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In this comment, we first use a counter example to demonstrate that the optimal contract structure proposed

in Section 4 of Sun and Tian (2018) can be wrong, when the two players’ discount rates are different. We

then specify correct optimal contract structures, which involves generalizing the contract space to allow

random termination. Numerical study with a wide range of model parameters illustrates that such a random

termination only occurs sparingly in optimal contracts. Moreover, the suboptimality gap, measured by the

relative improvement of the optimal contract over the best contract without random termination, is extremely

small.
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1. Basic Set Up

To ensure this comment is self-contained, we start it by introducing the dynamic moral hazard

model and relative notations, first introduced in Sun and Tian (2018). We keep the introduction

terse, and refer to the original paper for motivation and justification of the model. A principal hires

an agent to increase the arrival rate of a Poisson process, which yields the principal a revenue R per

arrival over an infinite time horizon. Without the agent, or when the agent does not exert effort,

the corresponding instantaneous arrival rate is µ. Exerting effort allows the agent to increase the

instantaneous arrival rate to µ, but costs the agent a constant rate c per unit of time. Both the

principal and the agent are risk-neutral. The principal’s discount rate is r, and the agent’s discount

rate is ρ.

The principal does not observe the effort, and is able to commit to a long term contract that

involves history dependent payments, and a random time to terminate the agent. Formally, at

any time t ∈ [0,∞), we denote N = {Nt}t≥0 to represent the counting process that represents the

number of arrivals up to and including time t. We also let F be the filtration generated by the
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process N . Denote effort to be an F-predictable process ν = {νt}t≥0, with νt ∈ {µ,µ}. The principal

has commitment power to design and implement long term contracts, which involve a payment

process L= {Lt}t≥0, which is F-adapted, and a termination time τ , an F-random time. Assume

the agent has limited liability and is cash constrained, so that dLt ≥ 0 for all t≥ 0. Payment dLt

at time t can be decomposed into dLt = ∆Lt + `tdt, in which ∆Lt represents instantaneous and `t

flow payment.

Given a dynamic contract Γ = (L, τ) and an effort process ν, the expected discounted utility of

the agent is

u(Γ, ν) =Eν
[∫ τ

0

e−ρt(dLt− c1νt=µdt)
]
, (1)

in which the expectation Eν is taken with respect to probabilities generated from the effort process

ν.

We focus on Effort Inducing (EI) contract,1 such that u(Γ, ν̄) ≥ u(Γ, ν), for all ν, in which

ν̄ := {νt = µ}∀t∈[0,τ ] represents the “always exerting effort before contract termination” strategy by

the agent. The principal’s utility under an EI contract Γ is

U(Γ) =E
[∫ τ

0

e−rt(RdNt− dLt) + e−rτv

]
, in which v := µR/r. (2)

Here v is the principal’s base line total discounted revenue after terminating the agent, and we

omit the superscript ν̄ in the expectation under EI contracts. We want to maximize the principal’s

utility U(Γ) over EI contracts Γ. The optimal contract design problem can be formulated as optimal

control. In the rest of this comment, we use “contract” and “control policy” interchangeably.

Sun and Tian (2018) correctly identify the optimal contract structure when the discount rate

r = ρ. However, their Section 4, which studies the case of r < ρ, contains errors, such that the

result is not correct. In this comment, we focus on the case that r is strictly less than ρ, that is,

the principal is more patient than the agent.

Before closing this section, we introduce a few more notations, consistent with Sun and Tian

(2018). Denote ∆µ := µ − µ > 0, β := c/∆µ, and assume R ≥ β. Consider a simple suboptimal

contract, Γ̄, which pays the agent β for each arrival and never terminates. Denote Ū and w̄ as

the principal and agent’s utilities under contract Γ̄, respectively, and V̄ as the principal’s utility if

effort is observable. That is,

Ū :=
µ(R−β)

r
, w̄ :=

µβ− c
ρ

=
βµ

ρ
, and V̄ :=

µR− c
r

. (3)
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2. A Counter Example with a Non-Concave Value Function

Denote the principal and agent’s total value function under the optimal contract as V (w), in which

state variable w represents the agent’s promised utility. In its Section 4, Sun and Tian (2018)

claims that the following delay differential equation (DDE) uniquely determines this optimal value

function Vd, along with an upper bound ŵ < w̄ of the promised utility,

0 = (r+µ)Vd(w)−µVd (w+β) + ρ(w̄−w)V ′d(w) + (c−µR) + (ρ− r)w, for w ∈ [0, ŵ), (4)

with boundary conditions Vd(w) = V̄ŵ := V̄ − ρ− r
r

ŵ, for w≥ ŵ, (5)

and Vd(0) = v. (6)

In the proof of optimality, it is crucial to establish that the function Vd is concave. Although DDE

(4)–(6) is indeed closely related to the optimal value function, its solution, Vd, in fact, may not be

concave, as we demonstrate here using a counter example.

Following the first part of Proposition 4 in Sun and Tian (2018), we know that given any w̃ ∈
[0, w̄), DDE (4) with boundary condition (5) has a unique solution, Vw̃(w) on w ∈R+. Instead of

fixing model parameters and searching for a particular value ŵ such that Vŵ satisfies the boundary

condition (6), here we argue that for any w̃, there is a revenue parameter R that yields (6). In the

following Proposition 1, we write Vw̃(w;R) in place of Vw̃(w), to highlight the dependence on R.

Proposition 1. For any given w̃ ∈ [0, w̄], the function ψ(R, w̃) := Vw̃(0;R)− v is strictly increas-

ing and linear in R, satisfying ψ(β, w̃) < 0. Therefore, there exists a unique R̂(w̃) > β such that

ψ(R̂(w̃), w̃) = 0.

Proposition 1 implies that there exists a revenue parameter R such that the solution Vd and ŵ to

(4)–(6) is such that ŵ can be arbitrarily close to w̄.

To clearly construct the counter example, we consider the case that r+µ= 2ρ, and µ ∈ (ρ,2ρ).

Therefore, w̄ ∈ (β,2β). Choose a w̃ such that w̃ > β, and R= R̂(w̃). In this case, one can verify

that Vw̃ has the following closed form solution,

Vw̃(w) =
ρ− r
ρ

(w̄−w) +
µV̄w̃ + rV̄ − (ρ− r)w̄

r+µ
− ρ− r

2ρ(w̄− w̃)
(w̄−w)2, for w ∈ [w̃−β, w̃], (7)

which is concave on [w̃−β, w̃], because V ′′w̃ (w) =− ρ− r
ρ(w̄− w̃)

< 0.

Twice differentiating (4) over [0, w̃) yields

ρ(w̄−w)V ′′′w̃ (w) = µV ′′w̃ (w+β) + (2ρ− r−µ)V ′′w̃ (w) = µV ′′w̃ (w+β),

in which the last equality follows from r+µ= 2ρ. Hence, for w ∈ [0, w̃−β), we have

ρ(w̄−w)V ′′′w̃ (w) = µV ′′w̃ (w+β) =− µ(ρ− r)
ρ(w̄− w̃)

.
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Together with the closed form expression (7), we have, for w ∈ [0, w̃−β),

V ′′w̃ (w) =
µ(ρ− r)
ρ2(w̄− w̃)

ln(w̄−w)− µ(ρ− r)
ρ2(w̄− w̃)

ln(w̄−w+β)− µ(ρ− r)
ρ(w̄− w̃)

.

In particular,

V ′′w̃ (0) =
(ρ− r)
ρ(w̄− w̃)

[
µ

ρ
ln

(
w̄

w̄− w̃+β

)
− 1

]
. (8)

Take ρ= 1, r = 0.05, µ= 1.95, µ= 1.85, and c= 0.3. Therefore, β = c/∆µ= 3 and w̄ = µβ/ρ=

5.55. Further take a particular value ŵ in place of w̃ such that ŵ = 0.98× w̄ = 5.439. (One can

calculate that the corresponding R̂(ŵ) = 112.4622, which does not affect the following calculation.)

In this case, Equation (8) becomes

V ′′ŵ (0) =
(ρ− r)
ρ(w̄− ŵ)

[
1.95 ln

(
1.85β

(1.85× 0.02 + 1)β

)
− 1

]
> 0,

which implies that this Vŵ function is not concave near 0. Therefore, function Vd, which is the

solution to DDE (4)–(6) on [0, ŵ], in general may not be concave, and, therefore, may not be the

optimal value function.

In order to construct an optimal value function that is indeed concave, we need to “concavificate”

the value function. In fact, Section 4 of Sun and Tian (2018) provides a discrete time approximation,

which involves obtaining a concave upper envelope of the value function. Specifically, they show

that in the discrete time model, concavification only occurs near zero, such that the discrete time

optimal value function is linear when the promised utility w is below a threshold. Unfortunately,

Sun and Tian (2018) erroneously claimed that the threshold would converge to zero when the

discrete time model converges to continuous time, which led to a wrong Proposition 5. In fact,

even in the continuous time model, under some model parameter settings, we still need to include

a linear piece in the optimal value function near zero to ensure its concavity. And the optimal value

function is the solution to DDE (4) only when w is above a potentially positive threshold. In the

control policy space, this corresponds to randomized termination.

3. Optimal Contracts When ρ> r

Following the discussion in the previous section, we know that the control policy space in Sun and

Tian (2018) is not rich enough to capture the optimal contract. That is, optimality may not be

attainable in this continuous time model according to the contract space specified in Section 1. In

order to establish an optimal control policy, we need to generalize the contract space, or, the space

of admissible controls.
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In particular, we need to allow the principal to randomly terminate the agent, according to a

rate qt. That is, the agent is terminated in a short time interval (t, t+δ] with probability qtδ+o(δ).

As a part of the control, we only require that

E
[∫ τ

0

e−rtqtdt

]
<∞. (9)

Associated with the rate process q = {qt}0≤t≤τ there is a counting process {Qt}t≥0 with intensity

rate qt1Qt−=0. Obviously, Qt is binary valued, and once Qt = 1, then Qt′ = 1 for any t′ > t. In our

setting, Qt indicates whether or not the contract is terminated at time t. Therefore, we represent

a contract as Γ = (L, τ, q), such that the termination rate q= {qt}t≥0 is also F-predictable.

Given a contract Γ and the agent’s effort process ν, define the agent’s continuation utility for

the agent at time t conditional on information up to time t as

Wt(Γ, ν) = Eν
[∫ τ

t+

e−ρ(s−t)(dLs− c1νs=µ)

∣∣∣∣Ft]1t<τ . (10)

It is convenient to introduce the notation Wt−(Γ, ν) = lims↑tWs(Γ, ν) to denote the left-hand limit

of the process W (Γ, ν) at t≥ 0. In the sequel we omit Wt and Wt−’s dependence on Γ and ν when

there is no confusion.

In this comment, we assume that for any contract Γ under our consideration, Wt is upper

bounded by a large enough W̄ . That is

Wt(Γ, ν)≤ W̄ <∞, ∀t∈ [0,∞)∪{0−},Γ, ν. (WU)

This is a technical assumption that allows us to establish that a process related to Wt(Γ, ν) is a

martingale in the proof of Lemma 6. The specific value of W̄ is not important. As we show in this

comment, as long as W̄ is high enough, constraint (WU) is not binding at optimality.

The following lemma extends Lemma 6 of Sun and Tian (2018) into our setting.

Lemma 1. For any contract Γ, there exist Ft-predictable processes Ht and Hq
t such that

dWt =
[(
ρWt−+ c1νt=µ− νtHt + qtH

q
t

)
dt+HtdNt−Hq

t dQt− dLt
]
1Wt−>0. (PK)

Furthermore, we have Wt = 0 when Qt = 1, which implies that

ρWt−−Htνt +Hq
t qt + c1νt=µ− `t = 0, (11)

and Hq
t ≤Wt−, (12)

for any time t such that qt > 0.

Finally, contract Γ is EI if and only if

Ht ≥ β. (IC)
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The (PK) condition is standard (see, for example, expression (13) in Biais et al. 2010). Conditions

(11) and (12) stem from the fact that after a random termination (dQt = 1), the agent’s promised

utility needs to be set to zero (dWt =−Wt).

Based on Lemma 1, we next present the optimal contract structure when ρ> r in two cases.

3.1. Optimality of Γ̄ Contract

In this section, we present conditions under which the simple contract Γ̄ is optimal. Recall that

under contract Γ̄, the principal pays the agent cash β for each arrival starting from the very

beginning while keeping the agent’s promised utility at w̄. That is, dLt = βdNt, qt = 0, Ht = β, and

τ =∞. The condition is

Ū − v
w̄
≥ µ

ρ− r−µ
> 0, (13)

in which Ū and w̄ are defined in (3), and v in (2). Condition (13) is equivelant to µ < ρ− r and

R ≥ β
(

1 +
(ρ− r)(ρ−µ)µ

(ρ− r−µ)ρ∆µ

)
. That is, the arrival rate µ is sufficiently small, and the revenue R

sufficiently large.

We have the the following optimality result.

Proposition 2. Under condition (13), for any EI contract Γ, we have U(Γ)≤ Ū .

Recall that Ū is the principal’s utility under contract Γ̄. Therefore, Proposition 2 implies that Γ̄ is

the optimal EI contract under condition (13).

Note that the second part of Proposition 4 in Sun and Tian (2018) is wrong under condition

(13). That is, under (13), one cannot find a ŵ < w̄ together with a function Vd that satisfy (4)-(6).

Under this condition, for any Vd and ŵ that satisfies (4)–(5), we always have Vd(0) > v for all

ŵ≤ w̄, violating (6). In fact, while the first part of Proposition 4 in Sun and Tian (2018) is correct,

the second part holds if and only if condition (13) does not hold.

3.2. More General Optimal Contract

Now we consider model parameters that do not satisfy condition (13). In this case, the correspond-

ing optimal function is closely related to DDE (4). First, we present the following result.

Lemma 2. Suppose ρ > r but (13) does not hold. Consider any w̃ ∈ (0, w̄) and a corresponding

function Vw̃, such that the function Vd = Vw̃ together with the value ŵ = w̃ uniquely solve (4)

with boundary condition (5). There exists a threshold w̌(w̃) ∈ [0, w̃), such that V ′′w̃ (w)< 0 for w ∈

(w̌(w̃), w̃] and V ′′w̃ > 0 for w ∈ [0, w̌(w̃)).

Remark 1. Following the proof of Lemma 2, if w̌(ŵ)> 0, then we must have r+∆µ< ρ<µ. This

suggests that non-concavity of Vd can only occur in a rather limited parameter regime.
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Based on Lemma 2, we define value function

Vw̃(w) =

{
Vw̃(w̌(w̃)) +V ′w̃(w̌(w̃)) · (w− w̌(w̃)), w ∈ [0, w̌(w̃)),
Vw̃(w∧ w̃), w ∈ [w̌(w̃),∞).

(14)

That is, function Vw̃(w) is the solution of DDE (4) only for w ≥ w̌(w̃). For w < w̌(w̃), function

Vw̃(w) is linear in w, the slope of which ensures that the left and right derivatives at w̌(w̃) are the

same (smooth pasting). This construction ensures that function Vw̃(w) is indeed concave.

The following lemma further indicates that we can specify a unique value ŵ, such that function

Vŵ, as a special case of Vw̃, satisfies an additional boundary condition analogous to (6).

Lemma 3. There exists a unique ŵ ∈ [0, w̄) such that Vŵ(0) = v. And function Vŵ(w) is strictly

increasing and concave on [0, w̃). Furthermore, if w̌(ŵ)> 0, then V ′ŵ(0) = V ′ŵ(w̌(ŵ))> 1.

Therefore, based on the solution to DDE (4) with the right boundary condition (5), we construct

a value function according to (14) and identify an upper threshold ŵ such that the left boundary

condition (6) is also satisfied. In the sequel, we use w̌ in place of w̌(ŵ) for notational brevity. The

lower threshold w̌, if positive, represents the value of the promised utility at which the contract

may be terminated after a random time. As we will show later in this section, using the same model

parameters as the counter example in Section 2, that w̌ can indeed be positive.

Figure 1 plots the value function Vŵ for the counter example proposed in Section 2. Note that

the function is linear on [0, w̌]. Plotting function Vŵ on the same figure is uninformative, because

the difference between the two functions is so small that they are not visually distinguishable.

Figure 1 The Value Function Vŵ for the Counter Example in Section 2, with Γ∗ with ρ= 1, r= 0.05, R= 112.4622,

µ= 1.95, c= 0.3

Notes. In this case, a binary search procedure identifies ŵ= 5.438978, indistinguishable from the 5.439 value proposed

in Section 2.
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Based on the construction above, we are ready to present a class of EI contracts that contains

the optimal one.

Definition 1. For any w≥ w̌, define contract Γ∗(w) = (L∗, q∗, τ ∗) as follows:

1. Set W0 =w and L∗0 = (W0− ŵ)+.

2. For t ≥ 0, set dL∗t = (Wt− + β − ŵ)+dNt, Ht = β, and q∗t = 0 if w̌ = 0 and q∗t = q∗1Wt−=w̌ if

w̌ > 0, in which

q∗ :=
ρ(w̄− w̌)

w̌
,

such that

dWt = ρ(Wt−− w̄)dt ·1Wt−>w̌− w̌dQt + min{β, ŵ−Wt−}dNt. (15)

3. The termination time is τ ∗ = min{t :Wt = 0}.

When w̌= 0, contract Γ∗(w) is identical to the contract Γ∗d proposed in Sun and Tian (2018). When

w̌ > 0, however, the promised utility always stays at or above w̌ before termination starting from

W0 = w ≥ w̌ according to Γ∗(w). When Wt− = w̌, the agent is terminated after an exponentially

distributed random time with rate q∗, if no additional arrival occurs during this time period. The

termination rate q∗ is determined from (11) with `t = 0 and Hq
t =Wt− (binding (12)).

Note that we only focus on defining the contract for the starting promised utility w at or above

the threshold w̌. This is because following the dynamic (15), the promised utility never falls below

this threshold before the contract is terminated. In fact, if the initial promised utility, W0−, is less

than w̌, the optimal contract would randomly set the continued promised utility, W0, to either w̌

or 0 such that the expectation is kept at W0−. However, rigorously representing this rather simple

idea involves more complex notations, which we deem unnecessary.

Define the principal’s value function Fŵ(w) := Vŵ(w)−w. The next proposition states that the

principal’s utility following contract Γ∗(w) is indeed Fŵ(w).

Proposition 3. For any w≥ w̌, we have U(Γ∗(w)) = Fŵ(w). Furthermore, if w̌ > 0, then we have

Fŵ(w̌)> v.

Following Lemma 3, define w∗ to be the unique maximizer of Fŵ(w). Proposition 3 implies that

w∗ = 0 only if w̌= 0, and, if w̌ > 0, then w∗ > w̌. The following result further implies that contract

Γ∗(w∗) is the optimal EI contract.

Proposition 4. If ρ > r but (13) does not hold, then for any EI contract Γ, we have Fŵ(w∗)≥

U(Γ).
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Figure 2 A Sample Trajectory for the Agent’s Promised Utility According to Γ∗ for the Counter Example in

Section 2, with ρ= 1, r= 0.05, R= 112.4622, µ= 1.95, µ= 1.85, c= 0.3

Notes. In this case, β = 3, w̄ = 5.55, ŵ = 5.438978, w̌ = 0.354, and w∗ = 5.322. The solid curve depicts a sample

trajectory of {Wt}0≤t≤τ , and the dotted line depicts the payment.

Figure 2 depicts a sample trajectory following the optimal contract Γ∗ for the counter example

presented in Section 2. As we can see, the promised utility starts from w∗, and gradually decreases

until the first arrival, at time t1. At this point in time, an upward jump of Ht = β would take the

promised utility above ŵ. Therefore, the promised utility jumps to the upper bound ŵ, and the

principal pays the agent Wt1−+β− ŵ. No further arrival occurs until time t2, when the promised

utility reaches the lower threshold w̌. At this point the agent would be terminated randomly

according to a constant rate q∗ while the promised utility stays at w̌. At time t3, there is an arrival

before a random termination occurs, which pushes the promised utility up by β. The promised

utility decreases to w̌ again at t4. The agent is eventually terminated at time τ , following the

same random termination rate q∗ after t4. Note that here the value ŵ= 5.438978, which is slighly

lower than the (exact) 5.439 value in the counter example of Section 2. Following the monotonicity

property identified in Proposition 4 of Sun and Tian (2018), this difference implies that the value

function Vŵ is indeed higher than function Vd identified in Section 2.

So far we have fully specified the optimal contract structure when ρ> r. The contract structure

Γ∗ is more general than the contract Γ∗d specified in Sun and Tian (2018), involving a lower threshold

w̌ and random termination when the promised utility reaches this point. Arguably, such a structure

when w̌ > 0 is also more complex than Γ∗d. Therefore, we naturally wonder how often w̌ is indeed

positive, and, when it is, how much Γ∗d is suboptimal.

To answer these questions, we conduct a computational study. We pick the following parameters:

ρ= 1, r ∈ {0.05,0.1, ...,0.5}, R ∈ {5,20, ...,995}, c∈ {0.3,0.9, ...,2.7}, µ∈ {1.1,1.5, ...,2.7}, µ∈ {ρ+
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0.05, ρ + 0.35, .., µ − 0.05}. Among all these parameter combinations, we have 33465 cases with

R > β and r + ∆µ < ρ < µ. (Recall from Remark 1 that only if r + ∆µ < ρ < µ, we may have

w̌ > 0.) Among these 33465 cases, only 1774 (5.3%) cases yield w̌ > 0. Among these 1774 cases,

we investigate the relative improvement of Γ∗ over Γ∗d, calculated as [U(Γ∗)−U(Γ∗d)]/U(Γ∗d). We

find that the maximum relative improvement is 1.6× 10−7, and the mean improvement is only

1.0× 10−8. This suggests that although Γ∗d may be suboptimal in some cases, the suboptimality

gap is extremely small. Note that Γ∗d is easier to implement than the optimal Γ∗ in practice. Hence,

the principal may still prefer to use Γ∗d rather than Γ∗.

Endnotes

1. Sun and Tian (2018) refer to this as Incentive Compatible contract.
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Appendix

A. Proofs in Section 2

A.1. Proof of Proposition 1

Note that V ′w̃(w̃−) = 0. Hence, V ′w̃ ∈C1(R+). Therefore, differentiating (4) over [0, w̃) yields

ρ(w̄−w)V ′′w̃ (w) = µ(V ′w̃(w+β)−V ′w̃(w)) + (ρ− r)(V ′w̃(w)− 1), for w ∈ [0, w̃), (16)

with boundary condition V ′w̃(w) = 0 for w≥ w̃, which is a DDE for V ′w̃. DDE (16) does not involve parameter

R. Therefore, its unique solution V ′w̃ is independent of R. Furthermore, we have

ψ(R, w̃) = Vw̃(0;R)− v= Vw̃(w̃;R)−
∫ w̃

0

V ′w̃(y)dy− v=
∆µ(R−β)− (ρ− r)w̃

r
−
∫ w̃

0

V ′w̃(y)dy, (17)

which is linear and strictly increasing in R. Next, we present a technical lemma to help to complete the

proof. The proof is provided at the end of this section.
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Lemma 4. Vw̃(w) is strictly increasing in [0, w̃) for any w̃ ∈ (0, w̄).

Lemma 4 immediately implies that ψ(β, ŵ)< 0 in view of (17). Q.E.D.

Proof of Lemma 4. If Lemma 4 fails to hold, then wp = sup{w ∈ [0, w̃) : V ′w̃(w)≥ 0} is well defined. Since

Vw̃ ∈C1([0, w̃)) and V ′′w̃ (w̃−)< 0, we have wp < ŵ, V ′w̃(wp) = 0, and V ′w̃ > 0 over (wp, w̃). It follows from (4)

at wp that

rVw̃(wp) = µR− c− (ρ− r)wp +µ(Vw̃(wp +β)−Vw̃(wp))

>µR− c− (ρ− r)w̃= rVw̃(w̃),

where the inequality follows from wp < w̃ and Vw̃(wp + β)> Vw̃(wp) by noting that V ′w̃(w)> 0 over (wp, w̃).

This contradicts with Vw̃(wp)<Vw̃(w̃). Q.E.D.

B. Proofs in Section 3

B.1. Proof of Lemma 1

Define agent’s total expected discounted utility conditional on Ft as

ut(Γ, ν) := Eν
[∫ τ

0

e−ρs(dLs− c1νs=µds)
∣∣∣∣Ft]

=

∫ (t∧τ)

0

e−ρs(dLs− c1vs=µds) + e−ρtWt(Γ, ν). (18)

Below, to ease notation, we omit (Γ, ν) from all relevant quantities.

Given an effect process ν, we use IN[t1,t2] to denote the set of arrival time epochs during [t1, t2]. Moreover,

we denote INt := IN[0,t] and IN := IN[0,∞). We use IQ[t1,t2] to denote the set of randomized termination time

epochs during [t1, t2] under the randomized termination policy {qt}t≥0. Moreover, we denote IQt := IQ[0,t] and

IQ := IQ[0,∞).

At any time ζ−, Wζ− can jump to WN
ζ triggered by an arrival at time ζ, or jump to WQ

ζ triggered by a

randomized termination, or jump to WL
ζ triggered by an instantaneous payment. Thus, we can decompose

Wζ (for ζ > t) into its discrete part∑
t≤ξ≤ζ

[
(WN

ξ −Wξ−)1ξ∈IN
[t,ζ]

+ (WQ
ξ −Wξ−)1

ξ∈IQ
[t,ζ]

+ (WL
ξ −Wξ−)1ξ∈IL

[t,ζ]

]
and its absolutely continuous part

W c
ζ :=Wζ −

∑
t≤ξ≤ζ

[
(WN

ξ −Wξ−)1ξ∈IN
[t,ζ]

+ (WQ
ξ −Wξ−)1

ξ∈IQ
[t,ζ]

+ (WL
ξ −Wξ−)1ξ∈IL

[t,ζ]

]
,

where we use IL[t,ζ] to denote the set of time epochs in [t, ζ] such that a positive instantaneous payment

occurs. Hence, ξ ∈ IL[t,ζ] if ∆Lξ > 0 and ξ ∈ [t, ζ].

According to the definition of admissible contract, we know that both WN
t and WQ

t is Ft-predictable.

However, WL
t also depends on dNt and dQt. Hence, WL

t is Ft-adaptive.

Fix any t′ > t. By calculus of point process, we have

e−ρt
′
Wt′ − e−ρtWt =

∫ t′

t

e−ρζ(−ρWζdζ + dW c
ζ )
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+
∑

ζ∈(t,t′]

e−ρζ
[
(WN

ζ −Wζ−)1ζ∈IN
(t,t′]

+ (WQ
ζ −Wζ−)1

ζ∈IQ
(t,t′]

+ (WL
ζ −Wζ−)1ζ∈IL

(t,t′]

]
.

(19)

It is clear that the process {ut}t≥0 is an F-martingale. Hence, for any time t′ > t, we have ut = Et[ut′ ],
where Et[·] := E[·|Ft]. Consequently, we have

0 =Et[ut′ ]−ut

=Et[e−ρt
′
Wt′ − e−ρtWt] +Et

[∫ (t′∧τ)

(t∧τ)+

e−ρζ(dLζ − c1νζ=µdζ)

]

=Et

[∫ t′

t

e−ρζ(−ρWζdζ + dW c
ζ )

]

+Et

 ∑
ζ∈(t,t′]

e−ρζ
[
(WN

ζ −Wζ−)1ζ∈IN
(t,t′]

+ (WQ
ζ −Wζ−)1

ζ∈IQ
(t,t′]

+ (WL
ζ −Wζ−)1ζ∈IL

(t,t′]

]
+Et

[∫ (t′∧τ)

(t∧τ)+

e−ρζ(dLs− c1νζ=µdζ)

]

=Et

{∫ t′

t

e−ρζ
{[
− ρWζ + (WN

ζ −Wζ−)νζ + (WQ
ζ −Wζ−)qζ1Qζ−=0

]
dζ + dW c

ζ

}
+
∑

ζ∈(t,t′]

e−ρζ
[
(WL

ζ −Wζ−)1ζ∈IL
(t,t′]

]}
+Et

[∫ (t′∧τ)

(t∧τ)+

e−ρζ(dLζ − c1νζ=µdζ)

]
,

where the second equality follows from (18), the third one from (19). The fourth equality follows from the

fact that {Qt}t≥0 is a counting process with intensity qt1Qt−=0, and that Nt is a counting process with

intensity νt, as well as Lemma L3 in Chapter II of Brémaud (1981), while noting that

Et
∫ t′

t

e−ρζ |(WN
ζ −Wζ−)νζ |dζ ≤Rµ/r ·µ

∫ t′

t

e−ρζdζ <∞, and

Et
∫ t′

t

e−ρζ |(WQ
ζ −Wζ−)qζ1Qζ−=0|dζ ≤Rµ/r ·Et

∫ τ

t

e−ρζqζdζ ·1t<τ ≤Rµ/r ·Et
∫ τ

t

e−rζqζdζ ·1t<τ <∞,

in view of (WU), ρ> r, and (9).

Recall that dLt = dLct + ∆Lt. For any t < t′ < τ , the above equality can be stated as

Et

{∫ t′

t

e−ρζ
[
− ρWζ + (WN

ζ −Wζ−)νζ + (WQ
ζ −Wζ−)qζ − c1νζ=µ

]
dζ + dW c

ζ + dLcζ

}
+Et

∑
ζ∈(t,t′]

e−ρζ
[
(WL

ζ −Wζ−)1∆Lζ>0 + ∆Lζ
]

= 0. (20)

Consider any time t < τ . Letting t′ ↓ t in (20) yields

Et[(WL
t −Wt−)1∆Lt>0 + ∆Lt] = 0, (21)

which further implies

dW c
t =

[
ρWt−− (WN

t −Wt−)νt− (WQ
t −Wt−)qt + c1νt=µ

]
dt− dLct , t∈ [0, τ ]. (22)

Let Ht :=WN
t −Wt− and Hq

t :=−WQ
t +Wt−. Then, both Ht and Hq

t are Ft-predictable. Besides, since

WL
t is Ft-adaptive, (21) in fact reduces to

(WL
t −Wt−)1∆Lt>0 + ∆Lt = 0. (23)
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Recall that

dWt = dW c
t + (WN

t −Wt−)dNt + (WQ
t −Wt−)dQt + (WL

t −Wt−)1∆Lt>0. (24)

It follows from (22)–(24) that

dWt =
(
ρWt−+ c1νt=µ− νtHt + qtH

q
t

)
dt+HtdNt−Hq

t dQt− dLt,

for t∈ [0, τ ], which gives (PK).

Under randomized termination at time t (i.e., dQt = 1), we have dWt =−Wt−, which yields (i) dW c
t = 0

and (ii) ∆Wt =−Wt−.

Condition (i), combining with (22), gives

ρWt−−Htνt +Hq
t qt + c1νt=µ− `t = 0. (25)

Note that at any time t such that qt > 0 and Qt− = 0, there is a positive probability that dQt = 1. Moreover,

all terms on the left-hand side of (25) are Ft-predictable. Hence, (25) holds at any time t such that qt > 0.

This gives (11).

Condition (ii), combining with (23) and (24), yields

HtdNt−Hq
t dQt−∆Lt =−Wt−.

Note that the probability that both dNt = 1 and dQt = 1 happens is zero. Hence, given that dQt = 1, we

must have ∆Lt =Wt−−Hq
t ≥ 0. Applying a similar argument as that for (11), we know that Hq

t ≤Wt− for

any time t such that qt > 0. This gives (12). Here we mention that it does not necessarily hold that Hq
t =Wt−.

In fact, for any time t such that qt > 0, if dQt = 1, we can set ∆Lt =Wt−−Hq
t to make Wt be 0.

The proof of (IC) can be easily adapted from that for Lemma 6 in Sun and Tian (2018), which is omitted

here for brevity. Q.E.D.

B.2. An Optimality Condition

In this section, we present an optimality condition, which will help us prove the optimality of contracts in

the later sections.

Lemma 5. Suppose F (w) is a differentiable, concave and upper-bounded function, with F (0) = v and F ′(w)≥

−1. Consider any EI contract Γ, which yields the agent’s expected utility w=W0−, followed by the promised

utility process {Wt}t≥0 according to (PK). Define a stochastic process {Ψt}t≥0, where

Ψt : = F ′(Wt−)(ρWt−+ c) + qt [F ′(Wt−)Hq
t +F (Wt−−Hq

t )−F (Wt−)]− rF (Wt−)

+µ [R−F ′(Wt−)Ht +F (Wt−+Ht)−F (Wt−)] . (26)

If the process {Ψt}t≥0 is non-positive almost surely, then we have F (w)≥U(Γ).

Proof. Following Ito’s Formula for jump processes (see, for example, Theorem 17.5 of Bass (2011)), and

considering (PK), we have

e−r(T∧τ)F (WT∧τ ) = F (W0−) +

∫ T∧τ

0

[e−rtdF (Wt−)− re−rtF (Wt−)dt]
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= F (W0−) +

∫ T∧τ

0

e−rt(−RdNt + dLt) +

∫ T∧τ

0

e−rtAt (27)

where

At :=dF (Wt−)− rF (Wt−)dt+RdNt− dLt

=F ′(Wt−) [ρWt−+ c−µHt + qtH
q
t − `t]dt+F (Wt−+HtdNt−Hq

t dQt−∆Lt)−F (Wt−)− rF (Wt−)dt

+RdNt− dLt.

Further define

Bt := [F (Wt−−Hq
t )−F (Wt−)](dQt− qtdt) + [F (Wt−+Ht)−F (Wt−)](dNt−µdt) +R(dNt−µdt).

Because function F (w) is concave and F ′(w)≥−1, we have

At ≤F ′(Wt−) (ρWt−+ c−µHt + qtH
q
t )dt+F (Wt−+HtdNt−Hq

t dQt)−F ′(Wt−)`tdt

−F ′(Wt−+HtdNt−Hq
t dQt)∆Lt−F (Wt−)− rF (Wt−)dt+RdNt− dLt

≤F ′(Wt−) (ρWt−+ c−µHt + qtH
q
t )dt− rF (Wt−)dt+RdNt +F (Wt−+HtdNt−Hq

t dQt)−F (Wt−)

=F ′(Wt−) (ρWt−+ c−µHt + qtH
q
t )dt− rF (Wt−)dt+ [F (Wt−+Ht)−F (Wt−)]dNt

+ [F (Wt−−Hq
t )−F (Wt−)]dQt +µRdt

=Bt + Ψt. (28)

Next, we present a technical lemma, the proof of which is given later in this section.

Lemma 6. If U(Γ)>−∞, then E
[∫ T∧τ

0+
e−rtBt

]
= 0.

To show Lemma 5, it suffices to consider the case that U(Γ) > −∞, so that Lemma 6 holds. Taking the

expectation on both sides of (27) and letting T →∞, we have

F (W0−)≥E
[
e−rτF (Wτ ) +

∫ τ

0

e−rt(RdNt− dLt)−
∫ τ

0

e−rtBt−
∫ τ

0

e−rtΨtdt

]
≥E

[
e−rτF (Wτ ) +

∫ τ

0

e−rt(RdNt− dLt)
]

=U(Γ), (29)

where the first inequality follows from (28), the second inequality follows from Ψt ≤ 0 and Lemma 6 and the

last equality follows from F (Wτ ) = F (0) = v. Q.E.D.

In the end of this section, we will present the proof of Lemma 6 to complete the proof of Lemma 5. Besides,

we will also present a simplification of Ψt, which will be used in the subsequent analysis.

Proof of Lemma 6. First, we show that

E
[∫ T∧τ

0+

e−rt[F (Wt−+Ht)−F (Wt−)](dNt−µdt)
]

= 0. (30)

If E
[∫ τ

0+
e−rt|Ht|dt

]
<∞, then

E
[∫ T∧τ

0+

e−rt|F (Wt−+Ht)−F (Wt−)|µdt
]
≤max

w≥0
{|F ′(w)|} ·µE

[∫ τ

0+

e−rt|Ht|dt
]
<∞,
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where maxw≥0{|F ′(w)|}<∞ follows from the concavity of F and that F ′ ≥−1. Define Fτ = {Ft∧τ}t≥0. It

follows from Lemma L3, Chapter II in Brémaud (1981) that M̃ = {M̃t}t≥0, defined by

M̃t =

∫ t∧τ

0+

e−rs[F (Ws−+Hs)−F (Ws−)]dMµ
s

is an Fτ -martingale. Hence, EM̃T =EM̃0 = 0, i.e., E
[∫ T∧τ

0
e−rt[F (Wt−+Ht)−F (Wt−)](dNt−µdt)

]
= 0.

Now suppose that E
[∫ τ

0+
e−rt|Ht|dt

]
=∞. It follows from (PK) and (WU) that dLt ≥ (Ht− W̄ )+dNt, for

t∈ (0, τ). Hence, we have

E
[∫ τ

0

e−rtdLt

]
≥E

[∫ τ

0

e−rt(Ht− W̄ )+dNt

]
=E

[∫ τ

0

e−rt(Ht− W̄ )+µdt

]
≥E

[∫ τ

0

e−rt(|Ht| − W̄ )µdt

]
≥E

[∫ τ

0

e−rt|Ht|dt
]
− µW̄

r
=∞,

Here, the equality follows from (2.3), Chapter II in Brémaud (1981), the second inequality follows from

Ht ≥−Wt ≥−W̄ in view of Lemma 1 and (WU). This, combining with (2), yields

U(Γ)≤E
[∫ τ

0

e−rtRµdt+ e−rτv

]
−E

[∫ τ

0

e−rtdLt

]
≤ Rµ

r
−E

[∫ τ

0

e−rtdLt

]
=−∞,

which reaches a contradiction. Therefore, we have E
[∫ T∧τ

0
e−rt[F (Wt−+Ht)−F (Wt−)](dNt−µdt)dt

]
= 0.

Next, we show that

E
[∫ T∧τ

0+

e−rt[F (Wt−−Hq
t )−F (Wt−)](dQt− qtdt)

]
= 0. (31)

If E
[∫ τ

0+
e−rt|Hq

t |qtdt
]
<∞, then we have

E
[∫ T∧τ

0+

e−rt|F (Wt−−Hq
t )−F (Wt−)|qtdt

]
≤max

w≥0
{|F ′(w)|} ·E

[∫ τ

0+

e−rt|Hq
t |qtdt

]
<∞,

which yields (31) by using a similar argument for (30) and applying Lemma L3 in Chapter II of Brémaud

(1981).

Now we show that E
[∫ τ

0+
e−rt|Hq

t |qtdt
]
<∞. If Hq

t ≥ 0, then it follows from (12) that

|Hq
t |qt ≤Wt−qt ≤ W̄ · qt.

If Hq
t < 0, then it follows from (11) that

|Hq
t |qt =−Hq

t qt = ρWt−−Htνt− c1νt=µ− `t ≤ ρW̄ −βµ.

Therefore, we have

E
[∫ τ

0+

e−rt|Hq
t |qtdt

]
≤E

[∫ τ

0+

e−rt(W̄ · qt + ρW̄ −βµ)dt

]
<∞,

where the last inequality follows from (9).

Finally, we have E
[∫ T∧τ

0+
e−rtR(dNt−µdt)dt

]
= 0, which follows immediately from Lemma L3 in Chapter

II of Brémaud (1981). Hence, E
[∫ T∧τ

0+
e−rtBt

]
= 0. Q.E.D.
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A Simplification of Ψt. Following (26), if we define V (w) := F (w) +w, then

Ψt = V ′(Wt−)(ρWt−+ c)− ρWt−− c+ qt [V ′(Wt−)Hq
t +V (Wt−−Hq

t )−V (Wt−)]− rV (Wt−) + rWt−

+µ [R−V ′(Wt−)Ht +V (Wt−+Ht)−V (Wt−)]

≤ V ′(Wt−)(ρWt−+ c)− ρWt−− c− rV (Wt−) + rWt−+µ [R−V ′(Wt−)Ht +V (Wt−+Ht)−V (Wt−)]

≤ V ′(Wt−)(ρWt−+ c)− ρWt−− c− rV (Wt−) + rWt−+µ [R−V ′(Wt−)β+V (Wt−+β)−V (Wt−)] , (32)

where the first inequality follows from maxHqt {V
′(Wt−)Hq

t + V (Wt− −Hq
t )− V (Wt−)}= 0, and the second

inequality follows from β = arg maxHt≥β{−V
′(Wt−)Ht +V (Wt−+Ht)}.

B.3. Proof of Proposition 2

Define

Fw̄(w) :=

{
v+ aw, w ∈ [0, w̄),
Ū − (w− w̄), w ∈ [w̄,∞),

where a := (Ū − v)/w̄. It is clear that Fw̄(w̄) = Ū . Following condition (13), we have Fw̄(w̄)≥ Fw̄(w) for any

w. Hence, to complete the proof, we will verify that Fw̄(w)≥ U(Γ) where u(Γ, ν∗) = w. Since Fw̄(w) is not

differentiable at w = w̄, we cannot directly apply Lemma 5. To address this issue, we construct a sequence

of functions of C1(R+), which converges to Fw̄ to help us complete the proof. For any ε∈ (0, w̄), define

Fε(w) =

 v+ aw+ aε
2
, w ∈ [0, w̄− ε),

− a
2ε

(w− w̄)2 + Ū , w ∈ [w̄− ε, w̄+ ε
a
),

Ū + w̄+ ε
2a
−w, w ∈ [w̄+ ε

a
,∞).

It is straightforward to check that Fε ∈C1(R+) and it is concave. Moreover, we can easily see that Fε ≥ Fw̄
and limε→0Fε = Fw̄.

Choose ε sufficiently small such that β > ε+ ε/a. Next, we show that for any EI contract Γ, Fε(w) ≥
U(Γ(w))−Kε for some K > 0. Define

G(w) = V ′(w)(ρw+ c)− ρw− c− rV (w) + rw+µ [R−V ′(w)β+V (w+β)−V (w)] ,

for w ∈R+, where V (w) := Fε(w) +w.

For w ∈ [w̄− ε, w̄+ ε
a
], we have

G(w) =
[
− a

ε
(w− w̄) + 1

]
(ρw+ c)− ρw− c− r

[
− a

2ε
(w− w̄)2 + Ū

]
+µ

[
R−

(
− a

ε
(w− w̄) + 1

)
β+ w̄+

ε

2

(1

a
− a
)

+
a

2ε
(w− w̄)2 +

aε

2
−w

]
=− a

ε
(w− w̄)(ρw+ c)− r

[
− a

2ε
(w− w̄)2 + Ū

]
+µ

[
R−

(
− a

ε
(w− w̄) + 1

)
β+

ε

2a
+
a

2ε
(w− w̄)2− (w− w̄)

]
=− a

2ε
(w− w̄)[2(ρw+ c)− r(w− w̄)− 2µβ−µ(w− w̄) +

2µε

a
]

− rŪ +µ
(
R−β+

ε

2a

)
=− a

2ε
(w− w̄)[(2ρ− r−µ)(w− w̄) +

2µε

a
] +µ

( ε
2a

)
≤ µ2ε

2(2ρ−µ− r)a
+
µε

2a
,
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where the last equality uses rŪ = µ(R−β) and the inequality follows from that G(w) is a quadratic function

whose maximizer is w̄− µε

a(2ρ− r−µ)
> w̄− ε.

For w ∈ [0, w̄− ε],

G(w) = (a+ 1)(ρw+ c)− ρw− c− r(v+ (a+ 1)w) + rw+µ[R− aβ+ V̄w̄ +
ε

2a
− aw− v]

= [(a+ 1)(ρ− r−µ)− (ρ− r)](w− w̄) +
µε

2

1

a
≤ µε

2

1

a
,

where the inequality follows from a> µ

ρ−r−µ .

For w≥ w̄+ ε
a
,

G(w) =−ρw− c− r
(
V̄w̄ +

ε

2a

)
+ rw+µR

= r(V̄ − V̄w̄)− (ρ− r)w− rε

2a
= (ρ− r)(w̄−Wt−)≤ 0.

Hence, it follows from (32) that

Ψt ≤G(Wt−)≤K0ε, where K0 :=
µ2

2(2ρ−µ− r)a
+
µ

2a
.

Although we cannot directly apply Lemma 5, we can follow the first inequality of (29) in the proof of

Lemma 5 to show that

Fε(W0−)≥E
[
e−rτFε(Wτ ) +

∫ τ

0

e−rt(RdNt− dLt)−
∫ τ

0

e−rtBt−
∫ τ

0

e−rtΨtdt

]
≥E

[
e−rτFε(Wτ ) +

∫ τ

0

e−rt(RdNt− dLt)
]
− K0

r
ε≥U(Γ)−Kε,

where K :=K0/r. Hence, letting ε→ 0 in the above inequality yields F (w)≥U(Γ(w)). Q.E.D.

B.4. Proof of Lemmas 2 and 3

To prove Lemmas 2 and 3, we start from a simple case that µ+r≤ ρ, and then turn to analyze more complex

case that µ+ r > ρ later. The main difference between these two cases is that bw̃ defined in (33) will take a

different limit as w̃ tends to w̄, which makes further analysis rather different.

B.4.1. The Case that µ+ r≤ ρ. We have ρ> µ, which further implies that w̄ < β. For any ŵ= w̃ ∈

(0, w̄), differential equation (4) becomes an ODE which can be solved in closed form. We further distinguish

two subcases: µ+ r < ρ versus µ+ r= ρ.

Subcase 1: µ+ r < ρ. We have

Vw̃(w) =
ρ− r

r+µ− ρ
(w̄−w) +

µVw̃(w̃) + rV̄ + (r− ρ)w̄

r+µ
+ bw̃(w̄−w)

r+µ
ρ for w ∈ [0, w̃],

where

bw̃ :=
r− ρ

r+µ− ρ
ρ

r+µ
(w̄− w̃)

ρ−r−µ
ρ > 0. (33)

Besides, we have

V ′′w̃ (w) =−ρ− r
ρ

(w̄− w̃)
ρ−r−µ
ρ (w̄−w)

−2ρ+r+µ
ρ < 0 if w ∈ [0, w̃].

Hence, Lemma 2 holds with w̌(w̃) = 0 and thus Vw̃(w) = Vw̃(w).
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If w̃1 < w̃2, then we have bw̃1
> bw̃2

, V ′w̃1
(w)< V ′w̃2

(w) and Vw̃1
(w)> Vw̃2

(w) for w ∈ [0, w̃1]. Hence, Vw̃(0)

is strictly decreasing in w̃.

As w̃→ w̄, we have bw̃→ 0 and thus

Vw̃(0)→ ρ− r
r+µ− ρ

w̄+ V̄ − (ρ− r)w̄
r

=
ρ− r

r+µ− ρ
w̄+ Ū + w̄= Ū +

µ

r+µ− ρ
w̄ < v

where the inequality follows from that condition (13) is not satisfied. And if w̃= 0, we have Vw̃(0) = V̄ > v.

It is trivial to see that Vw̃(0) is continuous in w̃. Hence, there exists a unique ŵ ∈ (0, w̄) such that Vŵ(0) = v.

This concludes Lemma 3.

Subcase 2: µ+ r= ρ. Now we have

Vw̃(w) =
(ρ− r)(w̄−w)

ρ
− (ρ− r)(w̄−w)

ρ
ln

(
w̄−w
w̄− w̃

)
+
rV̄ − (ρ− r)w̄+µVw̃(w̃)

ρ
for w ∈ [0, w̃].

Further, we have

V ′w̃(w) =
ρ− r
ρ

ln

(
w̄−w
w̄− w̃

)
≥ 0, and

V ′′w̃ (w) =− ρ− r
ρ(w̄−w)

< 0, w ∈ [0, w̃].

Hence, in this case, Lemma 2 holds with w̌(w̃) = 0 and thus Vw̃(w) = Vw̃(w).

If w̃1 < w̃2, then we have V ′w̃1
(w)< V ′w̃2

(w) and Vw̃1
(w)> Vw̃2

(w) for w ∈ [0, w̃1]. Hence, Vw̃(0) is strictly

decreasing in w̃. As w̃→ w̄, V ′w̃(w)→−∞ for w ∈ [0, w̃) which implies that limw̃→w̄ Vw̃(0) = −∞. And if

w̃= 0, then Vw̃(0) = V̄ > v. Hence, there exists ŵ such that Vŵ(0) = v. Lemma 3 is also obtained.

B.4.2. The Case that µ+ r > ρ. For this case, we prove Lemmas 2 and 3 in the following steps:

1. For any w̃ < w̄, there exists a unique continuously differentiable function Vw̃ that satisfies (4) with the

boundary condition at w̃. Following lemma 4, we have Vw̃(w) is strictly increasing in [0, w̃).

2. There exists a w̌(w̃) ∈ [0, w̃), such that V ′′w̃ (w)< 0 for w ∈ (w̌(w̃), w̃] and V ′′w̃ (w)> 0 for w ∈ (w̌(w̃), w̃].

Moreover, if w̌(w̃)> 0, then V ′w̃(w̌(w̃))> 1.

3. There exists a unique ŵ ∈ [0, w̄) such that Vŵ(0) = v. Besides, Vŵ(w) is strictly increasing and concave

in [0, w̃). Finally, if w̌(ŵ)> 0, then V ′ŵ(0) = V ′ŵ(w̌(ŵ))> 1.

Steps 1 and 3 are similar to the proof of Proposition 4 in Sun and Tian (2018). However, we still provide

a detailed argument here, to ensure the self-containment of this comment.

Step 1. For w ∈ [(w̃−β)+, w̃], differential equation (4) becomes an ODE, and thus

Vw̃(w) =
ρ− r

r+µ− ρ
(w̄−w) +

µVw̃(w̃) + rV̄ + (r− ρ)w̄

r+µ
+ bw̃(w̄−w)

r+µ
ρ if w ∈ [(w̃−β)+, w̃], (34)

with bw̃ =
r− ρ

r+µ− ρ
ρ

r+µ
(w̄− w̃)

ρ−r−µ
ρ < 0 from the boundary condition.

It is straightforward to verify that Vw̃(w) is increasing and strictly concave in [(w̃−β)+, w̃]. Moreover, we

have V ′w̃(w̃−) = 0 = V ′w̃′(w̃+) = 0. Therefore, equation (4) is reduced to a sequence of initial value problems

over the intervals [(w̃− (k + 1)β)+, (w̃− kβ)+), k ∈ N \ {0}, which satisfy the assumptions of the Cauchy-

Lipschitz theorem, and therefore, admit unique continuously differentiable solutions.
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Step 2. Differentiating (4) at w yields

ρ(w̄−w)V ′′w̃ (w) = µ(V ′w̃(w+β)−V ′w̃(w)) + (ρ− r)(V ′w̃(w)− 1). (35)

Differentiating (35) at w yields

ρ(w̄−w)V ′′′w̃ (w) = µ(V ′′w̃ (w+β)−V ′′w̃ (w)) + (2ρ− r)V ′′w̃ (w). (36)

If w̃ ≤ β, then Vw̃ has the close form expression (34) for w ∈ [0, w̃], which easily concludes that V ′′w̃ < 0

over [0, w̃). Hence, Lemma 2 holds with w̌(w̃) = 0.

Now we consider the case that w̃ > β. Let wc := inf{w ∈ [0, w̃) : V ′′w̃ (w) ≥ 0}. If the set is empty, we set

wc = 0. Obviously, V ′′w̃ (w)< 0 over (wc, w̃). Hence, Lemma 2 holds with w̌(w̃) =wc if wc = 0.

Next, we consider the case that wc > 0. Since Vw̃(w) is strictly concave in [w̃−β, w̃), we have wc < w̃−β.

Since Vw̃ ∈C2([0, w̃)), we have V ′′w̃ (wc) = 0 and V ′′w̃ (w)< 0 over (wc, w̃). It follows from (35) at wc that

µ(V ′w̃(wc +β)−V ′w̃(wc)) = (ρ− r)(1−V ′w̃(wc)),

which implies

V ′w̃(wc +β) =
(µ− ρ+ r)V ′w̃(wc) + (ρ− r)

µ
. (37)

Moreover, since V ′w̃ decreases over (wc, w̃), we have V ′w̃(wc +β)<V ′w̃(wc), which yields

V ′w̃(wc)> 1, (38)

in view of (37).

It follows from (4) at wc that

rVw̃(wc) = µR− c− (ρ− r)wc− ρ(w̄−wc)V ′w̃(wc) +µ(Vw̃(wc +β)−Vw̃(wc))

= µR− c− (ρ− r)wc− ρ(w̄−wc)V ′w̃(wc) +µβV ′w̃(wb)

>µR− c− (ρ− r)wc− ρ(w̄−wc)V ′w̃(wc) +µβV ′w̃(wc +β)

= µR− c− (ρ− r)(wc−β) + [ρ(wc−β) + rβ+ c]V ′w̃(wc), (39)

where the second equality follows from the mean value theorem with some wb ∈ (wc,wc +β), the inequality

follows from V ′′w̃ (w)< 0 over (wc,wc +β) and the last equality follows from (37) and ρw̄= µβ− c.
Below we consider two cases.

Case 1: ρ(wc−β) + c+βr≥ 0. It follows from (39) and V ′w̃(wc)> 1 that

rVw̃(wc)>µR− c− (ρ− r)(wc−β) + [ρ(wc−β) + rβ+ c]

=µR− c+ r(wc−β) + c+βr

>µR− c+ c > µR− c− (ρ− r)ŵ= rVw̃(w̃),

which reaches a contradiction with Lemma 4.

Case 2: ρ(wc−β) + c+βr < 0. Hence, we have

0<wc <
−c+ (ρ− r)β

ρ
, (40)
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which implies that (ρ− r)β > c, i.e., ρ− r >∆µ. In this case, we will show that

V ′′w̃ > 0 over [0,wc). (CX)

It follows from (36) at wc and V ′′w̃ (wc) = 0 that

ρ(w̄−wc)V ′′′w̃ (wc) = µV ′′w̃ (wc +β)< 0,

which implies that V ′′w̃ > 0 over (wc− ε,wc) for some ε > 0. If (CX) fails to hold, then wd := sup{w ∈ [0,wc) :

V ′′w̃ (w)≤ 0} is well defined and wd ∈ [0,wc). Moreover, we have V ′′w̃ (wd) = 0 and V ′′′w̃ (wd)≥ 0. Hence, it follows

from (36) at wd that ρ(w̄−wd)V ′′′w̃ (wd) = µV ′′w̃ (wd + β)≥ 0. By the definition of wc, we have wd + β ≤ wc.
Consequently, it follows from (40) that wd ≤wc− β < 0, which reaches a contradiction. Hence, (CX) holds.

Therefore, letting w̌(w̃) =wc, we complete the proof of Lemma 2. Besides, we have V ′w̃(wc) = V ′w̃(w̌(w̃))> 1

in view of (38).

Step 3. Following the definition (14), we immediately have that Vw̃ is strictly increasing and concave in [0, w̃).

Next, we prove that Vw̃(0) is strictly decreasing in w̃.

First, we prove that if w̃1 < w̃2 ∈ (0, w̄), then Vw̃1
(w)> Vw̃2

(w) and V ′w̃1
(w)< V ′w̃2

(w) for w ∈ [0, w̃1]. An

equivalent argument is: if w̃1 < w̃2 ∈ (0, w̄) and w̃2− w̃1 ≤ β/2, then Vw̃1
(w)>Vw̃2

(w) and V ′w̃1
(w)<V ′w̃2

(w)

for w ∈ [0, w̃1].

Because for any w̃ ∈ (0, w̄), Vw̃ is continuously differentiable, Vw̃1
(w)− Vw̃2

(w) must also be continuously

differentiable.

In the interval [w̃1 − β/2, w̃1], Vw̃1
(w) > Vw̃2

(w) and V ′w̃1
(w) < V ′w̃2

(w) since bw̃1
> bw̃2

and Vw̃1
(w̃1) >

Vw̃2
(w̃2) > Vw̃2

(w̃1). In the interval [w̃1, w̃1 + β/2], on the other hand, Vw̃1
(w) > Vw̃2

(w) and 0 = V ′w̃1
(w) <

V ′w̃2
(w) since Vw̃1

(w̃1)>Vw̃2
(w̃2).

Now we claim that V ′w̃1
(w) < V ′w̃2

(w), ∀w ∈ [0, w̃1]. Otherwise, because Vw̃1
(w)− Vw̃2

(w) is continuously

differentiable, there must exist a w̃′ := max{w ∈ [0, w̃1] : V ′w̃1
(w)−V ′w̃2

(w) = 0}. Then, we obtain µ(Vw̃1
(w̃′+

β)−V ′w̃2
(w̃′+β)) = (r+µ)(Vw̃1

(w̃′)−Vw̃2
(w̃′)). However, it contradicts with

0<Vw̃1
(w̃′+β)−Vw̃2

(w̃′+β) = Vw̃1
(w̃′)−Vw̃2

(w̃′) +

∫ β

0

[V ′w̃1
(w̃′+x)−V ′w̃2

(w̃′+x)]dx.

Then we must have V ′w̃1
(w)<V ′w̃2

(w) and V ′w̃1
(w)>V ′w̃2

(w), ∀w ∈ [0, w̃1].

Now, we go back to prove that Vw̃1
(0)> Vw̃2

(0). We consider two cases.

Case 1: w̌(w̃1)≥ w̌(w̃2). We have Vw̃1
(w̌(w̃1)) = Vw̃1

(w̌(w̃1)) > Vw̃2
(w̌(w̃1)) = Vw̃2

(w̌(w̃1)) and

V ′w̃1
(w̌(w̃1)) = V ′w̃1

(w̌(w̃1))<V ′w̃2
(w̌(w̃1)) = V ′w̃2

(w̌(w̃1)). Consequently,

Vw̃1
(0) = Vw̃1

(w̌(w̃1))−V ′w̃1
(w̌(w̃1)) · w̌(w̃1)>Vw̃2

(w̌(w̃1))−V ′w̃2
(w̌(w̃1)) · w̌(w̃1)

≥ Vw̃2
(w̌(w̃2))−V ′w̃2

(w̌(w̃2)) · w̌(w̃1) = Vw̃2
(0),

where the second inequality follows by noting that [Vw̃2
(w)−V ′w̃2

(w) · w̌(w̃1))]′ = V ′w̃2
(w)−V ′′w̃2

(w) · w̌(w̃1))> 0

on [w̌(w̃2), w̌(w̃1)] since Vw̃2
(w) is strictly increasing and concave in w on [w̌(w̃2), w̌(w̃1)].

Case 2: w̌(w̃1)< w̌(w̃2). We have Vw̃1
(w̌(w̃1)) = Vw̃1

(w̌(w̃1)) > Vw̃2
(w̌(w̃1)) and V ′w̃1

(w̌(w̃1)) =

V ′w̃1
(w̌(w̃1))<V ′w̃2

(w̌(w̃1)). Hence,

Vw̃1
(0) = Vw̃1

(w̌(w̃1))−V ′w̃1
(w̌(w̃1)) · w̌(w̃1)>Vw̃2

(w̌(w̃1))−V ′w̃2
(w̌(w̃1) · w̌(w̃1)
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>Vw̃2
(w̌(w̃1))−V ′w̃2

(w̌(w̃2)) · w̌(w̃1)>Vw̃2
(w̌(w̃2))−V ′w̃2

(w̌(w̃2)) · w̌(w̃2) = Vw̃2
(0),

where the second inequality follows by noting that V ′′w̃1
> 0 over (w̌(w̃1), w̌(w̃2)), and the third inequality

follows by noting that [Vw̃2
(w)− V ′w̃2

(w̌(w̃2)) ·w]′ = V ′w̃2
(w)− V ′w̃2

(w̌(w̃2))< 0 for w ∈ (w̌(w̃1), w̌(w̃2)), since

Vw̃2
(w) is convex in [w̌(w̃1), w̌(w̃2)).

Combining the above two cases, we conclude that Vw̃(0) is strictly decreasing with w̃.

Besides, if w̃= 0, then the boundary condition states that Vw̃(0) = V̄ > v. If we let w̃→ w̄, then bw̃→−∞,

Vw̃(w̃−β) = Vw̃(w̃−β)→−∞. Since Vw̃ is continuous and increasing, we have Vw̃(0)→−∞.

Therefore, there must exist a unique ŵ ∈ (0, w̄) that satisfies the additional boundary condition Vŵ(0) = v.

Besides, recalling (38), we have that if w̌(ŵ)> 0, then V ′ŵ(0) = V ′ŵ(w̌(ŵ))> 1. Q.E.D.

B.5. Proof of Proposition 3

If w̌ = 0, the proof is exactly the same as that for Part 1 of Proposition 6 in Sun and Tian (2018). Hence,

we only need to prove it for the case that w̌ > 0.

First, it is easy to see that U(Γ∗d(0)) = v= Fŵ(0). Given W0− =w ∈ [w̌, ŵ], following Ito’s formula for jump

processes (see, for example, Theorem 17.5 of Bass (2011)), and considering (15), we have

e−rτFŵ(Wτ ) = Fŵ(W0−) +

∫ τ

0

[e−rtdFŵ(Wt−)− re−rtFŵ(Wt−)dt]

= Fŵ(W0−) +

∫ τ

0

e−rt(−RdNt + dL∗t ) +

∫ τ

0

e−rtAt, (41)

where

At :=dFŵ(Wt−)− rFŵ(Wt−)dt+RdNt− dL∗t

=F ′ŵ(Wt−)ρ(Wt−− w̄)1Wt−>w̌(ŵ)dt+Fŵ(Wt−+ [β ∧ (ŵ−Wt−)]dNt− w̌1Wt−=w̌(ŵ)dQt)−Fŵ(Wt−)

+RdNt− (Wt−+β− ŵ)+dNt− rFŵ(Wt−)dt

=F ′ŵ(Wt−)ρ(Wt−− w̄)1Wt−>w̌(ŵ)dt+
[
Fŵ(Wt−+ [β ∧ (ŵ−Wt−)])−Fŵ(Wt−)− (Wt−+β− ŵ)+

]
dNt

+ [Fŵ(0)−Fŵ(Wt−)]dQt +RdNt− rFŵ(Wt−)dt

=F ′ŵ(Wt−)ρ(Wt−− w̄)1Wt−>w̌(ŵ)dt+ [Fŵ(Wt−+β)−Fŵ(Wt−)]dNt + [Fŵ(0)−Fŵ(w̌(ŵ))]dQt

+RdNt− rFŵ(Wt−)dt.

Further define

Bt := [Fŵ(0)−Fŵ(w̌(ŵ))](dQt− q∗t dt) + [Fŵ(Wt−+β)−Fŵ(Wt−)](dNt−µdt) +R(dNt−µdt). (42)

If Wt− ∈ (w̌(ŵ), ŵ], then

At = F ′ŵ(Wt−)ρ(Wt−− w̄)dt+ [Fŵ(Wt−+β)−Fŵ(Wt−)]dNt +RdNt− rFŵ(Wt−)dt

= F ′ŵ(Wt−)ρ(Wt−− w̄)dt+µ [Fŵ(Wt−+β)−Fŵ(Wt−)]dt+µRdt− rFŵ(Wt−)dt+Bt

= {V ′ŵ(Wt−)ρ(Wt−− w̄)− ρ(Wt−− w̄) +µ [Vŵ(Wt−+β)−Vŵ(Wt−)]−µβ+µR− rVŵ(Wt−) + rWt−}dt+Bt

= {V ′ŵ(Wt−)ρ(Wt−− w̄)− (ρ− r)Wt−+µ [Vŵ(Wt−+β)−Vŵ(Wt−)]− c+µR− rVŵ(Wt−)}dt+Bt

=Bt,
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where the last equality follows from (4).

If Wt− = w̌(ŵ) and w̌(ŵ)> 0, then

At = [Fŵ(w̌(w̃) +β)−Fŵ(w̌(w̃))]dNt +RdNt− rFŵ(w̌(w̃))dt+ [Fŵ(0)−Fŵ(w̌(ŵ))]dQt

= µ [Fŵ(w̌(w̃) +β)−Fŵ(w̌(w̃))]dt+µRdt− rFŵ(w̌(w̃))dt+ [Fŵ(0)−Fŵ(w̌(ŵ))]q∗t dt+Bt

= {µ [Vŵ(w̌(w̃) +β)−Vŵ(w̌(w̃))]−µβ+µR− rVŵ(w̌(w̃)) + rw̌(w̃) + [Fŵ(0)−Fŵ(w̌(ŵ))]q∗t }dt+Bt

= {V ′ŵ(w̌(w̃))ρ(w̄− w̌(ŵ)) + ρw̌+ c−µβ+ [Fŵ(0)−Fŵ(w̌(ŵ))]q∗t }dt+Bt

=

{
F ′ŵ(w̌(w̃))ρ(w̄− w̌(ŵ)) + [Fŵ(0)−Fŵ(w̌(ŵ))]

ρ(w̄− w̌(ŵ))

w̌(ŵ)

}
dt+Bt

= ρ(w̄− w̌(ŵ))

[
F ′ŵ(w̌(w̃))− Fŵ(w̌(ŵ))−Fŵ(0)

w̌(ŵ)

]
+Bt

= ρ(w̄− w̌(ŵ))

[
V ′ŵ(w̌(w̃))− Vŵ(w̌(ŵ))−Vŵ(0)

w̌(ŵ)

]
+Bt =Bt,

where the forth equality follows from (4) and the seventh equality follows from the definition of Vŵ(w).

In both cases, we have At =Bt. Taking the expectation on both sides of (41), we have

Fŵ(w) = Fŵ(W0−) = E
[
e−rτF (Wτ ) +

∫ τ

0

e−rt(RdNt− dL∗t )−
∫ τ

0

e−rtBtdt
]

=E
[
e−rτF (Wτ ) +

∫ τ

0

e−rt(RdNt− dL∗t )
]

=U(Γ∗d(w)),

where the third inequality follows from the fact that
∫ τ

0
e−rtBt is a martingale and the last equality follows

from F (Wτ ) = F (0) = v. Finally, for W0− =w> ŵ, following Definition 1, we have

U(Γ∗d(w)) =U(Γ∗d(ŵ))− (w− ŵ) = Fŵ(ŵ)− (w− ŵ) = Fŵ(w).

To conclude, we have U(Γ∗d(w)) = Fŵ(w) for w≥ w̌. Following Lemma 3, we have for if w̌ > 0, for w ∈ [0, w̌],

F ′ŵ(w) = V ′ŵ(w)− 1> 0 which further implies that Fŵ(w̌)>Fŵ(0) = v. Q.E.D.

B.6. Proof of Proposition 4

Part 2 in Proposition 6 in Sun and Tian (2018) has already presented the result for w̌= 0. Below, we prove

it for the case that w̌ > 0.

Note that Fŵ(w∗)≥ Fŵ(w). The proof is complete if we can verify that Fŵ(w)≥U(Γ) where u(Γ, ν∗) =w.

Recall that following Lemmas 2 and 3, we have Fŵ(w) is a differentiable, concave and upper-bounded function,

with Fŵ(0) = v and F ′ŵ(w) ≥ −1. Based on Lemma 5, to prove Fŵ(w) ≥ U(Γ), we only need to show that

{Ψt}t≥0 is non-positive almost surely when we let F (w) = Fŵ(w). Following (32), we have

Ψt ≤V ′ŵ(Wt−)(ρWt−+ c)− ρWt−− c− rVŵ(Wt−) + rWt−+µ [R−V ′ŵ(Wt−)β+Vŵ(Wt−+β)−Vŵ(Wt−)] .

If Wt− ≥ w̌, then

Ψt ≤V ′ŵ(Wt−)ρ(Wt−− w̄)− ρWt−− c− rVŵ(Wt−) + rWt−+µ [R+Vŵ(Wt−+β)−Vŵ(Wt−)] = 0, (43)

where the equality follows from the fact that for w ∈ [w̌,∞], Vŵ(w) = Vŵ(w) and (4).

If Wt− ∈ [0, w̌), then V ′ŵ(Wt−) = V ′ŵ(w̌). Define

g(Wt−) := V ′ŵ(Wt−)ρ(Wt−− w̄)− ρWt−− c− rVŵ(Wt−) + rWt−+µ [R+Vŵ(Wt−+β)−Vŵ(Wt−)] .
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We have

g′(Wt−) = V ′ŵ(w̌)ρ− ρ− rV ′ŵ(w̌) + r+µ [V ′ŵ(Wt−+β)−V ′ŵ(w̌)]

= (ρ− r)(V ′ŵ(w̌)− 1) +µ [V ′ŵ(Wt−+β)−V ′ŵ(w̌)]

≥ (ρ− r)(V ′ŵ(w̌)− 1) +µ [V ′ŵ(w̌+β)−V ′ŵ(w̌)] = 0, (44)

where the inequality follows from the concavity of Vŵ and the last equality follows from ρ(w̄− w̌)V ′′ŵ(w̌) =

(ρ− r)(V ′ŵ(w̌)− 1) +µ [V ′ŵ(w̌+β)−V ′ŵ(w̌)] = 0. Therefore,

Ψt ≤ g(Wt−)≤ g(w̌) = 0. (45)

To conclude, we have established that Ψt ≤ 0 for t≥ 0. This completes the proof. Q.E.D.
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