulation results for mapping CLNN to the memristor array based on the modeled experimental memristive ED engine. a) Schematic of
mapping the CLNN onto the memristor array with the proposed ED engine. b) The clustering results of the IRIS dataset with a success rate of 92.6%
(compared with 94% success rate in software). c) The evolution traces of convergence during the training epochs. The highlighted curve with red circles
shows a typical growth process. d) The success rate distributions with different numbers of conductance states. e) The influence on success rate with
varying read and write variations. In this work, 4% read noise and 6% write noise are accepted which ensures performance of the CLNN tasks.
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weights associated with k competitive neurons were mapped to a
k� 2M memristor crossbar array owing to the distributed ker-
nels. Both the input sample vector and the weight vectors were
programmed twice. The input sample vector S was stored in the
0th row. Every weight vector from the weight matrix W was pro-
grammed in the other n rows in sequence. The stored sample
vector S and the ith weight vector wi (to be compared) were then
encoded as the input voltages with different amplitudes, as
shown in Figure S5, Supporting Information. The readout cur-
rents Ii and I0 were output to the external circuit to calculate the
differential currents. The ith differential current represents the
ED between the input vector and the ith competitive neuron.
The stored sample vector S was compared with all of the weight
vectors, and the output differential current was stored in a buffer
sequentially until the minimum ED value was obtained by a
WTA circuit outside the array. The flow chart of the training
process for a two-layer CLNN is shown in Figure S6,
Supporting Information. For the memristive ED engine, the
calculation and comparison of a sample vector with all weight
vectors were both serially computed, which was relatively
time-consuming. This can be resolved by an asynchronous
comparison circuit shown in Figure S7, Supporting Information,
to speed up the comparison for competitive learning tasks.

In this study, prototype clustering algorithms were used as
typical applications of competitive learning models based on
ED calculations. The in situ training of a competitive layer learns
the features to cluster different classes of inputs automatically,
which exhibited the essence of unsupervised K-means. The
IRIS dataset, an extensively used machine learning dataset ,[47]

was adopted to verify the online training of a CLNN with an
ED engine. Figure 5b shows the clustering results after training
by modeling the experimental ED engine performance. The suc-
cess rate of the network reached 92.6% (equivalent to 94% in soft-
ware). The convergence traces are shown in Figure 5c. With only
ten epochs, the success rate quickly saturated and fluctuated
within a small range. The fluctuations of the success rate origi-
nated from the inevitable read and write variations, whereby the
exhibited variations may skip the best weights and lead to a set of
unstable trained states. This uncertainty can be improved by
adaptive learning rate during training. Furthermore, the robust-
ness of the on-chip implementation was also explored. As the

conductance accuracy increased, the success rate improved
simultaneously until a plateau was reached with a 6-bit accuracy
(Figure 5d). The 6-bit requirement of the memristor states is rig-
orous for the general ED-based application. This shortage can be
compensated by the device optimization or the cooperation of
multiple low-precision chips. The increasing read or write varia-
tions will undoubtedly cause the collapse of the success rate.
However, the write variation has a greater impact on the success
rate compared with the read variation in terms of online learning
(Figure 5e).

In situ training of a CLNN offers the possibility of self-adaptive
application scenarios, such as autonomous driving, meaning that
the weights are updated with real-time input to the net. However,
for some competitive learning tasks, such as semisupervised
learning vector quantization, in situ training is important, and
the inference phase after training is also critical. Therefore, in
Figure 6a, an alternative mapping design for parallel ED calcula-
tion is demonstrated due to the reconfigurability of the memris-
tor arrays. Utilizing the training rules, the network was first
trained on the simulation platform. The detailed in situ training
results are shown in Figure S8, Supporting Information. After
the online training, the trained weight vectors were fixed for
inference. To calculate a sample vector with all of the weight
matrices, the sample vector was then programmed n times to
cover the left n rows of the distributed kernels that stored the
trained weight vectors. Moreover, one additional column was
added to store the squared L2 norm of the trained weights
(the detailed operation processes are shown in Figure S9,
Supporting Information). Herein, the breast cancer dataset,[48]

which contains more samples than IRIS, was adopted as the
benchmark. Figure 6b shows the clustering results of the breast
cancer dataset in different situations, including software simula-
tion, online training, and offline inference on the ED engine.
Clustering results based on the ED engine were slightly lower
than those obtained using software. Moreover, the result of
offline inference overall yielded a higher success rate than the
online training, especially for the “Malignant” class, consistent
with previous publications ,[30,32] which indicates the robustness
of the memristor-based inference platform. As an extension,
multisample vectors could also be compared with the
same weight vector, as shown in Figure S10, Supporting

Figure 6. a) Reconfigured structure used for offline inference based on the memristive ED engine after online training. One additional row (with green
background) is utilized to store the squared L2 norm of the trained weights W. This structure can calculate the EDs between the input vector S and the
trained weights W in parallel. b) The success rates for learning vector quantization with the breast cancer dataset in different situations, including pure
software simulation, offline inference, and online training on the memristive ED engine, respectively.
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Information, by storing the sample vector set on the right part of
the memristor array and one weight vector on the left part repeat-
edly. The multichip scheme provides a matrix-to-matrix ED cal-
culation method at the expense of a larger chip area. Utilizing the
mature GPU platform as a benchmark, Table 1 shows the pro-
jected inference efficiency of the proposed memristive ED
engine using various memristive devices (the detailed calculation
process is shown in the Supporting Information). In this study,
the efficiency reaches 1.835 TOPSW�1, which is much higher
than that of a high-performance GPU (0.5 TOPSW�1).[49]

Potentially, utilizing state-of-the-art memristive devices, the pro-
posed inference engine is expected to yield energy efficiency
improvements that exceed 100� (181.3 TOPSW�1).[34,50]

3. Conclusion

In conclusion, a fully memristive ED engine was demonstrated
to compute the full expression of ED in a single-step MAC oper-
ation. Experimental verifications with 5D data were implemented
on the 1T1R crossbar array, and the constant time complexity was
proven regardless of the data dimensions. In situ training and
offline inference schemes for the competitive learning model
were developed and verified via simulated ED engines. Our
results showed that the ED engine could accomplish clustering
tasks with great tolerance of device variation and limited conduc-
tance states. Its performance also parallels with that of the soft-
ware. Moreover, the projected energy efficiency for competitive
learning exhibits a greater improvement compared with the tra-
ditional GPU. The ED engine and the memristive competitive
learning models have shed light on potential edge applications
by exploiting memristor-based analog computing.

4. Experimental Section

Device Fabrication and Characterization: The basic component of the
1 kb array used in this work was a hybrid integration of a metal–oxide–
semiconductor field-effect transistor (MOSFET) and a TiN/HfOx/TaOx/
TiN memristor device. The MOSFET was fabricated with a standard
0.18 μm logic process in the company SMIC, and the channel width
and length were 10 and 0.35 μm, respectively. The sandwiched memristor
structure was grown on the drain of the MOSFET in the following steps.
The bottom TiN (40 nm) electrode was deposited on a polished W plug
with reactive sputtering. HfOx (10 nm) and TaOx (50 nm) switching layers
were grown by atomic layer deposition and physical vapor deposition,

respectively. A 30 nm TiN layer was then deposited as the top electrode.
Finally, the memristor sandwich structure was patterned using a dry etch-
ing method. The effective size of the memristor device was approximately
1 μm� 1 μm, which was defined by the etching pattern.

Electrical Measurement (the FPGA Test Board): In this study, a versatile
and portable hardware platform was developed to test the resistive switch-
ing characteristics of the memristor and perform analog computing
functions within the 1T1R crossbar array. The platform consisted of an
FPGA-based controller, high-speed analog-to-digital and digital-to-analog
converter circuits used to generate programmable pulses for reading and
writing the memristors, parallel 32-channel excitation and measurement
circuits for computing, independent gate voltage control circuit, two
switch matrices, DDR3 circuits for data buffering, and a USB 3.0 interface
to exchange data with the laptop. The platform can generate positive or
negative programming pulses with a maximum amplitude of 5 V and a
resolution of 10mV. The pulse-width resolution can reach 1 ns, and the
minimum rising edge is 10 ns. By utilizing the configurable feedback signal
condition circuit, the weight measurement ranged from 100Ω to 30MΩ.
The calibration algorithm was integrated into the Kintex-7 FPGA to correct
the channel mismatches of the 32-channel excitation and measurement
circuit, which guaranteed the accuracy of analog computing.

In Situ Training of CLNN: A two-layer competitive network was achieved
with the open-source Python language (version 3.6). Some open-source
libraries, including NumPy and pandas, were used to build the simulation
platform. The IRIS dataset used for online training contained three classes
of 50 instances each, while each instance contained four attributes: septal
length and width and petal length and width. In this study, only the three
most effective attributes (septal width and petal length and width) were
used to verify the performance of the competitive network for online clus-
tering tasks. During the training process, the updating rule obeyed
Equation (3), and the learning rate was fixed at 0.1. The preset maximum
training cycle remained at 50. This indicated that the training progress
would immediately be interrupted when the 50th training cycle was
reached, even though the error did not reach the target error.

Offline Inference Tasks of CLNN: The training process for offline
inference verification was also implemented on the same CLNN simula-
tion platform. The breast cancer dataset had 699 samples, 16 of which had
missing values. Four hundred samples were used as the training set while
the remaining were used as the testing set. Each sample had nine attrib-
utes, each of which was preprocessed to quantized values ranging from 1
to 10. The learning rate decreased or increased automatically based on the
training epochs and classification results to limit the training results to its
Bayesian boundary and converge. The starting learning rate was 0.3 which
was recommended in the study by Kohonen et al.[51] and the learning rate
would never be larger than its initial value. The training samples were ran-
domly selected from the original training dataset.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
H.Z., J.C., and Y. W. contributed equally to this study. This study was sup-
ported by the National Key Research and Development Plan of MOST of
China (grant nos. 2019YFB2205100 and 2016YFA0203800), National
Natural Science Foundation of China (grant nos. 61841404, 92064012,
and 51732003), Hubei Key Laboratory of Advanced Memories, Hubei
Engineering Research Center on Microelectronics, and the Chua
Memristor Institute.

Conflict of Interest
The authors declare no conflict of interest.

Table 1. Projected energy efficiency of the inference engine based on
various memristive devices, using a GPU as a benchmark (G: average
conductance, T: operational pulse width, W: power consumption,
TOPS: Tera Operations Per Second, TOPSW�1: Tera Operations Per
Second Per Watt, GOPS: Giga Operations Per Second).

G T W/cell [μW] Throughput Efficiency
[TOPSW�1]

GPU [49] – 237 μs 130.5 TOPS 0.50

This study 34.4 μS 2 μs 0.545 12.29 GOPS 1.835

Projected [50] 5.5 nS 96 ns 0.050 51.65 GOPS 84.95

[34] 10 μS 400 ns 0.339 61.47 GOPS 181.3
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