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Three-dimensional non-Abelian generalizations of the Hofstadter model:
Spin-orbit-coupled butterfly trios
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We theoretically introduce and study a three-dimensional Hofstadter model with linearly varying non-Abelian
gauge potentials along all three dimensions. The model can be interpreted as spin-orbit coupling among a trio of
Hofstadter butterfly pairs since each Cartesian surface (xy, yz, or zx) of the model reduces to a two-dimensional
non-Abelian Hofstadter problem. By evaluating the commutativity among arbitrary loop operators around all
axes, we derive its genuine (necessary and sufficient) non-Abelian condition, namely, that at least two out of the
three hopping phases should be neither 0 nor π . Under different choices of gauge fields in either the Abelian or
the non-Abelian regime, both weak and strong topological insulating phases are identified in the model.
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I. INTRODUCTION

The Hofstadter model [1] is fundamental to the study of
the quantum Hall effect and topology in condensed mat-
ter physics. It describes noninteracting electrons hopping
in a two-dimensional square lattice under a perpendicular
U(1) magnetic field. In solid state systems, the magnetic
fields required for realizing the Hofstadter model had been
inaccessible experimentally until the introduction of moiré
superlattices [2–4], which expand the size of unit cells and
the threaded magnetic flux substantially.

An alternative way to realize the Hofstadter model in real
space is via synthetic gauge fields [5] in artificial, engineered
systems. So far, a plethora of realizations have been achieved,
including microwave scatterers [6], cold atoms [7,8], acous-
tics [9], photons [10], and superconducting qubits [11,12].

In two dimensions, there has been considerable interest
in studying non-Abelian generalizations of the Hofstadter
model, which replace the Abelian U(1) gauge fields with
non-Abelian choices. Categorized by the spatial arrangements
of the gauge fields, there have been theoretical studies that
feature constant [13–16] and linearly varying non-Abelian
gauge fields in one [17] or two [18] spatial dimensions.
Experimentally, real-space building blocks of non-Abelian
SU(2) gauge fields were demonstrated [19] in photonics via
minimal-scheme, non-Abelian Aharonov-Bohm interference
[20–22]. In addition, non-Abelian braiding of topological zero
modes was proposed and realized with coupled waveguide
arrays [23,24]. These advances indicate a possibility to realize
non-Abelian Hofstadter models in photonic systems.
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In three dimensions (3D), Abelian generalizations of the
Hofstadter model corresponding to tilted magnetic fields have
been studied as many as three decades ago [25–28]. In
particular, such a 3D problem with arbitrarily oriented three-
dimensional flux states can be reduced to a one-dimensional
hopping in a suitably chosen gauge [27]. Moreover, the model
was found to support the 3D quantum Hall effect with quan-
tized Hall conductance under anisotropic conditions [29]. Far
fewer non-Abelian generalizations have been considered in
3D. Specifically, a 3D Hofstadter-like problem with non-
Abelian gauge potentials that vary linearly along a single
direction [of the remaining two directions, one has a constant
SU(2) gauge and the other a real hopping] has been studied
[30], which is shown to also be reducible to an effective 1D
problem.

In this paper, we theoretically propose and study a 3D
non-Abelian Hofstadter model on a cubic lattice, whose non-
Abelian SU(2) gauge potentials are linearly varying along all
three dimensions. A crucial feature of our model construction
is that any arbitrary Cartesian surface (either xy, yz, or zx)
of our 3D model reduces to a two-dimensional non-Abelian
Hofstadter model in the symmetric gauge [18]. Meanwhile,
adjacent layers are coupled with spatially varying hopping.
Therefore, the whole system can be treated as the spin-orbit
coupling among three Hofstadter butterflies (each encoded
along a single dimension). By evaluating the commutativ-
ity between arbitrary real-space loop operators, we derive
the necessary and sufficient condition for our model to be
genuinely non-Abelian, namely, that at least two out of the
three hopping phases are neither 0 nor π . Compared to the
3D Abelian Hofstadter model, the spin-orbit coupling in the
3D non-Abelian Hofstadter model opens new band gaps. We
further show that these gaps can be of either weak or strong
3D Z2 topological insulating phases under different choices
of the gauge potentials.
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II. MODELS

As a warmup, we begin by describing homogeneous mag-
netic fields in 3D cubic lattices labeled by (m, n, l ). First,
homogeneous U(1) magnetic fields in three dimensions can
be described by three-dimensional Hofstadter models. In a
general form that is akin to our proposed model below, the
3D Abelian Hofstadter model [25–29] can be expressed as

H1 = −
∑

m,n,l

txc†
m+1,n,l e

i(l±n)θx cm,n,l

+ tyc†
m,n+1,l e

i(m±l )θy cm,n,l

+ tzc
†
m,n,l+1ei(n±m)θz cm,n,l + H.c., (1)

where θx, θy, and θz are hopping phases and tx, ty, and tz are
hopping amplitudes along three directions. H1 corresponds
to a gauge potential A1 = [(l ± n)θx, (m ± l )θy, (n ± m)θz],
which varies linearly along all three dimensions. The asso-
ciated magnetic flux can be evaluated from the loop operator
along different Cartesian surfaces, which yields a magnetic
field of B1 = (θy ∓ θx, θx ∓ θz, θz ∓ θy). Evidently, the choice
of ± in Eq. (1) corresponds to different homogeneous mag-
netic fields [see Supplemental Material [31] Figs. S1(b) and
S1(d)].

On the other hand, a homogeneous non-Abelian SU(2)
gauge potential and its associated Hamiltonian on a cubic
lattice are given by

H2 = −
∑

m,n,l

txc†
m+1,n,l e

iθxσx cm,n,l

+ tyc†
m,n+1,l e

iθyσy cm,n,l

+ tzc
†
m,n,l+1eiθzσz cm,n,l + H.c., (2)

which corresponds to a gauge potential A2 =
(θxσx, θyσy, θzσz ), where σx,y,z are Pauli matrices. Every layer
of H2 becomes the celebrated 2D homogeneous non-Abelian
model as proposed in Refs. [17,32]. The 3D non-Abelian
gauge potential A2 describes a spatially homogeneous
SU(2) magnetic field B2 = (2θyθzσx, 2θzθxσy, 2θxθyσz ). The
associated Bloch Hamiltonian of H2 is given by

h2(k) = 2
∑

i

cos ki cos θiσ0 − 2
∑

i

sin ki sin θiσi. (3)

This two-band Hamiltonian is time-reversal symmetric and
always gapless. It hosts Weyl points at the eight time-reversal-
invariant momenta (TRIMs).

We propose a 3D non-Abelian Hofstadter model inspired
by Eqs. (1) and (2). Specifically, we insert the three Pauli
matrices from Eq. (2) into the complex hopping phases in
Eq. (1) along the three directions. This replacement leads to
inhomogeneous, Hofstadter-Harper-like non-Abelian gauge
potentials in 3D,

A± = [(l ± n)θxσx, (m ± l )θyσy, (n ± m)θzσz]. (4)

The associated Hamiltonian (see Fig. 1) is given by

H±(θx, θy, θz ) = −
∑

m,n,l

txc†
m+1,n,l e

i(l±n)θxσx cm,n,l

+ tyc†
m,n+1,l e

i(m±l )θyσy cm,n,l

+ tzc
†
m,n,l+1ei(n±m)θzσz cm,n,l + H.c.. (5)

(a)

(b)

FIG. 1. Three-dimensional non-Abelian generalization of the
Hofstadter model: the blue, red, and green colors represent the
link variables in the x, y, and z directions. (a) Schematic of our
three-dimensional model. (b) Cartesian surface cuts of our model.
Each Cartesian cut corresponds to a two-dimensional Hofstadter
non-Abelian model in the symmetric gauge.

Throughout this work, we assume that tx = ty = tz = 1. Sim-
ilar to Eq. (1), the choice of ± corresponds to different
magnetic fields and thus different eigenstates [see Supplemen-
tal Material [31] Figs. S1(a) and S1(c)]. A crucial feature of
H± is that every one of its 2D Cartesian surfaces (along the
xy, zx, and yz planes) reduces to a 2D non-Abelian Hofstadter
model [18] [see Fig. 1(b)]. Meanwhile, all layers, along all
three directions, are stacked and connected with complex non-
Abelian hoppings. As a result, the system contains spin-orbit
coupling among a trio of Hofstadter butterfly pairs.

Analogous to the original Hofstadter model, this three-
dimensional non-Abelian system can be solved in an enlarged
magnetic unit cell if θx, θy, and θz are rational multiples
of 2π , i.e., θx = 2π px/qx, θy = 2π py/qy, and θz = 2π pz/qz

(where pi and qi are coprime). The size of the magnetic unit
cell is lcm(qy, qz ) × lcm(qx, qz ) × lcm(qx, qy) ≡ Qx × Qy ×
Qz, where lcm denotes the least common multiple. Con-
sequently, the associated magnetic Brillouin zone is kx ∈
[0, 2π/Qx ), ky ∈ [0, 2π/Qy), kz ∈ [0, 2π/Qz ).

III. GENUINE NON-ABELIAN CONDITIONS

Although H± is non-Abelian in general, there are situations
(e.g., the obvious case θx = θy = θz = 0) when the model
reduces to Abelian. Therefore, to obtain the necessary and
sufficient condition under which the models are genuinely
non-Abelian [18,33], we examine the commutativity of unit
plaquette loop operators at arbitrary lattice sites in three di-
rections,

W μν
r = U †

ν (r)U †
μ(r + êν )Uν (r + êμ)Uμ(r), (6)
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where {μ, ν} = {x, y, z}, êμ is the unit vector in the μ direc-
tion, and we adopt the counterclockwise convention.

Specifically, the loop operators for a unit plaquette at site
r = (m, n, l ) are given by

W xy,±
r = �−(m±l )

y �−[l±(n+1)]
x �m+1±l

y �l±n
x , (7a)

W zx,±
r = �−(l±n)

x �−[n±(m+1)]
z �l+1±n

x �n±m
z , (7b)

W yz,±
r = �−(n±m)

z �−[m±(l+1)]
y �n+1±m

z �m±l
y , (7c)

where �m
x ≡ exp(imθxσx ), �m

y ≡ exp(imθyσy), and �m
z ≡

exp(imθzσz ). We also define �x ≡ �1
x , �y ≡ �1

y , and �z ≡
�1

z for compact notation. ± in the superscript denotes the
choice of gauge fields in Eq. (4). We prove below that both
H+ and H− reduce to Abelian, i.e., Eqs. (7) are Abelian, if

and only if

at least two of θx, θy, and θz are either 0 or π. (8)

We consider loop operators near R = 0 for H−, which are
given by

W xy,−
0,0,0 = �∓1

x �y, W xy,−
0,0,∓1 = �y�

∓1
x , W zx,−

0,0,0 = �∓1
z �x,

W zx,−
0,∓1,0 = �x�

∓1
z , W yz,−

0,0,0 = �∓1
y �z, W yz,−

∓1,0,0 = �z�
∓1
y .

(9)

To derive a necessary condition, we note that all of these loop
operators must commute. Since these loop operators deal with
permutations of θx, θy, and θz, we adopt {a, b, c} ∈ {x, y, z} to
denote their permutations. Equation (9) requires

[�a�b,�c�a] = 0. (10)

We can evaluate this commutator explicitly as

− 2εabc cos(2θa) sin(θb) sin(θc)σa + [2 sin2(θa) sin(θb) cos(θc) + 2εabc sin(θa) cos(θa) cos(θb) sin(θc)]σb

+ [2 sin2(θa) cos(θb) sin(θc) + 2εabc sin(θa) cos(θa) sin(θb) cos(θc)]σc = 0, (11)

where εabc is the Levi-Civita symbol. The coefficients for all
Pauli matrices must vanish to satisfy Eq. (10). Taken together,
we must have

cos (2θa) sin (θb) sin (θc) = 0, (12a)

sin2 (θa) sin (θb) cos (θc) = 0, (12b)

sin2 (θa) cos (θb) sin (θc) = 0. (12c)

Two situations arise: sin(θa) = 0 or sin(θa) �= 0.
If sin(θa) = 0, cos(2θa) �= 0, at least one of sin(θb) and

sin(θc) is 0 by Eq. (12a). Thus, at least two of θa, θb, and θc

are either 0 or π . This is a necessary condition.

If sin(θa) �= 0, Eqs. (12b) and (12c) imply that either
sin(θb) = sin(θc) = 0 or cos(θb) = cos(θc) = 0. The former
condition is equivalent to the necessary condition above. For
the latter, sin(θb) sin(θc) �= 0 requires cos(2θa) = 0 [as per
Eq. (12a)], i.e., cos(2θx ) = cos(2θy) = cos(2θz ) = 0. As a re-
sult, we can no longer satisfy cos(θb) = cos(θc) = 0. Thus,
the latter case results in a contradiction.

So far, we have proven that our condition Eq. (8) is neces-
sary for H− to be Abelian. We now examine H+. In this case,
the operators are in the form �−1

a �b or �b�
−1
a . The associ-

ated loop operators must commute, i.e., [�−1
a �b,�

−1
c �a] = 0

for all choices of distinct a, b, and c. We again evaluate the
commutator explicitly:

2εabc sin(θb) sin(θc)σa + [−2 sin2(θa) sin(θb) cos(θc) + 2εabc sin(θa) cos(θa) cos(θb) sin(θc)]σb

+ [2 sin2(θa) cos(θb) sin(θc) + 2εabc sin(θa) cos(θa) sin(θb) cos(θc)]σc = 0. (13)

We can follow the same arguments as those for H− to arrive at
the same necessary condition.

Therefore, we have proven that at least two of θx, θy, and
θz being either 0 or π is a necessary Abelian condition. To
prove it is also a sufficient condition, let θa and θb be 0 or
π . �n

a and �n
b consequently reduce to ±1 for any integer n,

which always commute with arbitrary SU(2) phase factors.
The remaining link variables �n

c are an Abelian group as they
are exponentials of a single Pauli matrix. Taken together, the
necessary condition is also sufficient, rendering it the genuine
Abelian condition of H±. Recalling that the genuine non-
Abelian condition of the associated 2D model [18] requires
nondivisibility of the gauge potentials by π , the 3D model
studied here therefore becomes genuinely Abelian if at least
one of its Cartesian surfaces [see Fig. 1(b)] is Abelian.

IV. GAPPED PHASES

H± obeys time-reversal symmetry iσyK and inversion sym-
metry P. Therefore, its spectrum consists of Kramers doublets
in the entire magnetic Brillouin zone (MBZ). As the cubic
lattices are bipartite, the model obeys a sublattice symme-
try that maps E (kx, ky, kz ) → −E (kx + π, ky + π, kz + π ).
When at least one of qx, qy, and qz is even, i.e., qxqyqz is
even, H± also respects chiral symmetry, which we prove by
leveraging the Harper equation of H± in Supplemental Ma-
terial [31] Sec. S2. We obtain the explicit form of the chiral
operator as follows. Without loss of generality, we assume
Qx = lcm(qy, qz ) is even. The chiral operator Sx is

(Sxu)m,n,l = (−1)m+nαxy+lαxz (i)Qx/2σ0um+Qx/2,n,l , (14)
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TABLE I. The strong and weak Z2 indices for (θx, θy, θz ) =
(0, π, 2π/3) for the lowest two gaps are shown. The Z2 indices for
the two higher gaps follow by chiral symmetry.

Gap Bands ν0 ν1 ν2 ν3

1 12 0 0 0 0
2 24 0 0 1 0

where u is the wave function. Here, we define αμν ≡
(Qμ pν/qν + 1) mod 2. Sy and Sz can be defined similarly if
Qy and Qz are respectively even. The form of this 3D chiral
operator is reminiscent of those in the 2D Abelian [34] and
non-Abelian [18] Hofstadter models.

Finding the eigenspectrum of the model is computationally
expensive as the system size increases rapidly with qx, qy,
and qz—the size of the magnetic unit cell is lcm(qy, qz ) ×
lcm(qz, qx ) × lcm(qx, qy). In the following, we focus on
H+. We study two choices of gauge fields, (θx, θy, θz ) =
(0, π , 2π/3) and (θx, θy, θz ) = (2π/3, 2π/3, 0), which
lie within the Abelian and non-Abelian regimes respec-
tively, according to our genuine condition proven above. For
H+(0, π, 2π/3), the magnetic unit cell has a dimension of
6 × 3 × 2 for a total of 72 bands, i.e., 36 Kramers partners.
This choice of gauge fields lies within the Abelian regime:

(a) (b)

(c) (d)

FIG. 2. (a) Bulk band structure of our model with (θx, θy, θz ) =
(0, π, 2π/3) sampled along paths between high-symmetry points in
the MBZ. (b) Inversion eigenvalues at TRIMs. (c), (d) Surface band
structure of the model cut along the (c) x and (d) y directions (with
20 magnetic unit cells). Surface states are highlighted in red.

(a) (b)

(d) (e)

(c)

FIG. 3. (a), (b) Bulk band structure of the (a) non-Abelian and
(b) Abelian models with the choice of gauge fields (θx, θy, θz ) =
(2π/3, 2π/3, 0), sampled along paths between high-symmetry
points in the MBZ: spin-orbit coupling opens band gaps [shaded
green in (a)] that are absent in the Abelian model. (c) Inversion
eigenvalues and the Z2 indices for all band gaps. (d), (e) Surface band
structure cut along the (d) x and (e) z directions (with 20 magnetic
unit cells) with remaining directions periodic. Surface states are
highlighted in red.

therefore, the eigenspectrum of H doubles that of H1. Regard-
ing gapped phases, there are a total of four band gaps, half
of which are chiral partners of the other half. As a result, we
only need to examine the lowest two band gaps, whose strong
and weak Z2 indices (ν0; ν1, ν2, ν3) [35] (see Supplemental
Material [31]) are shown in Table I, obtained via inversion
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TABLE II. The strong and weak Z2 indices for (θx, θy, θz ) =
(2π/3, 2π/3, 0) for each gap are shown. Although this choice of
gauge fields does not enable chiral symmetry in the system, the
sublattice symmetry remains intact, which connects the topology of
positive and negative band gaps [e.g., see inversion eigenvalues of
gaps 3 and 6 in Fig. 3(c)].

Gap Bands ν0 ν1 ν2 ν3

1 6 1 1 1 1
2 12 1 1 1 1
3 (complete) 18 1 1 1 1
4 24 0 1 1 1
5 30 0 1 1 1
6 (complete) 36 1 0 0 0
7 42 1 0 0 0
8 48 1 0 0 0

eigenvalues at the eight time-reversal-invariant momenta [see
Fig. 2(b)]. Because all its Z2 indices simultaneously vanish,
the first gap around E = −3 is topologically trivial, as also
supported by its trivial surface states in Fig. 2. On the other
hand, the second gap, around E = −1.5, is a weak topological
insulator (TI) (see Table I) with an odd index ν2 = 1. We
confirm this weak-TI diagnosis with surface x-cut [Fig. 2(c)]
and y-cut [Fig. 2(d)] calculations. The surface states of the
second gap are nontrivial and trivial in the x-cut and y-cut
systems, respectively. Meanwhile, the surface states of the
first gap are trivial in both truncation directions. These surface
states are consistent with the bulk diagnosis in Table I.

Next, we study H+(2π/3, 2π/3, 0). Evidently, this choice
of hopping phases lies within the genuine non-Abelian
regime. To highlight the associated consequence, we compare
the bulk spectra of H+ with that of the three-dimensional
Abelian Hofstadter model H1(2π/3, 2π/3, 0) [Eq. (1)], as
shown in Figs. 3(a) and 3(b), respectively, sampled along
high-symmetry lines in the three-dimensional magnetic Bril-
louin zone. Compared to H1 in Fig. 3(b), which is gapless,
new band gaps (with complete band gaps shown in shaded
blue) are opened in Fig. 3(a) due to the addition of spin-orbit
coupling. A similar band-gap opening also appears for other
choices of gauge fields (see Supplemental Material [31] Fig.
S2). For (θx, θy, θz ) = (2π/3, 2π/3, 0), the magnetic unit cell
has dimensions 3 × 3 × 3 with a total of 27 Kramers pairs.
There are a total of eight band gaps with two complete ones
(highlighted by green shadings in Fig. 3). The strong and
weak Z2 indices (ν0; ν1, ν2, ν3) are also evaluated for all band

gaps using inversion eigenvalues [Fig. 3(c)] and shown in
Table II. Evidently, the system is a strong 3D topological
insulator at both the complete band gaps (namely, gaps 3 and
6). We also include the calculation of the Wannier spectrum
with odd winding [36] (see Supplemental Material [31] Fig.
S4), which affirms our results for Z2 invariants calculated
using inversion eigenvalues. We verify such a bulk analysis by
calculating the surface spectra with open boundary conditions
in the x [Fig. 3(d)] and z [(Fig. 3(e)] directions. In contrast
to those of the weak insulating phase shown in Fig. 2, the
complete gaps of the strong insulating phase exhibit helical
surface states under both types of truncation. Notably, with
the x cut [Fig. 3(d)], the surface Dirac points appear at the T
and 	 points for gaps 3 and 6, respectively, which is ensured
by the sublattice symmetry of the Hamiltonian. A similar
correspondence between the surface Dirac points appears also
for the z-cut spectrum in Fig. 3(e).

V. CONCLUSION

In conclusion, we have introduced a three-dimensional
non-Abelian generalization of the Hofstadter model with three
spatially inhomogeneous and linearly varying gauge fields on
a cubic lattice, proven the genuine non-Abelian condition of
the model, analyzed its internal symmetries, and discussed
the strong and weak Z2 insulating phases under different
choices of gauge fields. Experimentally, it may be possible
to realize the models on various platforms, including photonic
coupled waveguide/resonator arrays and synthetic frequency
combs, topological circuit systems, and spin-orbit-coupled
atomic gases. Future directions also include analyzing the
rich crystalline symmetries of the model and identifying the
associated first-order and higher-order crystalline phases.
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