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Abstract

Background: Accumulating evidences have suggested that high body fat percentage (BF%) often occurs in parallel
with cardiovascular diseases (CVDs), implying a common etiology between them. However, the shared genetic
etiology underlying BF% and CVDs remains unclear.

Methods: Using large-scale genome-wide association study (GWAS) data, we investigated shared genetics between
BF% (N = 100,716) and 10 CVD-related traits (n = 6968-977,323) with linkage disequilibrium score regression, multi-trait
analysis of GWAS, and transcriptome-wide association analysis, and evaluated causal associations using Mendelian
randomization.

Results: We found strong positive genetic correlations between BF% and heart failure (HF) (Rg = 0.47, P = 1.27 × 10− 22)
and coronary artery disease (CAD) (Rg = 0.22, P = 3.26 × 10− 07). We identified 5 loci and 32 gene-tissue pairs shared
between BF% and HF, as well as 16 loci and 28 gene-tissue pairs shared between BF% and CAD. The loci were
enriched in blood vessels and brain tissues, while the gene-tissue pairs were enriched in the nervous, cardiovascular,
and exo-/endocrine system. In addition, we observed that BF% was causally related with a higher risk of HF (odds ratio
1.63 per 1-SD increase in BF%, P = 4.16 × 10–04) using a MR approach.

Conclusions: Our findings suggest that BF% and CVDs have shared genetic etiology and targeted reduction of BF%
may improve cardiovascular outcomes. This work advances our understanding of the genetic basis underlying co-
morbid obesity and CVDs and opens up a new way for early prevention of CVDs.

Keywords: Body fat percentage, Cardiovascular diseases, Shared genetics, Genetic correlation, Mendelian
randomization
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Background
Body fat percentage (BF%) is a proxy for adiposity that is
genetically regulated through a leptin or melanocortin
pathway in the central nervous system (CNS) [1]. Recent
studies found that high BF%, especially with excess vis-
ceral adipose tissue, is associated with increased risk of
cardiovascular diseases (CVDs) [2, 3], independent of
body mass index (BMI) [4, 5]. BF% is biologically im-
portant and distinct from other proxies of adiposity such
as BMI and waist-to-hip ratio for its capacity to differen-
tiate between fat-free mass (i.e., lean mass, bone mass
and fluid mass) and fat mass [6, 7]. One hypothesis to
account for the link between high BF% and CVDs is
shared genetic etiology. BF% and CVDs may share com-
mon genetic variants that influence metabolism or re-
sponse to environmental risk factors [8]. While the
genetic basis for BF% and CVDs is poorly understood,
large-scale genome-wide association studies (GWAS)
may provide novel insight into specific biological pro-
cesses underlying their comorbidity.
Genetic correlation analysis estimates the correlation of

genetic effects between two clinically related traits and
highlights the shared etiologies behind such an associ-
ation. With methodological advances in molecular genet-
ics and the increased number of available GWAS results,
it is now feasible for us to investigate genome-wide genetic
correlation and identify significant expression-trait associ-
ations for complex traits by using genomics resources (i.e.,
summary-level statistics from large GWAS [8–14] and the
Genotype-Tissue Expression (GTEx) project [15]) and
state-of-the-art statistical analysis methods (i.e., linkage
disequilibrium score regression (LDSC) [16, 17], multi-
trait analysis of GWAS (MTAG) [18], and transcriptome-
wide association studies (TWAS) [19]). Furthermore, pre-
vious twin and family studies have shown that BF% and
CVDs are heritable traits, with heritability estimates ran-
ging from 25 to 40% [10, 20, 21]. Large-scale GWAS have
enabled detection of more than 20 susceptibility loci for
BF% [8]. In particular, the identified BF%-related loci near
FTO predicts long-term CVD risk (OR = 1.895), suggest-
ing that BF% and CVDs might share genetic architecture
[22]. Previous post-GWAS analyses conducted in a large
European population found that genetically predicted
BMI was strongly associated with several CVD outcomes,
including heart failure (HF) and coronary artery disease
(CAD) [23]. Further, there was suggestive evidence of as-
sociations between genetically predicted fat mass index
and some CVDs [23]. However, these studies are limited
because BMI is an imperfect measure of adiposity which
does not directly measure body fat. To our knowledge, no
large-scale genome-wide study has systematically reported
the shared genetic loci between excess adiposity and
CVDs, which is not fully accounted for through BMI
evaluation.

Although observational studies have reported associa-
tions between BF% and adverse cardiovascular outcomes
[24–26], some of the findings have been inconsistent,
which may be due to biases such as unmeasured con-
founding. Mendelian randomization (MR) is a form of
instrumental variable analysis that can be used to esti-
mate the causal association under certain assumptions
[27, 28], even in the presence of unmeasured con-
founders. HF is a catabolic state that can lead to weight
reduction [29], which indicates that the association be-
tween body weight and HF could be bidirectional. Given
that inherited genetic variants are unlikely to be influ-
enced by reverse causation or environmental con-
founders after accounting for population stratification,
investigating the directions of these associations is cru-
cially important.
Using genome-wide association study (GWAS)

summary-level data from several international consortia
(n = 6968-977,323), we investigated the genetic correlation
and causality between BF% and 10 CVD-related traits with
the overarching goal of characterizing the specific shared
genetic loci and biological pathways. Further, we con-
ducted a large-scale, genome-wide cross-trait analysis to
explore novel genetic components among these diseases.
The biological effects reflected by shared loci may play im-
portant roles in the co-occurrence of high BF% and CVDs.

Methods
Study design, data summary and quality control
The overall study design is shown in Fig. 1. We retrieved
summary statistics from the Genetic Investigation of
ANthropometric Traits (GIANT) consortium for BF%
(n = 100,716) [8]; the Heart Failure Molecular Epidemi-
ology for Therapeutic Targets (HERMES) for HF (47,309
cases and 930,014 controls) [9]; the Coronary ARtery
Disease Genome wide Replication and Meta-analysis
(CARDIoGRAM) plus the Coronary Artery Disease
(C4D) Genetics (CARDIoGRAMplusC4D) consortium
for CAD (60,801 cases and 123,504 controls) [10]; and
myocardial infarction (MI) (43,676 cases and 128,197
controls) [10], respectively; from the NINDS Stroke
Genetics Network (SiGN) and International Stroke Gen-
etics Consortium (ISGC) for ischemic stroke (IS) (37,792
cases and 397,209 controls) [11]; from the AFGen Con-
sortium for atrial fibrillation (AF) (65,446 cases and 522,
744 controls) [12]; from the Genetics of Cerebral
Hemorrhage with Anticoagulation (GOCHA) study and
the Genetic and Environmental Risk Factors for
Hemorrhagic Stroke (GERFHS) studies for intracerebral
hemorrhage (ICH) (3226 cases and 3742 controls) [13];
and from the Global Lipids Genetics Consortium
(GLGC) consortium (n = 188,578) for lipids such as
high-density lipoprotein (HDL) [14], low-density lipo-
protein (LDL) [14], total cholesterol (TC) [14], and
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triglycerides (TG) [14]. Each study has done the study-
specific quality control to ensure the criteria of BF%
measurement and CVDs similar among the different
studies. Baseline characteristics for each study are also
provided in previous studies. For example, BF% in each
cohort was measured either with bioimpedance analysis
or dual energy X-ray absorptiometry as described in de-
tail before [8]. In addition, CAD status was defined by
an inclusive CAD diagnosis, including MI, chronic stable
angina, acute coronary syndrome, or coronary stenosis
> 50% [10]. HF cases included participants with a clinical
diagnosis of HF of any etiology with no inclusion criteria
based on LV ejection fraction [9]. Details of each of the
GWAS studies are present in Table S1.
The ethical approval and quality control procedures of

each consortium have been described in previous studies
[8–14]. Informed consent was obtained from all partici-
pants of contributing studies. In addition, we restricted
the chromosome region to autosomal chromosomes and
excluded single-nucleotide polymorphisms (SNPs) in
MHC region (chr6:25Mb–34Mb).

LDSC analysis
We performed a post-GWAS genome-wide genetic cor-
relation analysis for BF% and CVD-related traits using the
LDSC software [30] by assuming that the effect size for

each SNP in GWASs represents all SNPs in LD with it
[17]. The genetic correlation of two traits (ranging from −
1 to 1) can be computed on LDSC software using the
known LD structure of European ancestry reference data
from the 1000 Genomes Project. Since low imputation
quality may yield lower test statistics, we restricted our
analyses to HapMap3 SNPs which seem to be well-
imputed in most studies to minimize the bias in our ana-
lysis [17]. The mean chi-squared statistics in LDSC is
higher in high-LD region compared with low-LD region
and cannot be further analyzed when it is below 1.02. The
analysis also provides a self-estimated intercept to show
the sample overlap between single-trait GWASs [17].

Partitioned genetic correlation analysis
The genetic correlation between BF% and CVDs was par-
titioned by 13 functional category using partitioned LDSC,
including conserved region, DNaseI digital genomic foot-
printing region (DGF), DNase I hypersensitivity sites
(DHSs), fetal DHSs, intron region, repressed region, super
enhancers, transcription factor binding site (TFBS), tran-
scribed region, and histone marks H3K4me1, H3K4me3,
H3K9ac, and H3K27ac from Roadmap Epigenomics Pro-
ject [31, 32]. We recalculated the LD scores of SNPs
assigned to specific annotation which was used to evaluate
the BF%-CVDs genetic correlation for each functional

Fig. 1 Overall study design. Multiple GWAS data sources were first retrieved. We first conducted genome-wide genetic correlation between BF% and
10 cardiovascular disease (CVD)-related traits. For CVD traits that were shown significant genetic correlation with BF%, we conducted further post-
GWAS analyses to investigate genetic overlap between them (variant/region/functional levels, and causal inference). GWAS: genome-wide association
study; GIANT: Genetic Investigation of ANthropometric Traits; MAGIC: Meta-Analyses of Glucose and Insulin-related traits Consortium; DIAGRAM:
DIAbetes Genetics Replication And Meta-analysis; CARDIoGRAMplusC4D: the Coronary ARtery DIsease Genome wide Replication and Meta-analysis
(CARDIoGRAM) plus the Coronary Artery Disease (C4D) Genetics (CARDIoGRAMplusC4D) consortium; HERMES: Heart Failure Molecular Epidemiology
for Therapeutic Targets; GOCHA: Genetics of Cerebral Hemorrhage with Anticoagulation; SiGN: the NINDS Stroke Genetics Network; ISGC: International
Stroke Genetics Consortium; GLGC: The Global Lipids Genetics; MTAG, multi-trait analysis of genome-wide association studies

Zhuang et al. BMC Medicine          (2021) 19:100 Page 3 of 15



category. Additionally, we conducted another genetic cor-
relation analysis partitioned by SNPs groups at different
significant level [33]. The P value of a single SNP was de-
fined a larger one in two GWASs, and then sorted and di-
vided it into five groups in quartile, to further test the
proportion of observed genetic correlation explained by
each group and the robustness of our findings.

Cross-trait meta-analysis
We applied MTAG [34], a novel approach for conducting
meta-analysis of summary statistics from GWAS of mul-
tiple traits robust to sample overlap, to identify genome-
wide significant loci between BF% and CVD-related traits
[18], and detect novel genes by combining GWASs of two
correlated diseases [35]. The key assumption of MTAG is
that all SNPs share the same variance-covariance matrix
of effect sizes among traits. As Turley et al. initially de-
scribed in 2018, MTAG is a consistent estimator whose
effect estimates always have a lower genome-wide mean-
squared error than the corresponding single-trait GWAS,
even if the assumption is not satisfied [18]. In addition, as-
sociation statistics from MTAG also yield more statistical
power and little inflation of the false discovery rate for
each trait analyzed with high correlation, matching theo-
retical expectations [18].

Fine-mapping credible set analysis
For each of the shared loci between BF% and HF or CAD
that meet the cross-trait meta-analysis significance cri-
teria, we extracted variants within 500 kb of the index
SNP and then identified a 99% credible set of causal SNPs
using the Bayesian likelihood fine-mapping algorithm [36,
37]. This algorithm only maps the primary signal and uses
flat prior with steepest descent approximation to identify
causal variants, which may reveal molecular mechanisms
behind the associations. Details of the method have been
described in previous studies [38, 39].

Co-localization analysis
We first extracted summary statistics for variants within
500 kb of the index SNP at each of the shared loci be-
tween BF% and HF or CAD and then used R “coloc”
package to perform genetic co-localization analysis to
calculate the probability that the two traits shared a
common genetic causal variant (H4) [40]. We conducted
fully Bayesian co-localization analysis using the function
“coloc.abf” in the R “coloc” package, which requires re-
gression coefficients for each SNP and variance of these
regression coefficients for each trait when only summary
data are available [41]. In the present study, we consid-
ered loci with probability greater than 0.5 to be co-
localized.

GTEx TSEA
To test if shared gene sets were highly enriched or spe-
cific expressed in a tissue, we conducted a tissue-specific
expression analysis (TSEA) [42, 43]. The analysis was
based on the gene lists that were identified from cross-
trait meta-analysis with a matching HUGO Gene No-
menclature Committee (HGNC) name. The gene expres-
sion data used in TSEA was collected using published
RNA-Seq data from the GTEx project [44–46]. The raw
GTEx data was derived from 189 post-mortem subjects
consisting of 1839 samples from 45 different tissues.
Considering the small sample size of GTEx data, we
selected suggestive significant loci for this analysis
(Pmeta < 1 × 10− 4) to ensure the robustness of TSEA
results. In addition, we used Benjamini–Hochberg
correction to account for multiple testing [47].

Over-representation enrichment analysis
To obtain biological insights for identified shared genes
(Pmeta < 5 × 10− 08) from cross-trait meta-analysis, we
used the PANTHER tool to access enrichment of the
gene sets in the Gene Ontology (GO) biological process
and Reactome pathway [48, 49]. Benjamini–Hochberg
procedure was used to account for multiple testing (false
discovery rate < 0.05) [47].

Bidirectional MR
We performed a bidirectional MR analysis between BF%
and HF and CAD since they are genetically correlated,
using inverse-variance weighted (IVW) as the primary
method [50–52]. Median-based methods (simple and
weighted), MR-Egger, MR-Robust Adjusted Profile
Scores (MR-RAPS), and MR-Pleiotropy Residual Sum
and Outlier (MR-PRESSO) methods were used as sensi-
tivity analyses. The intercept of MR-Egger can be ex-
plained as a test of overall unbalanced horizontal
pleiotropy [53, 54]. In addition, we also performed
single-SNP and leave-one-out analysis to determine
whether there was any single SNP that might drive the
IVW point estimate. For instrumental variables, we have
used the largest and latest GWASs for these traits [8–
10]. We only selected independent genetic variants
which are not in linkage disequilibrium (LD) (defined as
r2 < 0.1) with other genetic variants based on European
ancestry reference data from the 1000 Genomes Project.
We chose the variant with the lowest P value for associ-
ation with the exposure when genetic variants were in
LD. For SNPs that were not available in outcome
GWASs, we used the LD proxy search on the online
platform (https://snipa.helmholtz-muenchen.de/snipa3/
index.php/) to replace them with the proxy SNPs identi-
fied in high-LD (r2 > 0.8) or discard them if the proxies
were not available.
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TWAS
To identify associations of BF% and CVDs with gene ex-
pressions in specific tissues, we conducted a TWAS using
FUSION software package based on 44 post-mortal GTEx
(version 6) tissue expression weights [19, 55, 56]. We ap-
plied Benjamini-Hochberg correction on TWAS P values
of all gene-tissue pairs for each trait, and false discovery
rate < 0.05 was considered significant [47].

Results
Genome-wide genetic correlation
We found strong positive genetic correlations with BF%
for both HF (Rg = 0.47, P = 1.27 × 10− 22) and CAD (Rg =
0.22, P = 3.26 × 10− 07) in large study populations that
were predominantly of European ancestry (more than
75%) (Table 1, Table S1). Additionally, we found nomin-
ally significant genetic correlation with BF% for ICH
(Rg = 0.29; P = 0.021) and HDL (Rg = − 0.326; P = 0.048).
However, we did not find evidence of genetic correlation
between BF% and IS, MI, AF, TC, TG, and LDL (all P >
0.05) (Table 1). Estimates of SNP-based heritability on
the observed scale using GWAS summary statistics are
shown in Table S2.
Since high positive genetic correlations between BF%

and CVDs was only observed with HF and CAD, we fur-
ther used 13 functional annotations to evaluate genetic
correlations between BF% and HF or CAD in the parti-
tioned genetic correlation analysis by specific functional
category. The highest magnitude of significant genetic
correlation was in the repressed region (Rg = 0.88; P =
1.51 × 10− 05) for BF% and HF, which could restore the
phenotypic effects of a mutant gene. The correlation es-
timate for BF% and CAD was highest in the conserved
region (Rg = 0.20; P = 5.00 × 10− 04), where this region
remained almost unchanged during evolution (Fig. 2;
Table S3). The shared genetic etiology for BF% and
CVDs encourages the exploration of a common

pathophysiology, especially in specific functional cat-
egories. Subsequently, we conducted a partitioned gen-
etic correlation analysis by SNP groups with different P
values and found that the first two groups remained sig-
nificant (P < 1.00 × 10− 05), suggesting that our findings
were robust (Figure S1-S2).

MTAG for single traits
Manhattan plots from the GWAS and MTAG analyses
for each trait are shown in Fig. 3. From GWAS to
MTAG, the total number of lead SNPs increased from
11 to 16 for BF% and from 42 to 51 for CAD, while no
changes were found for HF. We confirmed most of the
previously identified loci and found novel associations
between BF% and HF and CAD. Out of the 16 inde-
pendent loci reported for BF% using MTAG, 6 were
novel associations and 2 of these fell within protein-
coding gene bodies (PLA2G6, RPTOR) (Table S4).
Among the 51 loci associated with CAD, 13 were novel
loci, 10 of which were mapped to protein-coding genes
(i.e., HNRNPUL1, NAA25, FES, TNS1, CYP46A1,
ABCG8, IGF2BP1, BCAS3, SMG6, APOE) (Table S4).
The proteins encoded by these gene and gene-related
pathways are shown in Table S4. Out of the 10 inde-
pendent loci identified for HF, 8 were novel, 3 of which
were mapped to protein-coding genes (i.e., FTO, NPC1,
IGF2BP1) (Table S4).

Cross-trait meta-analysis
Given the strong genetic correlation between BF% and
HF or CAD, we further used MTAG to perform
genome-wide meta-analysis to improve our power to
identify shared significant genetic loci (meta-analysis P <
5 × 10− 08 and single trait P < 0.05). The genomic control
parameter (λ) was 1.16 in the cross-trait meta-analysis
for BF% and HF, while λ = 1.20 for BF% and CAD (Fig-
ure S3-S4). Illustrative calculations in the two-trait set-
ting were 0.0012 for BF% and CAD and 0.0035 for BF%
and HF. The Manhattan plot of these results indicated
that shared genetic loci drove the overall significance of
the meta-analysis (Fig. 4).
We identified 5 genome-wide significant independ-

ent loci for BF% and HF (Table 2). Out of the 5 inde-
pendent loci, 3 were mapped to protein-coding genes
(i.e., FTO, NPC1, LPA). The strongest signal was ob-
served on chromosome 16 at the FTO region (index
SNP rs9937053, Pmeta = 1.09 × 10− 18), the first GWAS-
identified susceptibility gene for obesity [57, 58]. This
locus was not only significant after meta-analysis, but
also reached genome-wide significance in both single-
trait GWAS of BF% (P = 9.86 × 10− 26) and HF (P =
2.99 × 10− 08). The second strongest signal was in
close proximity to an intergenic region closest to the
GNPDA2 gene on chromosome 4 (index SNP

Table 1 Genetic correlation between BF% and cardiovascular
disease-related traits

Phenotype Rg Rg_SE P

Coronary artery disease 0.223 0.044 3.26E−07

Heart failure 0.473 0.048 1.27E−22

Myocardial infarction 0.167 0.090 0.062

Intracerebral hemorrhage 0.292 0.126 0.021

Atrial fibrillation 0.068 0.053 0.199

Ischemic stroke 0.147 0.089 0.097

High-density lipoproteins − 0.326 0.165 0.048

Low-density lipoproteinsa / / /

Total cholesterola / / /

Triglycerides 0.127 0.099 0.200

Rg genetic correlation estimate, SE standard error. aOut of bound
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rs10938397, Pmeta = 4.36 × 10− 10), a critical gene in-
volved in lipid and glucose metabolism. Previous
studies found that the expression level of GNPDA2
alters the transcriptome profile of human adipose-
derived mesenchymal stem cells [59]. In addition, we
found that genetic loci represented by rs10455872
(Pmeta = 3.88 × 10− 09) on LPA are associated with both
BF% and HF after meta-analysis. Variation within
LPA has shown strong association with Lp(a)-choles-
terol levels, which is an independent risk factor for
cardiovascular-related events [60].
The cross-trait meta-analysis between BF% and CAD

identified 16 genome-wide significant loci (Table 3), 10 of
which were in protein-coding gene bodies (i.e., LPA, HOR-
MAD1, MIA3, WDR12, DGKH, CYP46A1, FES, FTO,

IGF2BP1, BCAS3). The most significant locus is character-
ized by the LPA gene (index SNP rs10455872, Pmeta =
3.14 × 10− 28). The second locus (index SNP rs8050136,
Pmeta = 4.02 × 10− 19) was mapped to the FTO gene. These
loci were also found to be significant in the meta-analysis
for BF% and HF, showing genetic overlaps between BF%
and CVD-related traits. The third strongest signal was ob-
served closest to the MC4R gene (index SNP rs663129,
Pmeta = 3.10 × 10− 18), which is involved in the leptin sig-
naling pathway and its disruption is a causal factor of
obesity [61].

GTEx TSEA
In order to assess whether shared genes between BF%
and CVDs are enriched for expression in the disease-

BF% and HF
BF% and CAD

2.0

1.5

1.0

0.5

0.0

-0.5

Fig. 2 Partitioned genetic correlation between BF% and HF or CAD. The vertical axis represents the genetic correlation estimate Rg; the
horizontal axis represents 13 functional categories. The asterisk represents significance (P < 0.05), error bars represent the standard error of
genetic correlation estimates. DGF: DNaseI digital genomic footprinting; DHS: DNase I hypersensitivity site; TFBS: transcription factor binding sites

Fig. 3 The up and down plots display the MTAG and GWAS results for a BF%, b HF, and c CAD, respectively, for a fixed set of SNPs. The x axis
shows chromosomal position, and the y axis shows significance on a −log10 scale. The line marks the threshold for genome-wide significance
(P = 5 × 10− 8). Each approximately independent genome-wide significant association (lead SNP) is marked by a cross
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relevant tissue, we conducted the TSEA using the GTEx
pilot data. We found that shared genes of BF% and HF
had three significantly enriched tissues, including blood
vessel, brain, and fallopian tube (Fig. 5). The shared
genes of BF% and CAD were enriched in six tissues in-
cluding blood vessel, brain, fallopian tube, heart, nerve,
and uterus (Fig. 5). The most strongly enriched tissue
for both BF% and HF or CAD was part of the cardiovas-
cular and nervous system (Fig. 5).

Over-representation enrichment analysis
The GO analysis indicated several significant shared bio-
logical processes between BF% and HF or CAD (false
discovery rate < 0.05) such as glutathione derivative
metabolic, glutathione derivative biosynthetic, and nitro-
benzene metabolic processes (Table S5-S6). In additional

analyses of Reactome pathways, we found that shared as-
sociation signals for BF% and HF or CAD were signifi-
cantly enriched in glutathione conjugation and plasma
lipoprotein-related pathways (Table S7-S8). In general,
the identified shared genes between BF and CVDs
showed common significant enrichment in expression
for glutathione metabolic-related pathways.

Fine-mapping and co-localization analysis
Lists of credible set SNPs in each shared locus for BF%
and HF or CAD from fine mapping are shown in Table
S9-S10. The co-localization analysis showed that 4 out
of 5 loci and 16 out of 16 share causal variants between
BF% and HF or CAD, respectively (Table S11-S12). The
results of co-localization analysis were consistent with
the cross-trait meta-analysis.

ba A
D

O
R

A
2A

Fig. 4 Circus Manhattan plot of cross-trait meta-analysis. The first layer of the plot illustrates the chromosome position and the second layer
illustrates the representative genes of significant loci. Genes in red are shared genes between two traits [a BF% and HF; b BF% and CAD] with
single-trait P value < 0.05. The inside layer illustrates the significance level − log10 (P value) shared markers from cross-trait meta-analysis. The red
dots indicate genome-wide significant (P < 5 × 10− 8). Genes at loci in close proximity were assigned one gene label separated by a slash. Asterisks
represent the gene closest to index SNP. #: The P value of gene CDKN2B-AS1 (rs4977574) is 9.9 × 10−84 (out of range)

Table 2 Genome-wide significant loci by cross-trait meta-analysis at sentinel SNPs associated with BF% and HF (Pmeta < 5 × 10− 8;
single trait P < 0.05)

SNP CHR Position Ref. allele Alt. allele PBF% PHF PMETA Variant
annotation

Genes within clumping region

rs9937053 16 53799507 G A 9.858E−26 2.992E−08 1.09E−18 Intron AKTIP,CHD9,FTO,FTO-IT1,LOC643802,
LOC102723373,RBL2,RPGRIP1L

rs1652348 18 21147509 C T 0.0006127 2.477E−06 3.35E−08 Intron ANKRD29,C18orf8,CABLES1,LAMA3,
LOC102724246,NPC1,RIOK3,
TMEM241.TTC39C

rs7234864 18 57734857 C T 6.827E−07 1.804E−05 8.159E−09 Regulatory
region

CCBE1,MC4R,PMAIP1

rs10938397 4 45182527 A G 1.359E−07 2.948E−06 4.36E−10 Intergenic GNPDA2,GUF1

rs10455872 6 161010118 A G 0.02079 1.892E−11 3.879E−09 Intron IGF2R,LOC729603,LPA,LPAL2,MAP 3 K4,PLG,
SLC22A1,SLC22A2,SLC22A3

SNP single-nucleotide polymorphism, CHR chromosome
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Single-trait TWAS
We conducted a TWAS analysis to examine if there are
genes whose expression are related with BF%, CAD, and
HF, and to determine if these genes are common among
these traits. A total of 270 gene-tissue pairs were found
across 44 GTEx tissues to be significantly associated
with BF% after Benjamini-Hochberg correction (false
discovery rate < 0.05) [47], in addition to 786 gene-tissue
pairs with CAD, and 270 gene-tissue pairs with HF
(Fig. 6). Among these gene-tissue pairs, 32 overlapped
between BF% and HF, most of which were observed in
nervous and cardiovascular system (Table S17). Notably,
C18orf8 and NPC1 are expressed in multiple tissues in-
cluding brain, nerve, artery, and adipose tissue. Consist-
ent with a previous study [62], NPC1 was validated as a
shared genetic component in lipid metabolism and car-
diovascular health from our TWAS results. In addition,
the methylation levels of C18orf8 were considered as an
epigenetic mechanism in maternal obesity and early life
origins of CVD and cancers [63]. Furthermore, we iden-
tified 28 gene-tissue pairs that were shared by BF% and

CAD (Table S17). Most of the associations were found
in exo-/endocrine and digestive system. Some genes are
expressed among multiple tissues such as ATP5G1,
SLC22A3, SNF8, and UBE2Z. ATP5G1 has been shown
to encode a subunit of mitochondrial ATP synthase [64]
and SLC22A3 have been reported to be expressed at the
blood-brain barrier and alters neuronal excitability [65].
By integrating human and mouse results, previous stud-
ies have predicted that SNF8 and UBE2Z play a causal
role in the development of CAD through a role in the
vasculature [66, 67].

Bidirectional MR
We conducted a bidirectional MR analysis to evaluate po-
tential causal associations between BF% and HF and CAD.
To assess the causal effect of BF% on HF and CAD, we
used 10 previously identified genetic variants for BF%
(Table S13). To assess the causal effect of HF and CAD on
BF%, 5 and 24 previously identified genetic variants were
used as instruments for HF and CAD, respectively (Table
S14). We found that genetically predicted BF% was

Table 3 Genome-wide significant loci by cross-trait meta-analysis at sentinel SNPs associated with BF% and CAD (Pmeta < 5 × 10− 8;
single trait P < 0.05)

SNP CHR Position Ref.
allele

Alt.
allele

PBF% PCAD PMETA Variant
annotation

Genes within clumping region

rs2590942 1 72885281 T G 4.98E−07 1.73E−03 6.166E−09 Intergenic NEGR1

rs4970926 1 150673684 T C 1.43E−03 3.99E−05 4.269E−08 Intron ADAMTSL4,ANP32E,ANXA9,APH1A,ARNT,BNIPL,C1orf51,
C1orf54,C1orf56,CA14,CDC42SE1,CTSK,CTSS,ECM1,ENSA,
FAM63A,GOLPH3L,HORMAD1,KIAA0460,LASS2,LYSMD1,
MCL1,MLLT11,MRPS21,PIP5K1A,PRPF3,PRUNE,RP11-
68I18.1,SCNM1,SEMA6C,SETDB1,TARS2,TMOD4,TNFA
IP8L2,VPS72

rs2133189 1 222814442 C T 1.99E−02 2.42E−12 7.714E−09 Intron AIDA,C1orf58,DISP1,FAM177B,HHIPL2,MIA3,TAF1A,TLR5

rs13396935 2 653195 G A 1.42E−09 6.43E−04 2.493E−11 Regulatory
Region

ACP1,FAM150B,LOC391343,SH3YL1,SNTG2,TMEM18

rs6435169 2 203753016 G A 4.61E−02 7.54E−18 7.068E−10 Intron ABI2,ALS2CR8,ALS2CR13,BMPR2,CYP20A1,ICA1L,NBEAL1,
WDR12

rs10938397 4 45182527 A G 1.36E−07 1.06E−03 1.176E−09 Intergenic GNPDA2,GUF1

rs10455872 6 161010118 A G 2.08E−02 5.73E−39 3.141E−28 Intron IGF2R,LPA,LPAL2,MAP 3K4,PLG,SLC22A1,SLC22A2,
SLC22A3

rs11226029 11 103693627 G A 3.54E−02 1.14E−09 2.967E−11 Intron DDI1,DYNC2H1,PDGFD

rs4842662 12 89933446 T C 3.00E−05 7.13E−07 1.861E−11 Intron ATP2B1,DUSP6,GALNT4,WDR51B

rs9532984 13 42634693 G A,C,T 1.93E−02 1.62E−06 1.802E−08 Intron AKAP11,DGKH,KIAA0564

rs3752958 14 100182687 C A T 2.52E−02 7.98E−07 1.42E−08 Intron BCL11B,CCNK,CYP46A1,DEGS2,EML1,EVL,HHIPL1,SETD3

rs1894400 15 91428955 C T 1.95E−02 1.54E−07 1.118E−09 Intron BLM,CRTC3,FES,FURIN,HDDC3,IQGAP1,MAN2A2,PRC1,
RCCD1,SV2B,UNC45A,VPS33B

rs8050136 16 53816275 C A 1.36E−25 4.65E−03 4.023E−19 Intron AKTIP,CHD9,FTO,RBL2,RPGRIP1L

rs9906944 17 47091420 C G,T 2.86E−08 1.17E−05 1.935E−12 Intron ABI3,ATP5G1,B4GALNT2,C17orf92,CALCOCO2,GIP,
GNGT2,HOXB1,HOXB2,HOXB3,HOXB4,HOXB5,HOXB6,
HOXB7,HOXB8,HOXB9,HOXB13,IGF2BP1,NGFR,PHB,
PHOSPHO1,SNF8,TTLL6,UBE2Z,ZNF652

rs4456565 17 58921974 T C 4.22E−02 6.63E−07 3.104E−08 Intron APPBP2,BCAS3,C17orf64,LOC729617,PPM1D,USP32

rs663129 18 57838401 G A 1.47E−10 3.20E−08 3.097E−18 Intergenic CCBE1,MC4R,PMAIP1

SNP single-nucleotide polymorphism, CHR chromosome.
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causally associated with an increased risk of HF (OR 1.63
per 1-SD increase in BF%, P = 4.16 × 10− 04) (Table 4) after
Bonferroni correction. However, HF was not causally as-
sociated with BF%. In addition, there were no causal rela-
tionships between BF% and the risk of CAD. Sensitivity
analysis showed that our results were reliable and were
not affected by horizontal pleiotropy or outliers (Table 4,
Table S15-S16).

Discussion
Using large-scale GWAS data from international consor-
tia, we analyzed shared genetic etiology and causal asso-
ciations between BF% and CVD-related traits. First, we
found strong positive genetic correlations and further
identified novel shared genetic loci between BF% and HF
or CAD. Second, we found that the shared genetic loci
were enriched mainly in blood vessels and brain tissues
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Fig. 5 GTEx tissue enrichment analysis for expression of cross-trait-associated genes (Pmeta < 1 × 10− 4) for BF% and HF (a) and BF% and CAD (b).
Red represents significant tissue enrichment after Benjamin-Hochberg correction
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and glutathione-related metabolic pathway using func-
tional analysis. Third, we found that the shared genes
between BF% and HF or CAD are mostly from nervous,
cardiovascular and exo-/endocrine system using TWAS
analysis. Finally, we found that BF% was causally associ-
ated with HF using bidirectional MR analysis results.
Taken together, evaluation of the genetic correlation and
causality between BF% and CVDs furthers the under-
standing of the shared loci and biological mechanisms
underlying this comorbidity.
BF% is becoming recognized as a more predictive

measurement in cardiovascular risk assessment than
BMI or waist circumference, and increased BF% was
often related to higher CVD risks with the presence of
the metabolic abnormalities [25, 68]. Genetic studies
have suggested that most of the BF% loci also affect car-
diometabolic traits and comorbidities [8]. Compared to
GWAS results for single traits, MTAG discovered 6
novel loci for BF%, 8 novel loci for HF, and 13 novel loci
for CAD. Importantly, we further conducted genome-
wide cross-trait meta-analysis to improve our power to
identify specific shared loci, including 3 novel loci be-
tween BF% and HF and 8 novel loci between BF% and
CAD which did not reach genome-wide significance in
previous GWAS. We highlight the potentially interesting
functions of the novel associations for NPC1, PMAIP1,
and GNPDA2 between BF% and HF, along with NEGR1,
HORMAD1, GNPDA2, DGKH, CYP46A1, FES, POC1B,
and BCAS3 between BF% and CAD. Most of these loci
have significant single-tissue expression quantitative trait
loci (eQTL), mainly in the cardiovascular, nervous, and
exo-/endocrine system (Table S18-S19).
The only top loci common to the BF%-HF and BF%-

CAD meta-analysis was rs10938397 near GNPDA2,

which encodes an enzyme that catalyzes the deamination
of the glucosamine-6-phosphate involved in the hexosa-
mine signaling pathway [59]. An animal study also sug-
gested that GNPDA2 was involved in the regulation of
body weight, fat and energy metabolism in the develop-
ment of cardiovascular disease [69]. Other top associa-
tions for BF%-HF were NPC1 gene variations, which
might lead to metabolic diseases by modulating steroid
hormone synthesis and lipid homeostasis [70]. NPC1 is
known to play a critical role in the atherosclerotic pro-
gression, and loss-of-function mutations in NPC1 can
cause adiposity in humans [71, 72]. In particular, the
NPC1 gene was also confirmed to be shared between
BF% and HF using TWAS (Table S17). BCAS3 is a cyto-
skeletal protein that promotes directional cell migration
and angiogenesis in vitro and is implicated in CAD [73].
Additionally, other causal genes are highly expressed or
known to act in human brain function (i.e., NEGR1,
GNPDA2, CYP46A1, DGKH) [74–76] and various
carcinomas (i.e., PMAIP1, HORMAD1, FES, BCAS3)
[77–79], indicating the potential role of metabolic
dysregulation in the pathogenesis of obesity and
cardiac events.
We found that the shared loci for BF% with HF and

CAD were highly expressed in blood vessel/heart tissues,
indicating that these traits might be caused by dysfunction
of the cardiovascular system. We found that the FTO gene
on chromosome 16 was associated with both BF%/HF and
BF%/CAD. FTO is an essential regulator in the develop-
ment of obesity-induced metabolic and vascular changes,
which is independent of its known function in regulation
of obesity [80]. Previous studies found that FTO plays a
critical role in cardiac contractile function during homeo-
stasis, remodeling, and regeneration for HF and CAD [81,

Table 4 The bidirectional MR analysis of BF% levels and CVD traits

Outcome MR
methods

Forward Reserved

Causal effect size SE P value Causal effect size SE P value

HF IVW 0.488 0.138 4.16E−04 − 0.036 0.094 0.71

SMB 0.451 0.134 7.45E−04 − 0.067 0.142 0.64

WMB 0.456 0.132 5.46E−04 0.027 0.118 0.82

MR-RAPS 0.594 0.088 1.22E−11 − 0.036 0.099 0.72

MR-PRESSO 0.488 0.138 6.42E−03 −0.036 0.077 0.67

MR-Egger 1.452 0.571 0.03 0.323 0.290 0.35

CAD IVW 0.264 0.330 0.42 0.014 0.051 0.78

SMB 0.437 0.175 0.01 − 0.010 0.043 0.81

WMB 0.491 0.165 2.93E−03 0.025 0.042 0.55

MR-RAPS 0.563 0.096 3.88E−09 0.008 0.028 0.78

MR-PRESSO 0.264 0.330 0.44 0.014 0.051 0.78

MR-Egger − 0.152 1.617 0.93 − 0.013 0.115 0.91

SE standard error, IVW inverse-variance weighted, SMB simple median, WMB weighted median, RAPS robust adjusted profile scores, PRESSO pleiotropy residual
sum and outlier
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82]. Moreover, from the perspective of gene function,
overlaps in genetic and molecular pathways advance our
understanding of the potential role of brain/nerve tissue
diseases in the association between BF% and CVDs. For
example, the NEGR1 gene, which is strongly expressed in
the brain, has been reported to affect neuronal control of
food intake and promote obesity [83]. People who have
mutations in the NEGR1 gene may have abnormal fat de-
position in various peripheral cells, suggesting a potential
molecular target for regulating body fat [84]. In the over-
representation enrichment analysis, glutathione-related
metabolic pathway was found to be common in shared
genes of both BF%/HF and BF%/CAD meta-analyses. Ex-
perimental studies have reported that glutathione, which
is the most abundant antioxidant in the heart, plays a key
role in preventing the damage of redox homeostasis to
cause obesity-related cardiovascular complications [85,
86]. More importantly, the protective effect of glutathione
on blood vessel and brain tissue against oxidative stress
has been previously reported and partially explains our
findings [87, 88]. However, the nonsignificant genetic cor-
relations between BF% and the other CVD-related traits
suggested heterogeneous genetic architecture among
CVD-related traits, which cannot be determined without
further study.
In addition to the cardiovascular and nervous system,

our TWAS also reported tissues enrichment from the
exo-/endocrine and digestive system suggesting that the
shared pathway between BF% and CVDs might have sig-
nificant functions extending beyond brain and blood
vessels. Besides a variety of adaptations/alterations in
cardiac structure and function, body fat may affect the
risk of HF with an altered metabolic profile in exo-/
endocrine system [89]. The incidence of CVDs are
known to be closely related to endocrine factors such as
hormone levels in vivo, which may be altered by body
fat distribution and then affect the whole body organs
such as ovary, thyroid, colon, and liver. For example,
adolescent girls with obesity and polycystic ovary syn-
drome have increased fasting and postprandial plasma
triglycerides and ApoB-lipoprotein remnants, and these
indices are highly associated with early subclinical CVD
risk [90]. Indeed, an essential cause of CVDs is excessive
body fat, which can be distributed in various organs of
the body and cause pathological changes there. Thus,
TWAS provided additional evidence of the enrichment
of BF% and CVD genes expressed are not specific to a
certain tissue; rather, it seems to be generalizable across
metabolic organs of the whole body.
The bidirectional MR analysis showed a significant as-

sociation between genetically predicted BF% and in-
creased risk of HF (1.63-fold risk per 1-SD increase in
BF%), which was stronger than that observed in a
community-based cohort study (n = 100,280) at 1.32-fold

per 1-SD increase in BF% [91]. Our findings were also
consistent with a large cohort study which was con-
ducted in 5520 community-based, elderly individuals,
showing that higher BF% might contribute to the devel-
opment of HF through increasing ventricular-arterial
stiffness [92]. However, clinically, the association be-
tween BF% and HF could be bidirectional. In addition,
previous studies suggested that BMI or body weight was
positively or negatively correlated with HF or clinical
outcomes [93, 94]. Although various associations were
observed between BF% and CVDs, they were inconsist-
ent possibly due to reverse causation and confounding.
Therefore, this MR design is warranted to obtain causal-
ity which largely avoided bias such as reverse causation
and confounding under MR key assumptions. Our MR
findings provided reliable evidence of a causal role of
BF% in HF based on large GWAS consortia regardless of
unknown confounders existing in observational studies,
highlighting the benefit of targeting BF% in the preven-
tion of HF. The potential mechanisms underlying the
causal association between BF% and HF require investi-
gation, but the shared loci and related pathway could
provide new directions in revealing shared etiologies.
In addition, we observed nominal positive correlation

of BF% with intracerebral hemorrhage and negative cor-
relation with HDL from genetic correlation analysis, but
not with any other lipid profiles. Previous studies have
suggested that low HDL may contribute directly to es-
tablishing or maintaining the obese condition due to the
role of HDL in cellular lipid transport [95]. HDL con-
tribute to modulating body fat content by controlling
the extent of lipolysis in mice model, which appears to
be key components of lipid metabolism in adipose tissue
and constitute new therapeutic targets in obesity [96]. In
cell culture studies, HDL specifically increased
catecholamine-induced lipolysis possibly through modu-
lating the adipocyte plasma membrane cholesterol con-
tent [96]. In addition, the HERITAGE Family Study has
shown that high HDL cholesterol levels are good corre-
lates of the metabolic profile, representing a better index
in CVD risk assessment [97].
This study had limitations. First, the study is limited

by the quality of data collected including the BF% meas-
urement, CAD diagnosis, medication administration,
and so on. However, each previous study has conducted
the study-specific quality control to ensure the data
quality. In addition, considering the natural and random
assortment of genetic variants during meiosis yielding
the random distribution of genetic variants in popula-
tions, the result and conclusion of this genetic analysis
are less likely to be influenced by confounding factors.
Second, while BF% accurately reflects the proportion of
fat content in the human body, it does not give full
insight to distinguish between visceral and subcutaneous
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fat or fat content in each anatomical part. Further stud-
ies are required to explore the genetic association of
body fat distribution with CVD risk. Third, we used lim-
ited number of SNPs as instrumental variables in the
MR analysis, so we cannot exclude the possibility that
our findings might have been affected by weak instru-
ment bias, although all genetic instruments were associ-
ated with the exposure (F-statistic> 10). Fourth, this
study did not assess sex-specific genetic effects using
LDSC and MR analysis. Since we conducted the analysis
using summary-level GWASs without individual data, it
is difficult for us to verify the findings of this study for
any variation with sex-specific analysis. Fifth, we could
not re-test our hypothesis using additional or alternative
large cohort without individual information in the
present study. However, the data we used are the largest
and latest GWASs for these traits, and the sample sizes
of other cohorts are small from which we cannot yield
more reliable results. Finally, the current study was lim-
ited to assessing shared genetic factors between BF% and
CVD-related traits, which could only explain a small
proportion of these traits. The effect of gene-
environment interaction, in which the genetic variants
lead to the occurrence of diseases in high-risk environ-
ments, may explain part of the rest variance [98].
Although CAD and MI or stroke vest in similar patho-
physiologic mechanisms, the complex roles of inter-
actions between genes and environmental factors may be
different [99]. More large-scaled, well-conducted studies
on gene-environment interaction in the development of
CVDs are warranted.

Conclusions
In summary, our findings provide strong evidence of
genetic correlations between BF% and CVDs, including
HF and CAD. Additionally, we found a causal associ-
ation between BF% and HF, which further supports tar-
geted reduction of adiposity for improved cardiovascular
outcomes. These results advance our understanding of
body fat and provide novel insight into the common
genetic basis of BF% and CVDs from molecular and
functional levels. Notably, we identified novel genetic
loci in both single-trait GWAS and cross-trait meta-
analysis for multi-trait GWASs using MTAG. This work
reinforces the idea that BF% and CVDs share common
biological processes and opens up a new way for early
prevention of CVDs.
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