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Abstract

We consider a class of particle systems that generalizes the eigenvalues of a class of
matrix-valued processes, of which the empirical measures converge to deterministic
measures as the dimension goes to infinity. In this paper, we obtain central limit
theorems (CLTs) to characterize the fluctuations of the empirical measures around
the limit measures by using stochastic calculus. As applications, CLTs for Dyson’s
Brownian motion and the eigenvalues of Wishart process are recovered under slightly
more general initial conditions, and a CLT for the eigenvalues of a symmetric matrix-
valued Ornstein-Uhlenbeck process is obtained.
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1 Introduction

Recently general stochastic differential equations (SDEs) on the group of symmetric
matrices have attracted much interest. A prominent example is the process introduced
in Graczyk and Małecki (2013) as the solution of the following matrix-valued SDE,

dXN
t = gN (XN

t )dBthN (XN
t ) + hN (XN

t )dBᵀ
t gN (XN

t ) + bN (XN
t )dt, t ≥ 0. (1.1)

Here, Bt is a matrix-valued Brownian motion of dimension N ×N , and the continuous
functions gN , hN , bN : R → R act on the spectrum of XN

t (a function f acts on the
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High-dimensional CLTs for a class of particle systems

spectrum of a symmetric matrix X =
∑N
j=1 αjuju

ᵀ
j with eigenvalues (αj) and eigenvec-

tors (uj) if f(X) =
∑N
j=1 f(αj)uju

ᵀ
j ). The matrix-valued process (1.1) extends several

well-known processes such as the celebrated symmetric matrix-valued Brownian motion
(Dyson, 1962), Wishart process (Bru, 1991), and the symmetric matrix-valued Ornstein-
Uhlenbeck processes (Chan, 1992).

Let {λNi (t)}1≤i≤N be the eigenvalues of XN
t . According to Theorem 3 in Graczyk and

Małecki (2013), if the initial eigenvalues {λNi (0)}1≤i≤N are all distinct, then before the
first collision time τN = inf{t > 0 : ∃ i 6= j, λi(t) = λj(t)}, the eigenvalue processes
satisfy the following system of SDEs: for 1 ≤ i ≤ N ,

dλNi (t) = 2gN (λNi (t))hN (λNi (t))dWi(t) +

bN (λNi (t)) +
∑
j:j 6=i

GN (λNi (t), λNj (t))

λNi (t)− λNj (t)

 dt,

(1.2)

where {Wi, 1 ≤ i ≤ N} are independent Brownian motions and

GN (x, y) = g2
N (x)h2

N (y) + g2
N (y)h2

N (x). (1.3)

In Graczyk and Małecki (2013, 2014), some other conditions on the coefficient functions
were imposed to ensure that (1.2) has a unique strong solution and the collision time τN
is infinite almost surely.

Let LN (t) be the empirical measure of the eigenvalues {λNi (t)}1≤i≤N , that is

LN (t) =
1

N

N∑
i=1

δλN
i (t).

In connection with the theory of random matrices, it is of interest to investigate possible
limits of these empirical measures {LN (t), t ∈ [0, T ]} when N grows to infinity (high-
dimensional limits). An early result is the derivation of the Wigner semi-circle law as the
only equilibrium point (with finite moments of all orders) of the equation satisfied by the
limit of eigenvalue empirical measure processes in Chan (1992), where the entries of
the symmetric matrix-valued processes are independent Ornstein-Uhlenbeck processes.
The results were later generalized in Rogers and Shi (1993) to the following interacting
particle system

dXi =

√
2α

N
dBi +

−θXi +
α

N

∑
j:j 6=i

1

Xi −Xj

 dt, 1 ≤ i ≤ N, t ≥ 0.

Cépa and Lépingle (1997) further generalized these SDEs to

dXi = σ(Xi)dBi +

b(Xi) +
∑
j:j 6=i

γ

Xi −Xj

 dt, 1 ≤ i ≤ N, t ≥ 0,

with some coefficient functions b, σ and constant γ. Another important case is the
Marčenko-Pastur law for the eigenvalue empirical measure processes derived in Cabanal-
Duvillard and Guionnet (2001). In the framework of free probability theory, the semi-
circle law and Marčenko-Pastur law arise naturally as a consequence of the central limit
theorem (CLT) for free random variables (Voiculescu (1991); Voiculescu et al. (1992)).
We refer the interested reader to Hiai and Petz (2000); Mingo and Speicher (2017) and
the references therein for this topic.

The eigenvalue SDEs (1.2) generalize the eigenvalue SDEs in Chan (1992) and
Cabanal-Duvillard and Guionnet (2001), as well as the particle system in Rogers and
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Shi (1993). High-dimensional limits for these eigenvalue SDEs appeared very recently
in Song et al. (2020) and Małecki and Pérez (2019). Particularly in the former article,
it was proved that under proper conditions, {LN (t), t ∈ [0, T ]}N∈N is relatively compact
in (C[0, T ],M1(R)) almost surely. Here M1(R) is the set of probability measures on R
endowed with the topology induced by the weak convergence of measures.

Furthermore, any limit measure {µt, t ∈ [0, T ]} from a converging subsequence
satisfies ∫

µt(dx)

z − x
=

∫
µ0(dx)

z − x
+

∫ t

0

[∫
b(x)

(z − x)2
µs(dx)

]
ds

+

∫ t

0

[∫∫
G(x, y)

(z − x)(z − y)2
µs(dx)µs(dy)

]
ds, ∀z ∈ C \R, (1.4)

with
b(x) = lim

N→∞
bN (x) and G(x, y) = lim

N→∞
NGN (x, y), (1.5)

uniformly. To obtain the convergence of the relatively compact sequence of empirical
measures {LN (t), t ∈ [0, T ]}n∈N, one would expect the solution of (1.4) to be unique. The
uniqueness can be obtained under proper conditions for some symmetric matrix-valued
processes, e.g., Dyson’s Brownian motion (Anderson et al. (2010); Chan (1992); Rogers
and Shi (1993)), matrix-valued Ornstein-Uhlenbeck process (Chan (1992); Rogers and Shi
(1993)), Wishart process (Cabanal-Duvillard and Guionnet (2001)), self-similar processes
(Song et al. (2020)), and Dyson’s Brownian motion with a drift (Cépa and Lépingle
(1997); Fontbona (2004); Li et al. (2020)). However, general conditions on the coefficient
functions in (1.4) that guarantee the uniqueness of the solution are still unknown. In
particular, Małecki and Pérez (2019) provided examples of (1.4) which have at least two
solutions.

We aim to study the fluctuations of {LN (t), t ∈ [0, T ]} of the eigenvalue SDE (1.2)
around the limit {µt, t ∈ [0, T ]} as N →∞, up to considering a subsequence. Indeed, we
shall consider the following general particle system introduced in Graczyk and Małecki
(2014) which includes (1.2) as a particular case: for 1 ≤ i ≤ N ,

dxNi (t) = σN (xNi (t))dWi(t) +

bN (xNi (t)) +
∑
j:j 6=i

HN (xNi (t), xNj (t))

xNi (t)− xNj (t)

 dt, t ≥ 0, (1.6)

with HN (x, y) being a symmetric function. Under proper conditions, the existence and
uniqueness of the non-colliding strong solution was obtained in Graczyk and Małecki
(2014), and it was shown in Song et al. (2020) that the family of empirical measures
{LN (t), t ∈ [0, T ]}n∈N given by

LN (t) =
1

N

N∑
i=1

δxN
i (t) (1.7)

is tight almost surely, and any limit {µt, t ∈ [0, T ]} satisfies∫
µt(dx)

z − x
=

∫
µ0(dx)

z − x
+

∫ t

0

[∫
b(x)

(z − x)2
µs(dx)

]
ds+

∫ t

0

[∫
σ(x)2

(z − x)3
µs(dx)

]
ds

+

∫ t

0

[∫∫
H(x, y)

(z − x)(z − y)2
µs(dx)µs(dy)

]
ds, ∀z ∈ C \R, (1.8)

where the continuous functions b(x), σ(x) and H(x, y) are the uniform limits of bN (x),
σN (x) and NHN (x, y), respectively.
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Up to considering a subsequence, we can assume, without loss of generality, the
uniqueness of the limit process {µt, t ∈ [0, T ]}. Consider the random fluctuations,

LNt (f) = N〈f, LN (t)− µt〉 =

N∑
i=1

f(λNi (t))−N〈f, µt〉, N ∈ N, (1.9)

where f belongs to an appropriate space of test functions and

〈f, µ〉 =

∫
f(x)µ(dx),

for a measure µ on R.
The main purpose of the paper is to find, as N →∞, a Gaussian limit for the centered

process

QNt (f) = LNt (f)− LN0 (f)−
∫ t

0

LNs (f ′b)ds− 1

2

∫ t

0

∫
f ′′(x)

(
σ̃2(x)−H(x, x)

)
µs(dx)ds

−
∫ t

0

LNs
(∫

f ′(x)− f ′(y)

x− y
H(x, y)µs(dx)

)
ds

− N

2

∫ t

0

∫∫
f ′(x)− f ′(y)

x− y
H(x, y)

[
LN (s)(dx)− µs(dx)

][
LN (s)(dy)− µs(dy)

]
ds,

(1.10)

where σ̃(x) is the uniform limit of
√
NσN (x).

To our best knowledge, the problem of fluctuations for empirical measures of eigen-
value processes was first studied in Cabanal-Duvillard (2001) and later extended in
Anderson et al. (2010). More precisely, Cabanal-Duvillard (2001) considered Dyson’s
Brownian motion and Wishart process with null initial condition, and established CLT for
polynomial test functions; (Anderson et al., 2010, Theorem 4.3.20) extended the result
for Dyson’s Brownian motion by allowing bounded initial condition. Similar results were
also obtained in Pérez-Abreu and Tudor (2007) and Perez-Abreu and Tudor (2009).

The rest of this paper is organized as follows.
In Section 2, we establish CLTs for the empirical measures of the general particle

system (1.6). The space F of test functions is given by (2.1), which in general does not
necessarily contain the set of all polynomials.

In Section 3, we apply the results in Section 2 to obtain CLTs for the eigenvalues
of Wishart process in Section 3.2, for Dyson’s Brownian motion in Section 3.3, and for
the eigenvalues of symmetric matrix-valued Ornstein-Uhlenbeck process in Section 3.4,
respectively. Note that in these three cases, one key ingredient is the following uniform
bound for the moments of the eigenvalue processes

E

[
sup
t∈[0,T ]

〈|x|p, LN (t)〉

]
≤ Cp, (1.11)

which enables us to obtain more precise CLTs for a larger class of test functions (in
comparison with F given in (2.1)). For Dyson’s Brownian motion, such bound was
obtained in Anderson et al. (2010) by using the explicit joint density function of the
eigenvalues (see Lemma 4.3.17 therein). This density approach is developed here in full
detail for the Wishart case (Section 3.2). However, for more general particle systems
that we consider in this paper, as the joint density functions are not available, some new
tool is needed in order to derive the uniform moment bound (1.11). We thus establish in
Section 3.1 a comparison principle for the particle system (1.6), which is also of interest
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in itself. This comparison principle allows to obtain the uniform bound (1.11) and then
extend the CLTs to a larger class of particle systems (Corollaries 3.7, 3.10 and 3.12).

Furthermore, due to the special structures of Wishart process, Dyson’s Brownian mo-
tion, and matrix-valued Ornstein-Uhlenbeck process, we are able to directly characterize
the fluctuations {Lt(xn), t ∈ [0, T ]}n∈N, where Lt(xn) is the limit of LNt (xn), by recursive
formulas (see Theorems 3.5, 3.8, 3.11 and the remarks thereafter). For Dyson’s Brown-
ian motion and Wishart process, our CLTs provide extensions of the existing results in
Cabanal-Duvillard (2001) and Anderson et al. (2010), while the CLT obtained in Section
3.4 for the eigenvalue processes of matrix-valued Ornstein-Uhlenbeck process seems to
be new.

Finally, some useful lemmas are provided in Appendix A.

2 Central limit theorems

In this section, we derive a central limit theorem for the empirical measure (1.7) of
the particle system (1.6).

Let Ckb (R) be the space of bounded continuous real-valued functions with bounded
continuous derivatives (up to the order k). Recall that the continuous functions b(x),
σ(x) and H(x, y) are the uniform limits of bN (x), σN (x) and NHN (x, y), respectively, and
QNt (f) is defined in (1.10). We use the following space of test functions

F =

{
f ∈ C2

b (R) : ‖f ′(x)b(x)‖L∞(R) <∞,
∥∥∥∥f ′(x)− f ′(y)

x− y
H(x, y)

∥∥∥∥
L∞(R2)

<∞,

‖f ′(x)σ̃(x)‖L∞(R) <∞,
∥∥f ′′(x)σ̃2(x)

∥∥
L∞(R)

<∞

}
, (2.1)

where the continuous function σ̃(x) is the uniform limit of
√
NσN (x).

Remark 2.1. For Dyson’s Brownian motion, σN (x) =
√

2√
N
, bN (x) = 0, HN (x, y) = 1

N (see

also Section 3.3). Thus, the space F of test functions is C2
b (R). For Wishart process,

σN (x) = 2
√
x√
N
, bN (x) = P

N , HN (x, y) = x+y
N (see also Section 3.2), the limits of the

coefficient functions are σ̃(x) = 2
√
x, b(x) = c and H(x, y) = x+ y. In this case, F is the

set of functions f(x) in C2
b (R) satisfying ‖

√
xf ′(x)‖L∞(R) < ∞ and ‖xf ′′(x)‖L∞(R) < ∞.

For Ornstein-Uhlenbeck process, σN (x) = 1√
N
, bN (x) = − 1

2x, HN (x, y) = 1
2N (see also

Section 3.4), and correspondingly σ̃(x) = 1, b(x) = − 1
2x and H(x, y) = 1

2 . In this case,
F is the set of functions f(x) in C2

b (R) satisfying ‖xf ′(x)‖L∞(R) < ∞. In Sections 3.2,
3.3 and 3.4, we will develop CLTs for a larger class of test functions which includes all
polynomials for these three cases, respectively.

Theorem 2.2. Suppose that

lim
N→∞

N‖bN (x)− b(x)‖L∞(R) = 0;

lim
N→∞

N‖NHN (x, y)−H(x, y)‖L∞(R2) = 0.
(2.2)

Also assume that (1.6) has a non-exploding and non-colliding strong solution, such that
the sequence of the empirical measures {LN (t), t ∈ [0, T ]}N∈N converges weakly to
{µt, t ∈ [0, T ]}.

Then, for any k ∈ N and any f1, . . . , fk ∈ F, (QNt (f1), . . . , QNt (fk))t∈[0,T ] converges in
distribution to a centered Gaussian process (Gt(f1), . . . , Gt(fk))t∈[0,T ] with covariance

E [Gt(fi)Gs(fj)] =

∫ t∧s

0

〈f ′i(x)f ′j(x)σ̃2(x), µu〉du, 1 ≤ i, j ≤ k. (2.3)
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Proof. By Itô’s formula and (1.6), for f ∈ C2(R),

df(xNi (t)) = f ′(xNi (t))σN (xNi (t))dWi(t) + f ′(xNi (t))bN (xNi (t))dt

+
∑
j:j 6=i

f ′(xNi (t))HN (xNi (t), xNj (t))

xNi (t)− xNj (t)
dt+

1

2
f ′′(xNi (t))(σN (xNi (t)))2dt.

Thus, we have, noting that HN (x, y) is symmetric,

〈f, LN (t)〉 =
1

N

N∑
i=1

f(xNi (t))

=
1

N

N∑
i=1

f(xNi (0)) +
1

N

N∑
i=1

∫ t

0

f ′(xNi (s))σN (xNi (s))dWi(s)

+
1

N

N∑
i=1

∫ t

0

f ′(xNi (s))bN (xNi (s))ds+
1

N

∫ t

0

N∑
i 6=j

f ′(xNi (s))HN (xNi (s), xNj (s))

xNi (s)− xNj (s)
ds

+
1

2N

N∑
i=1

∫ t

0

f ′′(xNi (s))(σN (xNi (s)))2ds

=
1

N

N∑
i=1

f(xNi (0)) +
1

N

N∑
i=1

∫ t

0

f ′(xNi (s))σN (xNi (s))dWi(s)

+
1

N

N∑
i=1

∫ t

0

f ′(xNi (s))bN (xNi (s))ds+
1

2N

N∑
i=1

∫ t

0

f ′′(xNi (s))(σN (xNi (s)))2ds

+
1

2N

∫ t

0

N∑
i 6=j

f ′(xNi (s))− f ′(xNj (s))

xNi (s)− xNj (s)
HN (xNi (s), xNj (s))ds

=〈f, LN (0)〉+MN
f (t) +

∫ t

0

〈f ′bN , LN (s)〉ds+
1

2

∫ t

0

〈f ′′(σN )2, LN (s)〉ds

+
1

2N

∫ t

0

N∑
i,j=1

f ′(xNi (s))− f ′(xNj (s))

xNi (s)− xNj (s)
HN (xNi (s), xNj (s))ds

− 1

2N

∫ t

0

N∑
i=1

f ′′(xNi (s))HN (xNi (s), xNi (s))ds

=〈f, LN (0)〉+MN
f (t) +

∫ t

0

〈f ′bN , LN (s)〉ds

+
1

2

∫ t

0

∫
f ′′(x)

(
(σN (x))2 −HN (x, x)

)
LN (s)(dx)ds

+
N

2

∫ t

0

∫∫
f ′(x)− f ′(y)

x− y
HN (x, y)LN (s)(dx)LN (s)(dy)ds, (2.4)

where we use the convention f ′(x)−f ′(y)
x−y = f ′′(x) if x = y, and

MN
f (t) =

1

N

N∑
i=1

∫ t

0

f ′(xNi (s))σN (xNi (s))dWi(s) (2.5)

is a local martingale with quadratic variation

〈MN
f 〉t =

1

N2

N∑
i=1

∫ t

0

(
f ′(xNi (s))σN (xNi (s))

)2
ds =

1

N

∫ t

0

〈|f ′σN |2, LN (s)〉ds. (2.6)
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Recall that the limit measure µt satisfies (1.8). For f ∈ F, under condition (2.2), one may
apply the approach used in the proof of Theorem 1 in Małecki and Pérez (2019) (see also
Theorem 2.2 in Song et al. (2020)) to get, noting that σ(x) ≡ 0,

〈f, µt〉 =〈f, µ0〉+

∫ t

0

〈f ′b, µs〉ds+
1

2

∫ t

0

∫∫
f ′(x)− f ′(y)

x− y
H(x, y)µs(dx)µs(dy)ds. (2.7)

Thus, (2.4) and (2.7) yield

LNt (f) = N〈f, LN (t)− µt〉
= N〈f, LN (0)− µ0〉+NMN

f (t)

+N

∫ t

0

(
〈f ′bN , LN (s)〉 − 〈f ′b, µs〉

)
ds

+
N

2

∫ t

0

∫
f ′′(x)

(
(σN (x))2 −HN (x, x)

)
LN (s)(dx)ds

+
N

2

∫ t

0

∫∫
f ′(x)− f ′(y)

x− y

[
NHN (x, y)LN (s)(dx)LN (s)(dy)−H(x, y)µs(dx)µs(dy)

]
ds.

(2.8)

The third term on the right-hand side of (2.8) can be written as

N

∫ t

0

(
〈f ′bN , LN (s)〉 − 〈f ′b, µs〉

)
ds

= N

∫ t

0

〈f ′bN − f ′b, LN (s)〉ds+N

∫ t

0

〈f ′b, LN (s)− µs〉ds

= N

∫ t

0

〈f ′bN − f ′b, LN (s)〉ds+

∫ t

0

LNs (f ′b)ds.

Thus, by (2.2), we have

lim
N→∞

∣∣∣∣N ∫ t

0

(
〈f ′bN , LN (s)〉 − 〈f ′b, µs〉

)
ds−

∫ t

0

LNs (f ′b)ds

∣∣∣∣
≤ lim
N→∞

N

∫ t

0

|〈f ′bN − f ′b, LN (s)〉| ds

≤ lim
N→∞

NT‖f ′‖L∞(R)‖bN − b‖L∞(R) = 0. (2.9)

For the fourth term on the right-hand side of (2.8),

N

2

∫ t

0

∫
f ′′(x)

(
(σN (x))2 −HN (x, x)

)
LN (s)(dx)ds

=
1

2

∫ t

0

∫
f ′′(x)

(
N(σN (x))2 − σ̃2(x) +H(x, x)−NHN (x, x)

)
LN (s)(dx)ds

+
1

2

∫ t

0

∫
f ′′(x)

(
σ̃2(x)−H(x, x)

)
LN (s)(dx)ds.

Noting that both convergences
√
NσN → σ̃ and NHN (x, x) → H(x, x) are uniform as
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N →∞, we have

∣∣∣∣N2
∫ t

0

f ′′(x)
(
(σN (x))2 −HN (x, x)

)
LN (s)(dx)ds

−1

2

∫ t

0

∫
f ′′(x)

(
σ̃2(x)−H(x, x)

)
µs(dx)ds

∣∣∣∣
≤
∣∣∣∣12
∫ t

0

∫
f ′′(x)

(
N(σN (x))2 − σ̃2(x) +H(x, x)−NHN (x, x)

)
LN (s)(dx)ds

∣∣∣∣
+

∣∣∣∣12
∫ t

0

∫
f ′′(x)

(
σ̃2(x)−H(x, x)

) (
LN (s)(dx)− µs(dx)

)
ds

∣∣∣∣
≤T

2
‖f ′′‖L∞(R)

∥∥N(σN (x))2 − σ̃2(x) +H(x, x)−NHN (x, x)
∥∥
L∞(R)

+
1

2

∣∣∣∣∫ t

0

〈
f ′′(x)

(
σ̃2(x)−H(x, x)

)
, LN (s)(dx)− µs(dx)

〉
ds

∣∣∣∣
−→ 0, (2.10)

as N → ∞, where the last step follows from the weak convergence of {LN (t), t ∈
[0, T ]}N∈N and the continuity and boundedness of f ′′(x)

(
σ̃2(x)−H(x, x)

)
for f ∈ F.

The fifth term on the right-hand side of (2.8) can be written as

N

2

∫ t

0

∫∫
f ′(x)− f ′(y)

x− y

[
NHN (x, y)LN (s)(dx)LN (s)(dy)−H(x, y)µs(dx)µs(dy)

]
ds

=
N

2

∫ t

0

∫∫
f ′(x)− f ′(y)

x− y

[
NHN (x, y)−H(x, y)

]
LN (s)(dx)LN (s)(dy)ds

+
N

2

∫ t

0

∫∫
f ′(x)− f ′(y)

x− y
H(x, y)

[
LN (s)(dx)− µs(dx)

][
LN (s)(dy)− µs(dy)

]
ds

+
N

2

∫ t

0

∫∫
f ′(x)− f ′(y)

x− y
H(x, y)µs(dx)

[
LN (s)(dy)− µs(dy)

]
ds

+
N

2

∫ t

0

∫∫
f ′(x)− f ′(y)

x− y
H(x, y)

[
LN (s)(dx)− µs(dx)

]
µs(dy)ds

=
N

2

∫ t

0

∫∫
f ′(x)− f ′(y)

x− y

[
NHN (x, y)−H(x, y)

]
LN (s)(dx)LN (s)(dy)ds

+
N

2

∫ t

0

∫∫
f ′(x)− f ′(y)

x− y
H(x, y)

[
LN (s)(dx)− µs(dx)

][
LN (s)(dy)− µs(dy)

]
ds

+

∫ t

0

LNs
(∫

f ′(x)− f ′(y)

x− y
H(x, y)µs(dx)

)
ds, (2.11)

where the last equality follows from the symmetry of f
′(x)−f ′(y)
x−y H(x, y). For the first term

on the right-hand side of (2.11), by (2.2), we have

lim
N→∞

∣∣∣∣N2
∫ t

0

∫∫
f ′(x)− f ′(y)

x− y
[NHN (x, y)−H(x, y)]LN (s)(dx)LN (s)(dy)ds

∣∣∣∣
≤ lim
N→∞

NT

2

∥∥∥∥f ′(x)− f ′(y)

x− y

∥∥∥∥
L∞(R2)

‖NHN (x, y)−H(x, y)‖L∞(R2) = 0. (2.12)

Therefore, by (1.10), (2.8) and the above estimations (2.9), (2.10), (2.11), and (2.12),
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we have that the term

QNt (f)−NMN
f (t)

= LNt (f)− LN0 (f)−NMN
f (t)−

∫ t

0

LNs (f ′b)ds

− 1

2

∫ t

0

〈
f ′′(x)

(
σ̃2(x)−H(x, x)

)
, µs(dx)

〉
ds

−
∫ t

0

LNs
(∫

f ′(x)− f ′(y)

x− y
H(x, y)µs(dx)

)
ds

− N

2

∫ t

0

∫∫
f ′(x)− f ′(y)

x− y
H(x, y)

[
LN (s)(dx)− µs(dx)

][
LN (s)(dy)− µs(dy)

]
ds (2.13)

converges to 0 almost surely as N →∞, uniformly in t ∈ [0, T ]. Note that in (2.9), (2.10)
and (2.12), the integrand function is bounded, and hence the convergence is also in
Lp for all p ≥ 1. Thus, QNt (f) − NMN

f (t) with f ∈ F converges to 0 in Lp for all p ≥ 1

uniformly in t ∈ [0, T ].
Therefore, to prove the desired result, it suffices to show that, for any k ∈ N and

f1, . . . , fk ∈ F, the vector-valued process (NMN
f1

(t), NMN
f2

(t), . . . , NMN
fk

(t))t∈[0,T ] con-
verges in distribution to a centered Gaussian process (Gt(f1), Gt(f2), . . . , Gt(fk))t∈[0,T ]

with covariance given by (2.3). To this end, by Lemma A.1 it suffices to prove that
{NMN

f (t), t ∈ [0, T ]}N∈N are martingales for f ∈ F such that the following limit holds in
L1(Ω),

lim
N→∞

〈NMN
f1 , NM

N
f2 〉t =

∫ t

0

〈f ′1f ′2σ̃2, µs〉ds, ∀f1, f2 ∈ F.

By the uniform convergence of
√
NσN towards σ̃, the boundedness of f ′(x)σ̃(x) and

(2.6), one can show that {NMN
f (t), t ∈ [0, T ]}N∈N are martingales. It follows from (2.5)

that, for f1, f2 ∈ F,

〈NMN
f1 , NM

N
f2 〉t =

N∑
i=1

∫ t

0

f ′1(xNi (s))f ′2(xNi (s))(σN (xNi (s)))2ds

= N

∫ t

0

〈f ′1f ′2(σN )2, LN (s)〉ds

=

∫ t

0

〈f ′1f ′2(N(σN )2 − σ̃2), LN (s)〉ds+

∫ t

0

〈f ′1f ′2σ̃2, LN (s)〉ds.

The term
∫ t

0
〈f ′1f ′2(N(σN )2 − σ̃2), LN (s)〉ds converges to 0 a.s. and in Lp for all p ≥ 1 due

to the boundedness of f ′1(x) and f ′2(x) and the uniform convergence of
√
NσN towards σ̃.

Furthermore, the following convergence

lim
N→∞

∫ t

0

〈f ′1f ′2σ̃2, LN (s)〉ds =

∫ t

0

〈f ′1f ′2σ̃2, µs〉ds,

holds a.s. and in Lp for all p ≥ 1, because of the weak convergence of {LN (t), t ∈
[0, T ]}N∈N to {µt, t ∈ [0, T ]} and the boundedness of f ′1f

′
2σ̃

2. Therefore, 〈NMN
f1
, NMN

f2
〉t

converges to
∫ t

0
〈f ′1f ′2σ̃2, µs〉ds a.s. and in Lp for all p ≥ 1.

The proof is concluded.

If the particles in (1.6) are bounded, the test function space F can be enlarged by
removing the boundedness condition in Theorem 2.2.
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Corollary 2.3. Assume the same conditions as in Theorem 2.2. Moreover, for T < ∞,
assume that

lim sup
N→∞

sup
t∈[0,T ]

max
1≤i≤N

∣∣xNi (t)
∣∣ ≤ C(T ), (2.14)

almost surely for some constant C(T ) depending on T . Then Theorem 2.2 still holds if
the set F of test function is replaced by C2(R).

Proof. Note that by (2.14), all but finitely many terms in {supt∈[0,T ] max1≤i≤N |xNi (t)|}N∈N
are bounded by A(T ) = C(T ) + 1 a.s.. Thus, there exists a measurable set A ⊂ Ω with
P(A) = 1 and a random variable N0(ω) ∈ N, such that for ω ∈ A, the empirical mea-
sures {LN (t)(ω), t ∈ [0, T ]} is supported in [−A(T ), A(T )] for all N ≥ N0(ω). Hence the
limit {µt, t ∈ [0, T ]} also has the same support. By (Rudin, 1991, 1.46), there exists
a cut-off function η(x) ∈ C∞(R) equal to 1 on [−A(T ), A(T )], of which the support is
[−2A(T ), 2A(T )]. If we replace f by fη, noting that fη ∈ F for f ∈ C2(R) and that fη = f

on [−A(T ), A(T )], we can show that the term QNt (f)−NMN
f (t) in (2.13) converges to 0

a.s. using the same argument as in the proof of Theorem 2.2. Then following the rest
part of the proof, it is easy to get the result of Theorem 2.2.

Remark 2.4. Under the conditions in Theorem 2.2, (2.14) yields almost sure conver-
gence of QNt (f)−NMN

f (t) towards 0 for f ∈ C2(R). However, it is not clear whether the
convergence also holds in Lp for p ≥ 1.

The following corollary provides a sufficient condition for Lp-convergence for p ≥ 1.

Corollary 2.5. Assume the same conditions as in Theorem 2.2. For T <∞ and all p ≥ 1

and all N ≥ cp for some positive constant c, assume that

E

[
sup
t∈[0,T ]

〈|x|p, LN (t)〉

]
≤ C(T )p, (2.15)

for some positive constant C(T ) which depends only on T . Furthermore, assume that
(σ̃(x)2 − H(x, x))f ′′(x) and its derivative has at most polynomial growth. Then for
f ∈ C3(R) of which the derivatives have at most polynomial growth, QNt (f)−NMN

f (t)

converges to 0 in Lp for all p ≥ 1 uniformly in t ∈ [0, T ].

Proof. By the analysis in the proof of Theorem 2.2, it suffices to show

lim sup
N→∞

E

[
sup
t∈[0,T ]

|〈g, LN (t)〉 − 〈g, µt〉|p
]

= 0, (2.16)

for p ≥ 1 and g ∈ C1(R) of which the derivative has at most polynomial growth. More
precisely, one can check that under conditions (2.15) and (2.16), the convergences to
0 in (2.9), (2.10) and (2.12) are uniform in Lp, and hence QNt (f) − NMN

f (t) in (2.13)
converges to 0 in Lp uniformly.

By Markov inequality and (2.15),

P

(
sup
t∈[0,T ]

max
1≤i≤N

|xNi (t)| > C(T ) + 1

)
≤ (C(T ) + 1)−pE

[
sup
t∈[0,T ]

max
1≤i≤N

|xNi (t)|p
]

≤ (C(T ) + 1)−pNE

[
sup
t∈[0,T ]

〈|x|p, LN (t)〉

]

≤ N
(

C(T )

C(T ) + 1

)p
.
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Choosing p = ln2N , we have

∞∑
N=1

P

(
sup
t∈[0,T ]

max
1≤i≤N

|xNi (t)| > C(T ) + 1

)
≤
∞∑
N=1

N

(
C(T )

C(T ) + 1

)p
=

∞∑
N=1

N1+lnN ln
C(T )

C(T )+1

<∞.

By Borel-Cantelli lemma, we get that almost surely,

lim sup
N→∞

sup
t∈[0,T ]

max
1≤i≤N

∣∣xNi (t)
∣∣ ≤ C(T ) + 1.

By the proof of Corollary 2.3, the limiting measure {µt, t ∈ [0, T ]} is supported in
[−C(T )− 1, C(T ) + 1].

For g ∈ C1(R) with |g′(x)| ≤ a|x|n−1 + b for some a, b ∈ R, n ∈ N+, define

gδ(x) = g

(
x

1 + δx2

)
for δ > 0. Then gδ(x) is a bounded continuous function, and hence

lim
N→∞

sup
t∈[0,T ]

|〈gδ, LN (t)〉 − 〈gδ, µt〉| = 0,

almost surely. By dominated convergence theorem,

lim
N→∞

E

[
sup
t∈[0,T ]

|〈gδ, LN (t)〉 − 〈gδ, µt〉|p
]

= 0. (2.17)

Note that g′(x) grows no faster than polynomials of degree n− 1, by the mean value
theorem, it is not difficult to show |g(x)− gδ(x)| ≤ Cδ(|x|n+2 + |x|3), which implies that
gδ converges to g uniformly in any compact interval as δ → 0+. Thus,

lim
δ→0+

sup
t∈[0,T ]

|〈g, µt〉 − 〈gδ, µt〉| = 0. (2.18)

Finally, by Jensen’s inequality and (2.15), we obtain that, as δ → 0+,

E

[
sup
t∈[0,T ]

|〈g, LN (t)〉 − 〈gδ, LN (t)〉|p
]

≤ CpδpE

[
sup
t∈[0,T ]

|〈|x|n+2 + |x|3, LN (t)〉|p
]

≤ CpδpE

[
sup
t∈[0,T ]

|〈(|x|n+2 + |x|3)p, LN (t)〉|

]
≤ 2pCp(C(T )(n+2)p + C(T )3p)δp → 0 (2.19)

uniformly in N ∈ N+.
By (2.17), (2.18), (2.19) and the triangle inequality, we can obtain (2.16), and the

proof is concluded.

Remark 2.6. The proof of Corollary 2.5 clearly shows that condition (2.15) implies
condition (2.14). Therefore, under (2.15), for the test function f satisfying conditions in
Corollary 2.5, QNt (f)−NMN

f (t) converges to 0 a.s. and in Lp for all p ≥ 1 uniformly in
t ∈ [0, T ]. As a consequence, Theorem 2.2 holds for such test functions.
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To end this section, we provide the following linear property for the Gaussian family
{Gt(f), f ∈ F} obtained in Theorem 2.2.

Proposition 2.7. Consider the centered Gaussian family {Gt(f), f ∈ F} with covariance

E [Gt(f)Gt(g)] =

∫ t

0

〈f ′(x)g′(x)σ̃2(x), µu〉du, ∀f, g ∈ F.

For f1, f2 ∈ F and α1, α2 ∈ R, we have

Gt(α1f1 + α2f2) = α1Gt(f1) + α2Gt(f2), ∀t ∈ [0, T ], (2.20)

almost surely.

Proof. For f1, f2 ∈ F and α1, α2 ∈ R, it is easy to check that α1f1 + α2f2 ∈ F. By
the proof of Theorem 2.2, the random vector (NMN

f1
(t), NMN

f2
(t), NMN

α1f1+α2f2
(t))t∈[0,T ]

converges in distribution to (Gt(f1), Gt(f2), Gt(α1f1 + α2f2))t∈[0,T ]. Hence, the linear
combination (α1NM

N
f1

(t) +α2NM
N
f2

(t)−NMN
α1f1+α2f2

(t))t∈[0,T ] converges in distribution
to (α1Gt(f1) + α2Gt(f2)−Gt(α1f1 + α2f2))t∈[0,T ].

By (2.5), we can see that the martingale MN
f (t) is linear with respect to the function

f , so α1NM
N
f1

(t) + α2NM
N
f2

(t) = NMN
α1f1+α2f2

(t) for all t ∈ [0, T ] and all N ∈ N, which

implies that the process (α1NM
N
f1

(t) + α2NM
N
f2

(t)−NMN
α1f1+α2f2

(t))t∈[0,T ] is actually a
zero process. Thus, as the limit of the convergence in distribution, (α1Gt(f1)+α2Gt(f2)−
Gt(α1f1 + α2f2))t∈[0,T ] is also a zero process, which implies (2.20).

3 Applications

In this section, we first provide a comparison principle in Section 3.1, and then we
apply our main results obtained in Section 2 to the eigenvalues of Wishart process
(Section 3.2), Dyson’s Brownian motion (Section 3.3) and the eigenvalues of symmetric
matrix-valued Ornstein-Uhlenbeck process (Section 3.4).

For these three cases, we are able to obtain the boundedness of the moments for
the empirical measures assuming proper initial conditions (see Lemma 3.4 for Wishart
process, Eq. (3.30) for Dyson’s Brownian motion, and Eq. (3.45) for Ornstein-Uhlenbeck
process). This enables us to apply Corollary 2.5 and Remark 2.6. As a consequence,
the CLT in Theorem 2.2 holds for a larger space of test functions consisting of all
the functions in C3(R) of which the derivatives have at most polynomial growth. In
particular, if we choose the space R[x] of polynomial functions as the space of test
functions, we are able to obtain recursive formulas for the basis {Lt(xn), t ∈ [0, T ]}n∈N of
{Lt(f), t ∈ [0, T ]}f∈R[x]. Note that these results are more precise than the general results
in Section 2, where we study the centered processes {QNt (f)}N∈N for more restricted
test functions f ∈ F ⊂ C2

b (R), recalling that F is given in (2.1).

3.1 Comparison principle

In this subsection, we provide comparison principles for SDE (1.2) and particle system
(1.6), which allow us to obtain the boundedness of the eigenvalues/particles under more
general initial conditions in Sections 3.2, 3.3 and 3.4.

Throughout this subsection, the dimension N is fixed and thus subscripts/superscripts
are removed. Precisely, consider the following two particle systems: for 1 ≤ i ≤ N, t ≥ 0,dxi(t) = σi(xi(t))dWi(t) +

(
bi(xi(t)) +

∑
j:j 6=i

Hij(xi(t), xj(t))

xi(t)− xj(t)

)
dt,

x1(t) ≤ . . . ≤ xN (t),

(3.1)
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and dyi(t) = σi(yi(t))dWi(t) +

(
b̃i(yi(t)) +

∑
j:j 6=i

Hij(yi(t), yj(t))

yi(t)− yj(t)

)
dt,

y1(t) ≤ . . . ≤ yN (t),

(3.2)

with non-colliding initial values x(0) = (x1(0), . . . , xN (0)) and y(0) = (y1(0), . . . , yN (0)),
respectively. Here, the functions σi(x), bi(x) and b̃i(x) for 1 ≤ i ≤ N are continuous, and
Hij(x, y) with i 6= j is a continuous, non-negative and symmetric function satisfying the
condition (Graczyk and Małecki, 2014, (A1)):

Hij(w, z)

z − w
≤ Hij(x, y)

y − x
, ∀w < x < y < z, 1 ≤ i 6= j ≤ N. (3.3)

Note that conditions for the existence and uniqueness of a non-colliding and non-
exploding strong solution to (3.1) (or (3.2)) were obtained in Graczyk and Małecki (2014).
In particular, under conditions (A2) – (A5) therein, the particles will separate from each
other immediately after starting from a colliding initial state, and will not collide forever.

Theorem 3.1. Suppose x(t) = (x1(t), . . . , xN (t)) and y(t) = (y1(t), . . . , yN (t)) are the
non-exploding and non-colliding unique strong solutions to (3.1) and (3.2), respectively.
Assume that there exists a strictly increasing function ρ : [0,∞)→ [0,∞) with ρ(0) = 0

and ∫
0+

ρ−2(u)du =∞,

such that

|σi(u)− σi(v)| ≤ ρ(|u− v|), ∀u, v ∈ R, 1 ≤ i ≤ N.

If we further assume that bi(u) ≤ b̃i(u) for all u ∈ R, and xi(0) ≤ yi(0) a.s., 1 ≤ i ≤ N ,
then

P (xi(t) ≤ yi(t),∀t ≥ 0, 1 ≤ i ≤ N) = 1.

Proof. The continuity of the functions Hij and the condition (3.3) imply that for all
1 ≤ i 6= j ≤ N ,

Hij(x, z)

x− z
≥ Hij(x, y)

x− y
, ∀x < y ≤ z,

and

Hij(w, y)

y − w
≤ Hij(x, y)

y − x
, ∀w ≤ x < y.

Hence, the drift functions

F (u) =

bi(ui) +
∑
j:j 6=i

Hij(ui, uj)

ui − uj


1≤i≤N

, F̃ (u) =

b̃i(ui) +
∑
j:j 6=i

Hij(ui, uj)

ui − uj


1≤i≤N

,

satisfy the quasi-monotonously increasing condition in Lemma A.2.
In order to apply Lemma A.2 to get the desired result, we use an approximation

argument to remove the singularities of the drift functions F and F̃ . For ε > 0, let

∆ε =
{
u = (u1, . . . , uN ) ∈ RN : ∀1 ≤ i ≤ N − 1, ui+1 − ui > ε

}
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and define the stopping time

τε = inf
t>0

{
min

1≤i≤N−1
(xi+1(t)− xi(t)) ∧ (yi+1(t)− yi(t)) ≤ ε

}
.

One can find continuous quasi-monotonously increasing functions Fε and F̃ε, such that
they coincide with F and F̃ in ∆ε, respectively. Before time τε, both x-particles and
y-particles stay in ∆ε and thus satisfy (3.1) and (3.2) with drift functions F̃ε and F̃ε,
respectively.

Applying Lemma A.2 to the processes xε and yε, we have

P (xεi(t) ≤ yεi (t), ∀ t ≥ 0, 1 ≤ i ≤ N) = 1,

which implies

P (xi(t) ≤ yi(t), ∀t ∈ [0, τε], 1 ≤ i ≤ N) = 1.

The desired result now follows from the non-colliding property limε→0+ τε =∞.

As a corollary of Theorem 3.1, we have the following comparison principle for SDE
(1.2) of eigenvalue processes. Note that the existence and uniqueness of the non-colliding
and non-exploding strong solution was obtained under proper conditions in Graczyk and
Małecki (2013).

Corollary 3.2. Suppose that the following systems of eigenvalue SDEs

dλi(t) = 2gN (λi(t))hN (λNi (t))dWi(t) +

bN (λNi (t)) +
∑
j:j 6=i

GN (λi(t), λj(t))

λi(t)− λj(t)

 dt, 1 ≤ i ≤ N,

λ1(t) ≤ . . . ≤ λN (t), t ≥ 0,

and

dθi(t) = 2gN (θi(t))hN (θNi (t))dWi(t) +

b̃N (θNi (t)) +
∑
j:j 6=i

GN (θi(t), θj(t))

θi(t)− θj(t)

 dt, 1 ≤ i ≤ N,

θ1(t) ≤ . . . ≤ θN (t), t ≥ 0,

with non-colliding initial values λ(0) = (λ1(0), . . . , λN (0)) and θ(0) = (θ1(0), . . . , θN (0)),
respectively, have non-exploding and non-colliding unique strong solutions λ(t) =

(λ1(t), . . . , λN (t)) and θ(t) = (θ1(t), . . . , θN (t)), respectively. Here, gN (x), hN (x), bN (x)

and b̃N (x) are continuous functions, and GN (x, y) = g2
N (x)h2

N (y) + g2
N (y)h2

N (x) satisfies

GN (w, z)

z − w
≤ GN (x, y)

y − x
, ∀w < x < y < z. (3.4)

Assume that there exists a strictly increasing function ρ : [0,∞)→ [0,∞) with ρ(0) = 0

and ∫
0+

ρ−2(u)du =∞,

such that

|gN (u)hN (u)− gN (v)hN (v)| ≤ ρ(|u− v|), ∀u, v ∈ R.

Furthermore, we assume that bN (u) ≤ b̃N (u) for all u ∈ R. If λi(0) ≤ θi(0) for all
1 ≤ i ≤ N almost surely, then

P (λi(t) ≤ θi(t),∀t ≥ 0, 1 ≤ i ≤ N) = 1.
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3.2 Application to eigenvalues of Wishart process

In this subsection, we discuss the limit theorem for Wishart process. As illustrated
in Graczyk and Małecki (2013) and Song et al. (2020), the scaled Wishart process
XN
t = B̃ᵀ(t)B̃(t)/N , where B̃(t) is a P×N matrix-valued Brownian motion with P > N−1,

is the solution to (1.1) with the coefficient functions

gN (x)hN (y) =

√
x√
N
, bN (x) =

P

N
.

The eigenvalue processes now satisfy

dλNi (t) = 2

√
λNi (t)√
N

dWi(t) +

P

N
+

1

N

∑
j:j 6=i

λNi (t) + λNj (t)

λNi (t)− λNj (t)

 dt, 1 ≤ i ≤ N, t ≥ 0. (3.5)

Hence, the eigenvalue processes are the particles in (1.6) with

σN (x) = 2

√
x√
N
, bN (x) =

P

N
, HN (x, y) =

x+ y

N
,

and thus,

NHN (x, y) = H(x, y) = x+ y, b(x) = lim
N→∞

P

N
= c ≥ 1,

√
NσN (x) = σ̃(x) = 2

√
x. (3.6)

By (Graczyk and Małecki, 2019, Theorem 3), all the components of the solution to
(3.5) are non-negative if all the components of the initial value are non-negative. Let
PN be the distribution on ∆N = {x = (x1, x2, . . . , xN ) ∈ RN : 0 < x1 < . . . < xN} with
density

p(x) = CN,P exp

(
−N

2

N∑
i=1

xi

)
N∏
i=1

x
(P−N−1)/2
i

∏
1≤j<i≤N

(xi − xj), (3.7)

where CN,P > 0 is a normalization constant. Then we have the following estimation on
the eigenvalues.

Lemma 3.3. Let ξN = (ξN1 , . . . , ξ
N
N ) be a random vector independent of (W1, . . . ,WN )

with (3.7) as its joint probability density function. Assume that (λN1 (0), . . . , λNN (0)) is
independent of (W1, . . . ,WN ) and that there exists a constant a > 0, such that λNi (0) ≤
aξNi for 1 ≤ i ≤ N almost surely. Then there exists a stationary stochastic process uN (t)

with initial value uN (0) = ξN satisfying, for 1 ≤ i ≤ N and t ≥ 0,

λNi (t) ≤ vNi (t) = (t+ a)uNi (t).

Proof. Consider the following system of SDEs, for 1 ≤ i ≤ N ,

duNi (t) = 2

√
uNi (t)√

N(t+ a)
dWi(t) +

1

t+ a

P

N
− uNi (t) +

1

N

∑
j:j 6=i

uNi (t) + uNj (t)

uNi (t)− uNj (t)

 dt, t ≥ 0,

(3.8)

with initial value uNi (0) = ξNi (0) distributed according to PN and uN1 (t) ≤ . . . ≤ uNN (t).
Note that the pathwise uniqueness proved in (Graczyk and Małecki, 2013, Theorem

2) is still valid if the coefficient functions depend on the time t and the corresponding
conditions therein hold uniformly in t. Furthermore, the boundedness estimation and
the McKean’s argument in (Graczyk and Małecki, 2013, Theorem 5) is also valid when
t ≥ 0. Therefore, the system of SDEs (3.8) has a unique non-colliding strong solution.
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If at any time t, uN (t) has the distributionPN , then Lemma A.3 yields that d
dtE[f(uN (t))]

vanishes for f ∈ C2
b (R). Since uN (0) is distributed according to PN , we can conclude

that (uN (t))t≥0 is a stationary process with marginal distribution PN .

Now let vNi (t) = (t+ a)uNi (t) for 1 ≤ i ≤ N and vN (t) = (vN1 (t), . . . , vNN (t)). Then the
Itô formula shows that vN (t) is a solution to (3.5) with initial value vN (0) = auN (0) = aξN .
Noting that the solution of (3.5) is non-negative and that GN (x, y) = (x + y)/N with
non-negative variables satisfies condition (3.3), we can apply the comparison principle
in Theorem 3.1 to obtain

λNi (t) ≤ vNi (t) = (t+ a)uNi (t).

The proof is concluded.

Lemma 3.4. Assume the same conditions as in Lemma 3.3. Then for any T <∞, there
exists a positive constant C(a, T ) depending only on (a, T ), such that for all p ≥ 1,

E

[
sup
t∈[0,T ]

〈|x|p, LN (t)〉

]
≤ C(a, T )p,

almost surely for N ≥ (2p− 1)/α for some positive constant α.

Proof. Noting that the probability density of uN (t) considered in Lemma 3.3 is (3.7)
for all t, we can obtain the following tail probability estimation with α being a positive
constant independent of N ,

P
(
uNN (t) ≥ x

)
= PN (xN ≥ x) ≤ exp(−αNx), for t ≥ 0. (3.9)

By Lemma 3.3 and (3.9), we have for t ≥ 0,

E
[
λNN (t)k

]
≤ (t+ a)kE

[
uNN (t)k

]
= k(t+ a)k

∫ ∞
0

xk−1P
(
uNN (t) ≥ x

)
dx

≤ k(t+ a)k
∫ ∞

0

xk−1 exp(−αNx)dx =
Γ(k + 1)

(αN)k
(t+ a)k

≤ (t+ a)k, (3.10)

for k ∈ [0, αN ], where Γ(x) is the gamma function.

Now we apply (2.4) and (2.6) with f(x) = xn+2 for n ≥ −1 to obtain

〈xn+2, LN (t)〉 = 〈xn+2, LN (0)〉+MN
xn+2(t) +

(P + n+ 1)(n+ 2)

N

∫ t

0

〈xn+1, LN (s)〉ds

+
n+ 2

2

∫ t

0

∫∫ n∑
k=0

xkyn−k(x+ y)LN (s)(dx)LN (s)(dy)ds. (3.11)

where the martingale term MN
xn+2(t) has the quadratic variation

〈MN
xn+2〉t =

4(n+ 2)2

N2

∫ t

0

〈x2n+3, LN (s)〉ds.

By the Cauchy-Schwarz inequality, Burkholder-Davis-Gundy inequality, Hölder inequality
and the estimation (3.10), for (2n+ 3)q ≤ αN , q ∈ N, and Λq being a positive constant
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depending only on q,

E

[∣∣∣∣∣ sup
u∈[0,t]

MN
xn+2(u)

∣∣∣∣∣
q]
≤

{
E

[
sup
u∈[0,t]

MN
xn+2(u)2q

]}1/2

≤
√

Λq
{
E
[
〈MN

xn+2〉qt
]}1/2 ≤

2q(n+ 2)q
√

Λq

Nq

{
E

[∫ t

0

〈x2n+3, LN (s)〉ds
]q}1/2

=
2q(n+ 2)q

√
Λq

Nq

{
E

[∫ t

0

1

N

N∑
i=1

λNi (s)2n+3ds

]q}1/2

≤
2q(n+ 2)q

√
Λq

Nq

{
E

[∫ t

0

λNN (s)2n+3ds

]q}1/2

≤
2q(n+ 2)q

√
Λq

Nq

{
E

[
tq−1

∫ t

0

λNN (s)(2n+3)qds

]}1/2

≤
2q(n+ 2)q

√
Λq

Nq

{
tq−1

∫ t

0

(s+ a)(2n+3)qds

}1/2

≤2q(n+ 2)q
√

Λqtq(t+ a)(2n+3)q

Nq
. (3.12)

Defining, for k ≥ 1,

ENt (k) = E

[
sup
u∈[0,t]

〈xk, LN (u)〉

]
,

it follows from (3.11) that for n ≥ −1,

ENt (n+ 2)

≤EN0 (n+ 2) + E

[
sup
u∈[0,t]

MN
xn+2(u)

]
+

(P + n+ 1)(n+ 2)

N
E

[
sup
u∈[0,t]

∫ u

0

〈xn+1, LN (s)〉ds

]

+
n+ 2

2
E

[
sup
u∈[0,t]

∫ u

0

∫∫ n∑
k=0

xkyn−k(x+ y)LN (s)(dx)LN (s)(dy)ds

]
. (3.13)

For the third and the fourth terms on the right-hand side of (3.13), we have by (3.10),

(P + n+ 1)(n+ 2)

N
E

[
sup
u∈[0,t]

∫ u

0

〈xn+1, LN (s)〉ds

]

≤ (P + n+ 1)(n+ 2)

N
E

[∫ t

0

|λNN (s)|n+1ds

]
≤ (P + n+ 1)(n+ 2)

N

∫ t

0

(s+ a)n+1ds

≤ (P + n+ 1)(n+ 2)t(t+ a)n+1

N
,
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and

n+ 2

2
E

[
sup
u∈[0,t]

∫ u

0

∫∫ n∑
k=0

xkyn−k(x+ y)LN (s)(dx)LN (s)(dy)ds

]

=
n+ 2

2

n∑
k=0

E

[
sup
u∈[0,t]

∫ u

0

(
〈xk+1, LN (s)〉〈yn−k, LN (s)〉+ 〈xk, LN (s)〉〈yn+1−k, LN (s)〉

)
ds

]

≤ (n+ 2)

2

n∑
k=0

E

[
sup
u∈[0,t]

∫ u

0

(
|λNN (s)|k+1|λNN (s)|n−k + |λNN (s)|k|λNN (s)|n+1−k) ds]

≤ (n+ 2)(n+ 1)E

[∫ t

0

|λNN (s)|n+1ds

]
≤ (n+ 2)(n+ 1)t(t+ a)n+1

for n+ 1 ≤ αN . Hence, by (3.12), (3.13), and the above two estimations, for n ≥ −1 such
that 2n+ 3 ≤ αN and t ∈ [0, T ], we have

ENt (n+ 2) ≤ EN0 (n+ 2) +
2(n+ 2)

√
Λ1t(t+ a)2n+3

N

+
(P + n+ 1)(n+ 2)t(t+ a)n+1

N
+ (n+ 2)(n+ 1)t(t+ a)n+1.

Thus, for all −1 ≤ n ≤ αN−3
2 , noting that EN0 (n+ 2) ≤ E[λNN (0)n+2] ≤ an+2 by (3.10), we

have

ENT (n+ 2) ≤ Cn+2
a,T ,

for some positive constant Ca,T depending on (a, T ) only.
The proof is concluded.

Under the conditions in Lemma 3.3, Lemma 3.4 implies lim supN→∞ supN λ
N
N (0) <∞

almost surely. One can check that the conditions (A) – (D) in Song et al. (2020) are
satisfied, hence {LN (t), t ∈ [0, T ]}n∈N is tight (see also (Song et al., 2020, Remark 3.3)),
and we know that it converges to {µt, t ∈ [0, T ]}, where µt is a scaled Marchenko-Pastur
law. Recall that c = lim

N→∞
P/N and that LNt (f) is defined by (1.9) in Theorem 2.2.

Theorem 3.5. Assume that limN→∞ |P − cN | = 0, and that for any polynomial f(x) ∈
R[x], the initial value LN0 (f) converges in probability to a random variable L0(f). Besides,
assume the same condition on {λNi (0), i = 1, 2, . . . , N} as in Lemma 3.3 for all N ∈ N.
Furthermore, assume that for all n ∈ N,

sup
N
E[|N(〈xn, LN (0)〉 − 〈xn, µ0〉)|q] <∞, (3.14)

for all q ≥ 1. Then for any 0 < T < ∞, there exists a family of processes {Lt(f), t ∈
[0, T ]}f∈R[x], such that for any n ∈ N and any polynomials P1, . . . , Pn ∈ R[x], the vector-
valued process (LNt (P1), . . . ,LNt (Pn))t∈[0,T ] converges to (Lt(P1), . . . ,Lt(Pn))t∈[0,T ] in dis-
tribution, as N →∞.

The limit processes {Lt(f), t ∈ [0, T ]}f∈R[x] are characterized by the following proper-
ties.

1. For P1, P2 ∈ R[x], α1, α2 ∈ R, t ∈ [0, T ],

Lt(α1P1 + α2P2) = α1Lt(P1) + α2Lt(P2).
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2. The basis {Lt(xn), t ∈ [0, T ]}n∈N of {Lt(P ), t ∈ [0, T ]}P∈R[x] satisfies

Lt(1) = 0, Lt(x) = L0(x) +Gt(x),

and for n ≥ 0,

Lt(xn+2) = L0(xn+2) + c(n+ 2)

∫ t

0

Ls(xn+1)ds+ (n+ 2)(n+ 1)

∫ t

0

〈xn+1, µs〉ds

+ (n+ 2)

n∑
k=0

∫ t

0

(
Ls(xn−k)〈xk+1, µs〉+ Ls(xn+1−k)〈xk, µs〉

)
ds+Gt(x

n+2),

(3.15)

where {Gt(xn), t ∈ [0, T ]}n∈N is a family of centered Gaussian processes with
covariance

E [Gt(x
n)Gs(x

m)] = 4mn

∫ t∧s

0

〈xn+m−1, µu〉du, n,m ≥ 1. (3.16)

Proof. First, note that by Lemma 3.4 and Corollary 2.5, QNt (xn) defined by (1.10) con-
verges in distribution to a centered Gaussian family {Gt(xn), t ∈ [0, T ]}n∈N with covari-
ance given by (3.16). Furthermore, by (1.9), (1.10) and (3.6), for n ≥ −1, we have

QNt (xn+2)

=LNt (xn+2)− LN0 (xn+2)− c(n+ 2)

∫ t

0

LNs (xn+1)ds− (n+ 2)(n+ 1)

∫ t

0

〈xn+1, µs〉ds

− (n+ 2)

∫ t

0

LNs

(∫ n∑
k=0

xkyn−k(x+ y)µs(dx)

)
ds

− N(n+ 2)

2

∫ t

0

∫∫ n∑
k=0

xkyn−k(x+ y)[LN (s)(dx)− µs(dx)][LN (s)(dy)− µs(dy)]ds

=LNt (xn+2)− LN0 (xn+2)− c(n+ 2)

∫ t

0

LNs (xn+1)ds− (n+ 2)(n+ 1)

∫ t

0

〈xn+1, µs〉ds

− (n+ 2)

n∑
k=0

∫ t

0

(
LNs (xn−k)〈xk+1, µs〉+ LNs (xn+1−k)〈xk, µs〉

)
ds

− (n+ 2)

2N

n∑
k=0

∫ t

0

(
LNs (xn−k)LNs (xk+1) + LNs (xn+1−k)LNs (xk)

)
ds. (3.17)

In Corollary 2.3 and Corollary 2.5, we have shown QNt (xn+2)−NMN
xn+2 converges to

0 almost surely and in Lq for all q ≥ 1 as N →∞, uniformly in t ∈ [0, T ]. Thus, by (3.12),
(3.17), and the condition (3.14), it is not difficult to show

sup
N∈N

E

[
sup
t∈[0,T ]

∣∣LNt (xn)
∣∣q] <∞,

for q ≥ 1 and n ∈ N by using an induction argument on n.

To estimate the last term on the right-hand side of (3.17), we apply the Cauchy-
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Schwarz inequality to obtain, for 0 ≤ k ≤ n,

E

[
sup
t∈[0,T ]

∣∣∣∣n+ 2

2N

∫ t

0

LNs (xn−k)LNs (xk+1)ds

∣∣∣∣q
]

≤ (n+ 2)qT q

2qNq
E

[
sup
t∈[0,T ]

∣∣LNt (xn−k)
∣∣q sup
t∈[0,T ]

∣∣LNt (xk+1)
∣∣q]

≤ (n+ 2)qT q

2qNq

{
E

[
sup
t∈[0,T ]

∣∣LNt (xn−k)
∣∣2q]E[ sup

t∈[0,T ]

∣∣LNt (xk+1)
∣∣2q]}1/2

≤ C(n, T, q)N−q,

for some constant C(n, T, q). Thus, the last term on the right-hand side of (3.17) con-
verges to 0 in Lq for q > 1, as N tends to infinity. By Markov inequality and Borel-Cantelli
Lemma, one can also obtain the almost sure convergence.

If we define

Q̃Nt (xn+2) = LNt (xn+2)− LN0 (xn+2)− c(n+ 2)

∫ t

0

LNs (xn+1)ds

− (n+ 2)(n+ 1)

∫ t

0

〈xn+1, µs〉ds

− (n+ 2)

n∑
k=0

∫ t

0

(
LNs (xn−k)〈xk+1, µs〉+ LNs (xn+1−k)〈xk, µs〉

)
ds, (3.18)

for n ≥ −1, then the difference |Q̃Nt (xn+2)−QNt (xn+2)| converges to 0 almost surely and
in Lq for q > 1. Thus, Corollary 2.3 implies that (Q̃Nt (xk), Q̃Nt (xk−1), . . . , Q̃Nt (x))t∈[0,T ]

converges in distribution to (Gt(x
k), Gt(x

k−1), . . . , Gt(x))t∈[0,T ] with covariance (3.16).
Now we deduce the convergence in distribution of (LNt (xk))t∈[0,T ] for k ∈ N. First of

all, we have LNt (1) = 0 and LNt (x) = LN0 (x)+Q̃Nt (x) converges in distribution since the ini-
tial value converges in probability. By induction, if we assume (LNt (xk), . . . ,LNt (x))t∈[0,T ]

convergence in distribution to (Lt(xk), . . . ,Lt(x))t∈[0,T ], then the convergence in distribu-

tion of (Q̃Nt (xk+1), Q̃Nt (xk), . . . , Q̃Nt (x))t∈[0,T ] implies the convergence in distribution of

(Q̃Nt (xk+1),LNt (xk), . . . ,LNt (x))t∈[0,T ], and hence (LNt (xk+1), . . . ,LNt (x))t∈[0,T ] converges
in distribution.

Thus, by (3.18) we have

Gt(x
n+2)

d
= Lt(xn+2)− L0(xn+2)

− c(n+ 2)

∫ t

0

Ls(xn+1)ds− (n+ 2)(n+ 1)

∫ t

0

〈xn+1, µs〉ds

− (n+ 2)

n∑
k=0

∫ t

0

(
Ls(xn−k)〈xk+1, µs〉+ Ls(xn+1−k)〈xk, µs〉

)
ds,

where “
d
=” means equality in distribution. The proof is concluded.

Remark 3.6. By the self-similarity of Brownian motion, when XN
0 = 0, we have XN

t
d
=

tXN
1 . Thus, (λN1 (t), . . . , λNN (t))

d
= (tλN1 (1), . . . , tλNN (1)). Therefore,

〈f(x), LN (t)〉 =
1

N

N∑
i=1

f(λNi (t))
d
=

1

N

N∑
i=1

f(tλNi (1)) = 〈f(tx), LN (1)〉,
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and

〈f(x), µt〉
d
= 〈f(tx), µ1〉.

Hence, LNt (f(x))
d
= LN1 (f(tx)), and thus, Lt(f(x))

d
= L1(f(tx)). With these identities and

the linearity of Lt(·), (3.15) can be simplified as, for n ≥ 0,

L1(xn+2) = cL1(xn+1) + (n+ 1)〈xn+1, µ1〉

+

n∑
k=0

(
L1(xn−k)〈xk+1, µ1〉+ L1(xn+1−k)〈xk, µ1〉

)
+

1

tn+2
Gt(x

n+2), t > 0,

(3.19)

where the Gaussian family {Gt(xn), t ∈ [0, T ]}n∈N has the covariance functions

E [Gt(x
n)Gs(x

m)] =
4mn

m+ n
(t ∧ s)n+m〈xn+m−1, µ1〉, n,m ≥ 1.

Note that the case t = 1 corresponds to the classical Wishart matrix, and µ1 is the
Marchenko–Pastur law. More precisely, recalling that L1(1) = 0 and L1(x) = G1(x), we
get by (3.19) L1(x2) = 〈x, µ1〉 + (c + 1)G1(x) + G1(x2), for m ≥ 3, and more generally
L1(xm) = cm,0 + cm,1G1(x) + . . .+ cm,mG1(xm) for some coefficients (cm,j)0≤j≤m which
are determined recursively by (3.19).

We now study a more general particle system:

dλNi (t) = 2

√
λNi (t)√
N

dWi(t) +

bN (λNi (t)) +
1

N

∑
j:j 6=i

λNi (t) + λNj (t)

λNi (t)− λNj (t)

 dt, 1 ≤ i ≤ N, t ≥ 0.

(3.20)

Compared to (3.5), the constant P/N is replaced by a function bN (x) that will be assumed
to converge to a constant c in Corollary 3.7 below. Despite the extension being small,
the system (3.20) may not have an explicit joint density function or/and stationary
distribution, and hence cannot be treated in the same way as for the eigenvalues of
Wishart process.

Corollary 3.7. Consider the SDEs (3.20), where bN (x) satisfies, for some constant c ≥ 1,

lim
N→∞

N‖bN (x)− c‖L∞(R) = 0. (3.21)

Assume the same initial conditions as in Theorem 3.5. Then the conclusion of Theorem
3.5 still holds.

Proof. Let p1 = N(c− ‖bN (x)− c‖L∞) and p2 = N(c+ ‖bN (x)− c‖L∞) be two constants
depending on N . Then (3.21) implies p2 ≥ p1 > N − 1 when N is large. Clearly,
p1 ≤ N‖bN (x)‖L∞(R) ≤ p2. Consider the following two systems of SDEs:

dxNi (t) = 2

√
xNi (t)√
N

dWi(t) +

p1

N
+

1

N

∑
j:j 6=i

xNi (t) + xNj (t)

xNi (t)− xNj (t)

 dt, 1 ≤ i ≤ N, t ≥ 0, (3.22)

and

dyNi (t) = 2

√
yNi (t)√
N

dWi(t) +

p2

N
+

1

N

∑
j:j 6=i

yNi (t) + yNj (t)

yNi (t)− yNj (t)

 dt, 1 ≤ i ≤ N, t ≥ 0, (3.23)
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with the initial conditions xNi (0) = yNi (0) = λNi (0). By the comparison principle in
Corollary 3.2, we have

P(xNi (t) ≤ λNi (t) ≤ yNi (t), ∀t ≥ 0, ∀1 ≤ i ≤ N) = 1.

Thus, almost surely,

sup
t∈[0,T ]

〈|x|p, LN (t)〉 = sup
t∈[0,T ]

1

N

N∑
i=1

|λNi (t)|p

≤ sup
t∈[0,T ]

1

N

N∑
i=1

(|xNi (t)|p + |yNi (t)|p)

≤ sup
t∈[0,T ]

〈|x|p, L(x)
N (t)〉+ sup

t∈[0,T ]

〈|x|p, L(y)
N (t)〉, (3.24)

where {L(x)
N (t), t ∈ [0, T ]}N∈N and {L(y)

N (t), t ∈ [0, T ]}N∈N are the empirical measures of
the two particle systems (xNi (t))1≤i≤N and (yNi (t))1≤i≤N , respectively.

Noting that p1/N and p2/N converge to c as N →∞ by (3.21), we have that Lemma
3.4 holds for the two systems (3.22) and (3.23), and thus also holds for (3.20) by (3.24).
Furthermore, condition (3.21) also yields that bN (x)→ c uniformly as N →∞, and hence
(3.17) still holds. Then the rest of the proof follows that of Theorem 3.5.

3.3 Application to Dyson’s Brownian motion

In this subsection, we discuss the CLT for Dyson’s Brownian motion. It was shown
in Anderson et al. (2010); Graczyk and Małecki (2014); Song et al. (2020), the scaled
symmetric matrix-valued Brownian motion XN

t = (B̃ᵀ(t) + B̃(t))/
√

2N , where B̃(t) is a
N ×N matrix-valued Brownian motion, is the solution of the matrix SDE (1.1) with the
coefficient functions

gN (x)hN (y) =
1√
2N

, bN (x) = 0.

The system of SDEs of the eigenvalue processes, that is, Dyson’s Brownian motion, is

dλNi (t) =

√
2√
N
dWi(t) +

1

N

∑
j:j 6=i

1

λNi (t)− λNj (t)
dt, 1 ≤ i ≤ N, t ≥ 0. (3.25)

Hence, the eigenvalue processes are the particles in (1.6) with

σN (x) =

√
2√
N
, bN (x) = 0, HN (x, y) =

1

N
,

and thus,

NHN (x, y) = H(x, y) = 1, b(x) = 0,
√
NσN (x) = σ̃(x) =

√
2. (3.26)

Here, we consider the distribution QN on ∆′N = {x = (x1, x2, . . . , xN ) ∈ RN : x1 <

. . . < xN} with the density function

CN exp

(
−N

4

N∑
i=1

x2
i

) ∏
1≤j<i≤N

|xi − xj |, (3.27)

where CN is a normalization constant.
Similar to Wishart process, we can obtain the following central limit theorem.
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Theorem 3.8. Let ξN = (ξN1 , . . . , ξ
N
N ) be a random vector independent of (W1, . . . ,WN )

with (3.27) as its joint probability density function. Assume that (λN1 (0), . . . , λNN (0)) is
independent of (W1, . . . ,WN ) and that there exist constants a, b ≥ 0, such that

√
aξNi − b ≤ λNi (0) ≤

√
aξNi + b (3.28)

for 1 ≤ i ≤ N almost surely. Besides, assume that for any polynomial f(x) ∈ R[x], the
initial value LN0 (f) converges in probability to a random variable L0(f). Furthermore,
assume that for all n ∈ N,

sup
N
E[|N(〈xn, LN (0)〉 − 〈xn, µ0〉)|p] <∞,

for all p ≥ 1.
Then for any 0 < T < ∞, there exists a family of processes {Lt(f), t ∈ [0, T ]}f∈R[x],

such that for any n ∈ N and any polynomials P1, . . . , Pn ∈ R[x], the vector-valued process
(LNt (P1), . . . ,LNt (Pn))t∈[0,T ] converges to (Lt(P1), . . . ,Lt(Pn))t∈[0,T ] in distribution.

The limit processes {Lt(f), t ∈ [0, T ]}f∈R[x] are characterized by the following proper-
ties.

1. For P1, P2 ∈ R[x], α1, α2 ∈ R, t ∈ [0, T ],

Lt(α1P1 + α2P2) = α1Lt(P1) + α2Lt(P2).

2. The basis {Lt(xn), t ∈ [0, T ]}n∈N of {Lt(f), t ∈ [0, T ]}f∈R[x] satisfies

Lt(1) = 0, Lt(x) = L0(x) +Gt(x),

and for n ≥ 0,

Lt(xn+2) =L0(xn+2) +
(n+ 2)(n+ 1)

2

∫ t

0

〈xn, µs〉ds

+ (n+ 2)

n∑
k=0

∫ t

0

Ls(xn−k)〈xk, µs〉ds+Gt(x
n+2), (3.29)

where {Gt(xn), t ∈ [0, T ]}n∈N is a centered Gaussian family with the covariance

E [Gt(x
n)Gs(x

m)] = 2mn

∫ t∧s

0

〈xn+m−2, µu〉du, n,m ≥ 1.

Proof. The proof is similar to the proofs of the Wishart case (Lemma 3.3, Lemma 3.4 and
Theorem 3.5), which is sketched below.

Consider the following SDE, for 1 ≤ i ≤ N ,

duNi (t) =

√
2√

N(t+ a)
dWi(t) +

1

t+ a

−1

2
uNi (t) +

1

N

∑
j:j 6=i

1

uNi (t)− uNj (t)

 dt, t ≥ 0.

Then d
dtE[f(uN (t))] vanishes for any f ∈ C2

b (R) if uN (t) has the distribution QN given
in (3.27), and hence the process uN (t) with initial value uN (0) = ξN is stationary (see
(Anderson et al., 2010, Lemma 4.3.17 )). Let vNi (t) =

√
t+ auNi (t) + b for 1 ≤ i ≤ N .

Then vN (t) and λN (t) solve the same SDEs (3.25), and by the comparison principle in
Corollary 3.2, we have

λNi (t) ≤ vNi (t) =
√
t+ auNi (t) + b.
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A similar argument leads to

−λNi (t) ≤ −
√
t+ auNi (t) + b.

Therefore,

|λNi (t)| ≤
√
t+ a|uNi (t)|+ b.

Using the tail probability estimation based on the density function (3.27) of uNi (t),

P
(
|uNi (t)| ≥ x

)
≤ P(uNN (t) ≥ x) + P(uN1 (t) ≤ −x) ≤ 2P(uNN (t) ≥ x) ≤ exp(−αNx),

where α is positive constant independent of N , we obtain

E
[
|λNi (t)|k

]
≤ E

[(√
t+ a|uNi (t)|+ b

)k]
≤ 2k

√
t+ a

k
E
[
|uNi (t)|k

]
+ 2kbk

= 2k
√
t+ a

k
k

∫ ∞
0

xk−1P
(
|uNi (t)| ≥ x

)
dx+ 2kbk

≤ 2k
√
t+ a

k
k

∫ ∞
0

xk−1 exp(−αNx)dx+ 2kbk

= 2k
√
t+ a

kΓ(k + 1)

(αN)k
+ 2kbk

≤ 2k
√
t+ a

k
+ 2kbk

≤ 2
(
4b2 + 4(t+ a)

)k/2
for k ∈ [0, αN ]. Then a similar argument in the proof of Lemma 3.4 leads to

E

[
sup
t∈[0,T ]

〈|x|p, LN (t)〉

]
≤ C(a, b, T )p (3.30)

for some positive constant C(a, b, T ) depending only on (a, b, T ) and all p ≥ 0, N ≥ αp for
some positive constant α.

Then applying Corollary 2.5 and following the approach in the proof of Theorem 3.5,
we may get the desired result.

Remark 3.9. A CLT was obtained in (Anderson et al., 2010, Theorem 4.3.20) for Dyson’s
Brownian motion with bounded initial values. (We would like to point out that there
should be a constant factor 2/β in the covariance function which equals to 2 in the real
case and equals to 1 in the complex case in Anderson et al. (2010).) Thanks to the
comparison principle Corollary 3.2, the CLT also applies to Dyson’s Brownian motion
with possibly unbounded initial values satisfying (3.28), as stated in Theorem 3.8. For
example, the CLT is valid for Dyson’s Brownian motion with unbounded initial value ξN .
Note that ξN has the joint density (3.27), which is also the joint density of {λi(1)}1≤i≤N ,
assuming {λi(t)}1≤i≤N is a Dyson’s Brownian motion starting at 0.

Similar to the Wishart case, the self-similarity of the Brownian motion implies

Lt(f(x))
d
= L1(f(

√
tx)) and 〈f(x), µt〉 = 〈f(

√
tx), µ1〉 when the initial value XN

0 = 0.
Thus, (3.29) can be simplified as, for n ≥ 0,

L1(xn+2) = (n+ 1)〈xn, µ1〉+ 2

n∑
k=0

L1(xn−k)µ1(xk) +
1

t
n+2
2

Gt(x
n+2), t > 0, (3.31)
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with covariance functions

E [Gt(x
n)Gs(x

m)] =
4mn

m+ n
(t ∧ s)

m+n
2 〈xm+n−2, µ1〉, n,m ≥ 1.

The case t = 1 corresponds to the classical GOE matrix, and µ1 is the semicircle law.
Some beginning terms are L1(1) = 0,L1(x) = G1(x) and L1(x2) = 1 +G1(x2). By (3.31),
for m ≥ 2, L1(xm) has the distribution of a linear combination of central Gaussian
variables {G1(xj), 1 ≤ j ≤ m}.

The following Corollary extends the result of Theorem 3.8 by allowing asymptotical
constant drift coefficient functions.

Corollary 3.10. Consider the following SDEs

dλNi (t) =

√
2√
N
dWi(t) +

bN (λNi (t)) +
1

N

∑
j:j 6=i

1

λNi (t)− λNj (t)

 dt, 1 ≤ i ≤ N, t ≥ 0,

(3.32)

where bN (x) satisfies, for some constant c ∈ R,

lim
N→∞

N‖bN (x)− c‖L∞(R) = 0. (3.33)

Furthermore, assume the same initial conditions as in Theorem 3.8. Then the conclusion
of Theorem 3.8 still holds with (3.29) replaced by

Lt(xn+2) =L0(xn+2) + c(n+ 2)

∫ t

0

Ls(xn+1)ds+
(n+ 2)(n+ 1)

2

∫ t

0

〈xn, µs〉ds

+ (n+ 2)

n∑
k=0

∫ t

0

Ls(xn−k)µs(x
k)ds+Gt(x

n+2), (3.34)

for n ≥ −1.

Proof. Set c1 = c − 1 and c2 = c + 1. Then by (3.33), there exists N0 ∈ N such that
for N ≥ N0, c1 ≤ ‖bN (x)‖L∞(R) ≤ c2. Without loss of generality, we assume c1 ≤
‖bN (x)‖L∞(R) ≤ c2 for all N ≥ 1.

Consider the following two systems of SDEs:

dxNi (t) =

√
2√
N
dWi(t) +

c1 +
1

N

∑
j:j 6=i

1

xNi (t)− xNj (t)

 dt, 1 ≤ i ≤ N, t ≥ 0. (3.35)

and

dyNi (t) =

√
2√
N
dWi(t) +

c2 +
1

N

∑
j:j 6=i

1

yNi (t)− yNj (t)

 dt, 1 ≤ i ≤ N, t ≥ 0, (3.36)

with the initial conditions xNi (0) = yNi (0) = λNi (0) for 1 ≤ i ≤ N . By the comparison
principle Theorem 3.1, we have

P
(
xNi (t) ≤ λNi (t) ≤ yNi (t), ∀1 ≤ i ≤ N, ∀t > 0

)
= 1.

EJP 26 (2021), paper 87.
Page 25/33

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP646
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


High-dimensional CLTs for a class of particle systems

Thus, for p ≥ 1, we have

sup
t∈[0,T ]

〈|x|p, LN (t)〉 = sup
t∈[0,T ]

1

N

N∑
i=1

|λNi (t)|p ≤ sup
t∈[0,T ]

1

N

N∑
i=1

(|xNi (t)|p + |yNi (t)|p)

≤ sup
t∈[0,T ]

1

N

N∑
i=1

2p(|xNi (t)− c1t|p + (c1t)
p + |yNi (t)− c2t|p + (c2t)

p)

≤ 2p

(
sup
t∈[0,T ]

〈|x|p, L(x)
N (t)〉+ sup

t∈[0,T ]

〈|x|p, L(y)
N (t)〉+ (c1T )p + (c2T )p

)
, (3.37)

almost surely, where {L(x)
N (t), t ∈ [0, T ]}N∈N and {L(y)

N (t), t ∈ [0, T ]}N∈N are the empir-
ical measures of the two particle systems (xNi (t) − c1t)1≤i≤N and (yNi (t) − c2t)1≤i≤N ,
respectively.

It is easy to verify that both (xNi (t)− c1t)1≤i≤N and (yNi (t)− c2t)1≤i≤N solve Dyson’s
SDEs (3.25). By (3.30) in the proof Theorem 3.8, we have

E

[
sup
t∈[0,T ]

〈|x|p, L(x)
N (t)〉

]
≤ C(a, b, T )p and E

[
sup
t∈[0,T ]

〈|x|p, L(y)
N (t)〉

]
≤ C(a, b, T )p,

and consequently, by (3.37)

E

[
sup
t∈[0,T ]

〈|x|p, LN (t)〉

]
≤ C(a, b, T )p,

for some positive constant C(a, b, T ) depending only on (a, b, T ) and all p ≥ 1, N ≥ αp for
some positive constant α.

Note that (3.33) also implies that bN (x) converges to the constant c uniformly as
N →∞. Then applying Corollary 2.5 and following the approach in the proof of Theorem
3.5, we get the desired result.

3.4 Application to eigenvalues of symmetric matrix-valued OU matrix

In this subsection, we discuss the CLT for the eigenvalues of a symmetric matrix-
valued Ornstein-Uhlenbeck process. It was shown in Chan (1992), the symmetric
N ×N matrix XN (t), whose entries {XN

ij (t), i ≤ j} are independent Ornstein-Uhlenbeck
processes with invariant distribution N(0, (1 + δij)/(2N)), where δij is the Kronecker
delta function, is the solution of the matrix SDE (1.1) with the coefficient functions

gN (x)hN (y) =
1

2
√
N
, bN (x) = −1

2
x.

The SDEs of the eigenvalue processes are

dλNi (t) =
1√
N
dWi(t) +

−1

2
λNi (t) +

1

2N

∑
j:j 6=i

1

λNi (t)− λNj (t)

 dt, 1 ≤ i ≤ N, t ≥ 0.

(3.38)

Hence, the eigenvalue processes are the particles in (1.6) with

σN (x) =
1√
N
, bN (x) = −1

2
x, HN (x, y) =

1

2N
,

and thus,

NHN (x, y) = H(x, y) =
1

2
, b(x) = −1

2
x,
√
NσN (x) = σ̃(x) = 1.
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Similar to the eigenvalues of Wishart process and Dyson’s Brownian motion, we have
the following CLT.

Theorem 3.11. Let ξN = (ξN1 , . . . , ξ
N
N ) be a random vector that is independent of

(W1, . . . ,WN ) and has (3.27) as its joint probability density function. Assume that
(λN1 (0), . . . , λNN (0)) is independent of (W1, . . . ,WN ) and that there exist constants a, b ≥ 0,
such that

√
aξNi − b ≤ λNi (0) ≤

√
aξNi + b

for 1 ≤ i ≤ N almost surely.
Besides, assume that for any polynomial f(x) ∈ R[x], the initial value LN0 (f) converges

in probability to a random variable L0(f). Furthermore, assume that for all n ∈ N,

sup
N
E[|N(〈xn, LN (0)〉 − 〈xn, µ0〉)|p] <∞,

for all p ≥ 1.
Then for any 0 < T < ∞, there exists a family of processes {Lt(f), t ∈ [0, T ]}f∈R[x],

such that for any n ∈ N and any polynomials P1, . . . , Pn ∈ R[x], the vector-valued process
(LNt (P1), . . . ,LNt (Pn))t∈[0,T ] converges to (Lt(P1), . . . ,Lt(Pn))t∈[0,T ] in distribution.

The limit processes {Lt(f), t ∈ [0, T ]}f∈R[x] are characterized by the following proper-
ties.

1. For P1, P2 ∈ R[x], α1, α2 ∈ R, t ∈ [0, T ],

Lt(α1P1 + α2P2) = α1Lt(P1) + α2Lt(P2).

2. The basis {Lt(xn), t ∈ [0, T ]}n∈N of {Lt(f), t ∈ [0, T ]}f∈R[x] satisfies

Lt(1) = 0, Lt(x) = −L0(x) +Gt(x)− 1

2
e−t/2

∫ t

0

es/2 (Gs(x)− L0(x)) ds,

and for n ≥ 0,

Lt(xn+2) = e−
n+2
2 tL0(xn+2) +Rt(n) +Gt(x

n+2)

− n+ 2

2
e−

n+2
2 t

∫ t

0

e
n+2
2 s(Rs(n) +Gs(x

n+2))ds. (3.39)

where

Rt(n) =
(n+ 2)(n+ 1)

4

∫ t

0

〈xn, µs〉ds+
n+ 2

2

n∑
k=0

∫ t

0

Ls(xn−k)〈xk, µs〉ds (3.40)

and {Gt(xn), t ∈ [0, T ]}n∈N is a centered Gaussian family with the covariance

E [Gt(x
n)Gs(x

m)] = mn

∫ t∧s

0

〈xn+m−2, µu〉du, n,m ≥ 1. (3.41)

Proof. Consider the symmetric matrix-valued OU matrix XN
t , of which the entries

{XN
ij (t)} satisfy

dXN
ij (t) = −1

2
XN
ij (t)dt+

2δij +
√

2(1− δij)
2
√
N

dBij(t), 1 ≤ i ≤ j ≤ N, t ≥ 0, (3.42)
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where {Bij(t), i ≤ j} is a family of independent Brownian motions. Denoting by

σij =
2δij +

√
2(1− δij)

2
√
N

,

the solution to (3.42) is given by

XN
ij (t) = XN

ij (0)e−t/2 + σije
−t/2

∫ t

0

es/2dBij(s).

The stochastic integral is a martingale with quadratic variation〈∫ ·
0

es/2dBij(s)

〉
t

= et − 1.

By Knight’s Theorem, there exists a family of independent standard one-dimensional
Brownian motions {B̃ij(t), i ≤ j}, such that∫ t

0

es/2dBij(s) = B̃ij(e
t − 1).

Thus, we have

XN
ij (t) = e−t/2

(
XN
ij (0) + σijB̃ij(e

t − 1)
)
. (3.43)

Let Y Nt be a symmetric matrix-valued stochastic process whose entries {Y Nij (t), i ≤ j}
are given by

Y Nij (t) = Y Nij (0) +
√

2σijB̃ij(t), (3.44)

with Y Nij (0) =
√

2XN
ij (0), 1 ≤ i ≤ j ≤ N . Then Y N is the scaled symmetric matrix-valued

Brownian motion introduced in section 3.3. By (3.43) and (3.44),
√

2et/2XN
ij (t) = Y Nij (et − 1), 1 ≤ i ≤ j ≤ N,

and hence
√

2et/2λNi (t) = λ̃Ni (et − 1), 1 ≤ i ≤ N,

where {λNi (t)}1≤i≤N and {λ̃Ni (t)}1≤i≤N are the eigenvalues of XN (t) and Y N (t), respec-
tively.

Thus, almost surely, we have

〈|x|p, LN (t)〉 =
1

N

N∑
i=1

|λNi (t)|p

= 2−p/2e−pt/2
1

N

N∑
i=1

|λ̃Ni (et − 1)|p

= 2−p/2e−pt/2〈|x|p, L̃N (et − 1)〉, ∀t > 0,

where LN (t) and L̃N (t) are the empirical measures of {λNi (t)}1≤i≤N and {λ̃Ni (t)}1≤i≤N ,
respectively. Note that λ̃Ni (0) =

√
2λNi (0) satisfies condition (3.28) in Theorem 3.8 with

the constants a and b replaced by 2a and
√

2b. By the estimation (3.30), for all p ≥ 1 and
N ≥ αp for some positive constant α, we have

E

[
sup
t∈[0,T ]

〈|x|p, LN (t)〉

]
≤ 2−p/2E

[
sup

t∈[0,eT−1]

〈|x|p, L̃N (t)〉

]
≤ 2−p/2C(2a,

√
2b, eT − 1)p

= C ′(a, b, T )p, (3.45)
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where C ′(a, b, T ) is positive constant depending only on (a, b, T ).
Thus, by Lemma 3.4 and Corollary 2.5, QNt (xn) defined by (1.10) converges in

distribution to a centered Gaussian family {Gt(xn), t ∈ [0, T ]}n∈N with covariance given
by (3.41). Similar to (3.17), for n ≥ −1, we have

QNt (xn+2) =LNt (xn+2)− LN0 (xn+2) +
n+ 2

2

∫ t

0

LNs (xn+2)ds− (n+ 2)(n+ 1)

4

∫ t

0

〈xn, µs〉ds

− n+ 2

2

n∑
k=0

∫ t

0

LNs (xn−k)〈xk, µs〉ds−
(n+ 2)

4N

n∑
k=0

∫ t

0

LNs (xn−k)LNs (xk)ds.

Letting N →∞, we have

Gt(x
n+2)

d
=Lt(xn+2)− L0(xn+2) +

n+ 2

2

∫ t

0

Ls(xn+2)ds− (n+ 2)(n+ 1)

4

∫ t

0

〈xn, µs〉ds

− n+ 2

2

n∑
k=0

∫ t

0

Ls(xn−k)〈xk, µs〉ds

=Lt(xn+2)− L0(xn+2) +
n+ 2

2

∫ t

0

Ls(xn+2)ds−Rt(n)

where Rt(n) is given in (3.40). Without loss of generality, we may replace “
d
=” by “=” in

the above equation. Thus we have

Lt(xn+2) +
n+ 2

2

∫ t

0

Ls(xn+2)ds = L0(xn+2) +Gt(x
n+2) +Rt(n),

whose solution is given by (3.39).
The proof is concluded.

Now we extend the result of Theorem 3.11 to a generalized system of (3.38).

Corollary 3.12. Consider the following SDEs

dλNi (t) =
1√
N
dWi(t) +

bN (λNi (t)) +
1

2N

∑
j:j 6=i

1

λNi (t)− λNj (t)

 dt, 1 ≤ i ≤ N, t ≥ 0,

(3.46)

where bN (x) satisfies, for some constant c ∈ R,

lim
N→∞

N

∥∥∥∥bN (x) +
1

2
x− c

∥∥∥∥
L∞(R)

= 0. (3.47)

Furthermore, assume the same initial conditions as in Theorem 3.11. Then the conclusion
of Theorem 3.11 still holds with Rt(n) in (3.40) replaced by

Rt(n) = c(n+ 2)

∫ t

0

LNs (xn+1)ds+
(n+ 2)(n+ 1)

4

∫ t

0

〈xn, µs〉ds

+
n+ 2

2

n∑
k=0

∫ t

0

Ls(xn−k)〈xk, µs〉ds.

Proof. The proof is similar to the proof of Corollary 3.10, which is sketched below.
By (3.47), without loss of generality, we assume

−1

2
x+ c− 1 ≤ bN (x) ≤ −1

2
x+ c+ 1,
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for all N ≥ 1. Then we have

P
(
xNi (t) ≤ λNi (t) ≤ yNi (t), ∀1 ≤ i ≤ N, ∀t > 0

)
= 1, (3.48)

where the processes (xNi (t))1≤i≤N and (yNi (t))1≤i≤N are the solutions of the following
systems of SDEs respectively:

dxNi (t) =
1√
N
dWi(t) +

−1

2
xNi (t) + c− 1 +

1

2N

∑
j:j 6=i

1

xNi (t)− xNj (t)

 dt, 1 ≤ i ≤ N, t ≥ 0,

and

dyNi (t) =
1√
N
dWi(t) +

−1

2
yNi (t) + c+ 1 +

1

2N

∑
j:j 6=i

1

yNi (t)− yNj (t)

 dt, 1 ≤ i ≤ N, t ≥ 0,

with the initial conditions xNi (0) = yNi (0) = λNi (0) for 1 ≤ i ≤ N . Noting that (xNi (t) −
2c+ 2)1≤i≤N and (yNi (t)− 2c− 2)1≤i≤N solve the SDEs (3.38), by (3.45) and (3.48), we
get that the uniform Lp bound (2.15) holds for system (3.46).

Then applying Corollary 2.5 and following the approach in the proof of Theorem 3.5,
we get the desired result.

A Some lemmas

In this section, we provide some results that were used in the preceding sections.
The following CLT for martingales was used in the proof of Theorem 2.2.

Lemma A.1 (Rebolledo’s Theorem). Let n ∈ N, and let {MN}N∈N be a sequence of
continuous centered martingales with values in Rn. If the quadratic variation 〈MN 〉t
converges in L1(Ω) to a continuous deterministic function φ(t) for all t > 0, then for any
T > 0, as a continuous process from [0, T ] to Rn, (MN (t), t ∈ [0, T ]) converges in law to a
Gaussian process G with mean 0 and covariance

E[G(s)G(t)ᵀ] = φ(t ∧ s).

Section 3.1 was based on the following comparison principle for multi-dimensional
SDEs which is a direct consequence of (Geiß and Manthey, 1994, Theorem 1.1 and
Theorem 1.2).

Lemma A.2. On a certain complete probability space equipped with a filtration that
satisfies the usual conditions ((Karatzas and Shreve, 1991, Definition 2.25)), consider
the following SDEs

Y (t) = Y (0) +

∫ t

0

b(1)(s, Y (s))ds+

∫ t

0

σ(s, Y (s))dW (s),

Z(t) = Z(0) +

∫ t

0

b(2)(s, Z(s))ds+

∫ t

0

σ(s, Z(s))dW (s),

(A.1)

where {W (t), t ≥ 0} is a d-dimensional Brownian motion. Assume the solutions to SDEs
(A.1) are pathwisely unique and non-exploding. If the following conditions are satisfied,

1. the drift functions b(1)(t, x) and b(2)(t, x) are continuous mappings from [0,∞)×Rn
to Rn. Besides, they are quasi-monotonously increasing in the sense that for
1 ≤ i ≤ n and j = 1, 2, b(j)i (t, x) ≤ b

(j)
i (t, y), whenever xi = yi and xl ≤ yl for

l ∈ {1, . . . , n} \ {i};
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2. the dispersion matrix σ(t, x) is a continuous mapping from [0,∞)×Rn to Rn×d that
satisfies the following condition

d∑
j=1

|σij(t, x)− σij(t, y)| ≤ ρ(|xi − yi|)

for all t ≥ 0 and x = (x1, . . . , xn)ᵀ, y = (y1, . . . , yn)ᵀ ∈ Rn, where ρ : [0,∞)→ [0,∞)

is a strictly increasing function with ρ(0) = 0 and∫
0+

ρ−2(u)du =∞;

3. b(1)
i (t, x) ≤ b(2)

i (t, x) for all 1 ≤ i ≤ n, t ≥ 0, x ∈ Rn;

4. for 1 ≤ i ≤ n, Yi(0) ≤ Zi(0) almost surely,

then we have

P (Yi(t) ≤ Zi(t),∀t ≥ 0, 1 ≤ i ≤ n) = 1.

The following lemma was employed in the proof of Lemma 3.3.

Lemma A.3. Let uN (t) be the strong solution to (3.8). If uN (t) is distributed according
to PN in (3.7), then for f ∈ C2

b (RN ),

d

dt
E[f(uN (t))] = 0.

Proof. For f ∈ C2
b (RN ), applying Itô’s formula to (3.8), we have

f(uN (t)) = f(uN (t0)) +

N∑
i=1

∫ t

0

∂if(uN (s)) · 2
√
uNi (s)√

N(s+ a)
dWi(s)

+

N∑
i=1

∫ t

0

∂if(uN (s)) · 1

s+ a

P

N
− uNi (s) +

1

N

∑
j:j 6=i

uNi (s) + uNj (s)

uNi (s)− uNj (s)

 ds

+
1

2

N∑
i=1

∫ t

0

∂2
i f(uN (s)) · 4 uNi (s)

N(s+ a)
ds.

Here, ∂i is the partial derivative with respect to the i-th component xi. Therefore, for
t ≥ 0,

d

dt
E
[
f(uN (t))

]
= E

[
1

t+ a

N∑
i=1

∂if(uN (t)) ·
(
P

N
− uNi (t)

)]

+ E

 1

N(t+ a)

∑
i 6=j

∂if(uN (t)) ·
uNi (t) + uNj (t)

uNi (t)− uNj (t)


+ E

[
2

N(t+ a)

N∑
i=1

∂2
i f(uN (t))uNi (t)

]
.

Thus it suffices to show, with the density function p(x) in (3.7),

N∑
i=1

∫
∆N

∂if(x) ·
(
P

N
− xi

)
p(x)dx+

1

N

∑
i 6=j

∫
∆N

∂if(x) · xi + xj
xi − xj

p(x)dx

+
2

N

N∑
i=1

∫
∆N

∂2
i f(x)xip(x)dx = 0, (A.2)
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where ∆N = {x ∈ RN : 0 < x1 < . . . < xN} is the support of PN . Noting that p(x)

vanishes on ∂∆N , we have by the integration by parts formula,∫
∆N

∂2
i f(x)xip(x)dx =

∫
∂∆N

∂if(x)xip(x)dS −
∫

∆N

∂if(x)∂i (xip(x)) dx

= −
∫

∆N

∂if(x) (p(x) + xi∂ip(x)) dx.

Hence, to show (A.2), it is sufficient to verify

N∑
i=1

(
P

N
− xi

)
p(x) +

1

N

∑
i6=j

xi + xj
xi − xj

p(x)− 2

N

N∑
i=1

(p(x) + xi∂ip(x)) = 0.

By the chain rule,

∂ip(x) = −N
2
p(x) +

P −N − 1

2

1

xi
p(x) +

∑
j:j 6=i

1

xi − xj
p(x).

Hence,

2

N

N∑
i=1

xi∂ip(x) = −
N∑
i=1

xip(x) + (P −N − 1)p(x) +
2

N

∑
i 6=j

xi
xi − xj

p(x)

= −
N∑
i=1

xip(x) + (P −N − 1)p(x) +
1

N

∑
i 6=j

(
xi + xj
xi − xj

+ 1

)
p(x)

= −
N∑
i=1

xip(x) + (P − 2)p(x) +
1

N

∑
i 6=j

xi + xj
xi − xj

p(x),

which gives the desired result.

Acknowledgments. The authors are grateful to the referees for their valuable and
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