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This paper investigates limiting spectral properties of a high-dimensional sample spatial-sign covariance matrix
when both the dimension of the observations and the sample size grow to infinity. The underlying population is
general enough to include the popular independent components model and the family of elliptical distributions.
The first result of the paper shows that the empirical spectral distribution of a high dimensional sample spatial-sign
covariance matrix converges to a generalized Marčenko-Pastur distribution. Secondly, a new central limit theorem
for a class of related linear spectral statistics is established.
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1. Introduction

The so-called spatial-sign covariance matrix (SSCM) originates from the field of robust statistics. Let
x1, . . . ,xn ∈ R

p be a sequence of independent and identically distributed (i.i.d.) observations from a
common population x ∈ Rp structured as

x = m + wA
1
2 z, (1.1)

where m ∈ R
p is a known location vector, A is a p×p deterministic and positive definite matrix, w ∈R

and z ∈ R
p are two (possibly dependent) random quantities. Such structure encompasses the popular

independent components model (ICM, when the random variable w reduces to some fixed constant)
and the family of elliptical distributions (when the random vector z is restricted to be standard normal
N (0, Ip)) as special cases (detailed discussions are referred to Remarks 2.1 and 2.2). The sample
SSCM formed by the sample {xj }, referred as Bn, throughout this paper is defined as

Bn = p

n

n∑
j=1

s(xj − m)s(xj − m)′, (1.2)

where s(y) = I(y�=0)y/‖y‖ is the spatial-sign transform projecting the vector y onto the unit sphere in
Rp . In Locantore et al. [20] and Visuri, Koivunen and Oja [28], the authors demonstrated that SSCM
is able to mitigate the impact of extreme outliers for the purpose of robust principal components anal-
ysis. Since then, SSCM has been widely adopted for statistical inference especially when the sample
data exhibit heavy tails or tail dependence as in the case of elliptical distributions. Recent works con-
cerning the properties of SSCM and its applications include Magyar and Tyler [22], Dürre, Vogel and
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Fried [11], Li, Wang and Zou [19], Feng and Sun [12], Feng, Zou and Wang [13] and Chakraborty
and Chaudhuri [9]. Despite the popularity of SSCM, asymptotic behaviors of its eigenvalues are not
fully developed in high dimensional regimes, which then motivates the current topic studied in this
manuscript.

This paper investigates both the first and second order spectrum limits of the sample SSCM Bn with
general data structure (1.1) under the Marčenko-Pastur asymptotic regime [23], where the dimension
of the population p diverges to infinity along with the sample size n, that is,

n → ∞, p = p(n) → ∞, p/n = cn → c ∈ (0,∞).

This asymptotic regime is commonly adopted in the literature of random matrix theory (RMT). The
first result of the paper is a new generalized Marčenko-Pastur (MP) law for the empirical spectral
distribution (ESD) of the sample SSCM Bn. The MP law was originally introduced in [23] for the
limiting spectrum of a high dimensional sample covariance matrix (SCM), which was then refined and
extended in several works, say [26,30] and [3]. With this knowledge, by a comparison between Bn

and its associated SCM, our result is derived under certain moment condition. The second contribution
of this paper is a new central limit theorem (CLT) for general linear spectral statistics (LSSs) of Bn.
CLT for LSSs of certain random matrix ensembles has been actively studied in recent decades in RMT.
Most of early works in this area concern Hermitian (symmetric) Wigner matrices. [17] presented a CLT
for LSSs given the eigenvalues’ joint density for Gaussian-type random Hermitian matrices. Using
the moment method, [27] derived a CLT for polynomial functions of Wigner-type matrices and [1]
obtained a CLT for a class of band random matrices. CLT for general Wigner matrices with arbitrary
entries was first derived in [6] via Stieltjes transforms which provided explicit formulas for the mean
and covariance functions of the limiting Gaussian distribution of the LSSs. A related approach using
Gaussian interpolation for both Wigner matrices and Wishart matrices was proposed in [21]. As for
SCMs, the earliest work dates back to [18] for Wishart matrices. The seminal paper [5] established the
CLT under the ICM, which was later extended in [25] and [31]. Other extensions on CLT for SCMs
are recently proposed in [15] and [16] for the class of elliptical distributions.

From the technical point of view, the structure of the sample SSCM Bn is quite different from
the commonly studied SCM. Although Bn can be considered as SCM type by treating the spatial-
sign transform of the original data {s(xj − m)} as a new data sample, the spatial-sign transform does
introduce at the same time, complex non-linear correlations between the p-coordinates of s(xj − m)

through the normalization by the Euclidean norm ‖xj − m‖ in its denominator. Such new correlations
make the analysis more intricate in high dimensions. Specifically, let us compare the situation with a
sample covariance matrix Sn = n−1∑n

j=1(xj −m)(xj −m)′ from the ICM (letting the random variable
w in (1.1) be some constant). Here the correlations among the coordinates of a sample vector xj − m
have only one source, coming from the shape matrix A. However, in the case of sample SSCM Bn =
pn−1∑n

j=1 s(xj − m)s(xj − m)′, the correlations among the coordinates of s(xj − m) can originate
from both the shape matrix A and the normalization factor ‖xj − m‖ in the denominator of s(xj − m).
Therefore, a main task in our analysis is to find new approaches for decoupling these two sources of
correlation in s(xj − m). To this end, by giving an asymptotic expansion of s(xj − m) to certain order,
we develop new lemmas concerning the covariance and stochastic order of certain quadratic forms,
which turns out to be one of the cornerstones for establishing our new CLT (see Section A.1). Another
technical innovation of the paper, compared to the classical approach in [5], is that we introduce a new
and more straightforward method to find the limiting mean function of LSSs, see Step 3 in the proof
given in Section 3.2.

The rest of the paper is organized as follows. Section 2 presents our main theoretical results including
both the convergence of the ESD of Bn and the CLT for its linear spectral statistics. Proofs of these
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asymptotic conclusions are presented in Sections 3.1 and 3.2. Some supporting lemmas and their proofs
are relegated into the Appendix.

2. High-dimensional theory for eigenvalues of sample SSCMs

2.1. Preliminary

Let Mp be a p×p symmetric or Hermitian matrix with eigenvalues (λj )1≤j≤p . Its ESD is by definition
the probability measure

F Mp = 1

p

p∑
j=1

δλj
,

where δb denotes the Dirac mass at b. If the ESD sequence {F Mp } has a limit when p → ∞, this
limit is referred as the limiting spectral distribution (LSD). For a probability measure G, its Stieltjes
transform is defined as

mG(z) =
∫

1

x − z
dG(x), z ∈ C

+,

where C+ ≡ {z ∈C : 
(z) > 0}. This definition can be extended to the whole complex plane except the
support set of G. Inversion formula from the Stieltjes transform mG(z) to its corresponding probability
measure G can be found in [2].

2.2. Model assumptions

We consider a sequence of i.i.d. observations x1, . . . ,xn admitting the following stochastic representa-
tion

xj = m + wj A
1
2 zj , j = 1, . . . , n, (2.1)

where

(i) the location vector m ∈R
p;

(ii) the scalar random variable wj is real-valued satisfying P(wj �= 0) = 1;
(iii) the matrix A ∈ R

p×p , referred as the shape matrix or scatter matrix of the population, is de-
terministic, positive definite, and normalized by tr(A) = p for the identification in the triple
product wj A1/2zj , since we can always move any scalar factor related to A into the scalar
random variable wj ;

(iv) the vector zj = (z1j , . . . , zpj )
′ ∈ R

p is an array of i.i.d. standardized random variables and
possibly dependent of the scalar random variable wj .

Our main assumptions are as follows.

Assumption (a). Both the sample size n and population dimension p tend to infinity in such a way
that n → ∞, p = p(n) → ∞ and p/n = cn → c ∈ (0,∞).

Assumption (b). The ESD Hp of the shape matrix A has a bounded support, that is, Supp(Hp) ⊂
[a, b] for some a, b ∈ (0,∞), and converges weakly to a probability distribution H as p → ∞.
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Assumption (c). The random variables (zij ) are i.i.d. and satisfy

E(zij ) = 0, E
(
z2
ij

)= 1, E
(
z4
ij

)= τ, E|zij |4+δ < ∞,

for some δ > 0.

Assumptions (a) and (b) are standard in RMT while Assumption (c) poses slightly higher moment
restriction than that for the sample covariance matrices studied in [5]. Such stronger moment condition
is imposed here for controlling the fluctuation of the normalization factor ‖xj −m‖ in the denominator
of s(xj − m) in the definition of SSCM Bn in (1.2).

Remark 2.1. Recall that in the literature on high-dimensional SCMs, the following ICM is routinely
considered [5,25,29,31]

xj = m + A
1
2 zj , (2.2)

where m and zj are the same as in model (2.1), A is a p × p positive definite population covariance
matrix. Clearly the model (2.2) is a particular case of the model (2.1) where {wj } degenerate to a
constant parameter.

Remark 2.2. The model (2.1) contains also the family of elliptical distributions. Indeed, a generalized
elliptically distributed sample xj ∈R

p has the form

xj = m + vj A
1
2 uj , (2.3)

where vj is a scalar random variable and uj is a random vector uniformly distributed on the unit sphere
in R

p . Let uj = zj /‖zj‖, wj = vj /‖zj‖ and zj ∼N (0, Ip) in (2.3), we have

xj = m + vj A
1
2 uj = m + wj A

1
2 zj .

Certainly the moment conditions in Assumption (c) are satisfied with τ = 3 for such standard Gaussian
random vectors {zj }. Thus the generalized elliptical distributions described by (2.3) are also special
cases of our model (2.1).

2.3. Limiting spectral distribution of Bn

Our first result establishes the convergence of the ESD F Bn of the sample SSCM Bn defined in (1.2).

Theorem 2.1. Suppose that Assumptions (a)–(c) hold. Then, almost surely, the empirical spectral dis-
tribution F Bn converges weakly to a probability distribution Fc,H , whose Stieltjes transform m = m(z)

is the unique solution to the equation

m =
∫

1

t (1 − c − czm) − z
dH(t), z ∈ C

+, (2.4)

in the set {m ∈C : −(1 − c)/z + cm ∈C
+}.
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Theorem 2.1 demonstrates that the ESD F Bn converges to the generalized MP law Fc,H defined
through the equation (2.4), see [23]. Let Fc,H = cF c,H + (1 − c)δ0 be the companion distribution of
Fc,H and m = m(z) be the Stieltjes transform of Fc,H . Then (2.4) can be rewritten as

z = − 1

m
+ c

∫
t

1 + tm
dH(t), z ∈ C

+, (2.5)

see [26]. For procedures on finding the density function of Fc,H and its support set from (2.4) or (2.5),
one is referred to [2]. The proof of this theorem is presented in Section 3.1.

2.4. CLT for linear spectral statistics of Bn

In this section, we study the fluctuation of LSSs. Given a measurable function f , the LSS of Bn

associated with f is defined to be the statistic∫
f (x)dF Bn(x). (2.6)

To centralize this statistic, we introduce a matrix T that is closely related to the shape matrix A,

T = A − 2

p
A2 − τ − 3

p
A

1
2 diag(A)A

1
2 +

(
2

p2
tr A2 + τ − 3

p2
tr(A ◦ A)

)
A, (2.7)

where “◦” denotes the Hadamard product of two matrices (more detailed discussion on the matrix T is
referred to Remark 2.3). Let H̃p denote the ESD of T and m0(z) be the finite-horizon proxy for m(z)

by replacing the two limits (c,H) with their finite counterparts (cn, H̃p) in (2.5), that is, the solution
to

z = − 1

m0(z)
+ cn

∫
t

1 + tm0(z)
dH̃p(t), z ∈ C

+. (2.8)

Such m0(z) uniquely defines a probability distribution, denoted by Fcn,H̃p , through

m0(z) = −1 − cn

z
+ cn

∫
1

x − z
dF cn,H̃p (x). (2.9)

By means of this distribution, we center the LSS in (2.6) as

Gn(f ) �
∫

f (x)dGn(x) =
∫

f (x)d
[
F Bn(x) − Fcn,H̃p (x)

]
. (2.10)

In addition, we assume the limits of the following three auxiliary quantities exist, that is,

ζp = 1

p
tr[A ◦ A] → ζ,

hp(u) = 1

p
tr
[
A

1
2 (A − uI)−1A

1
2 ◦ A

]→ h(u), (2.11)

gp(u, v) = 1

p
tr
[(

A
1
2 (A − uI)−1A

1
2
) ◦ (A 1

2 (A − vI)−1A
1
2
)]→ g(u, v),
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where u and v are two complex variables in C+. Such limits will contribute to the CLT for Gn(f )

when the fourth moment τ �= 3.

Theorem 2.2. Suppose that Assumptions (a)–(c) hold with δ = 1. Let f1, . . . , fk be k functions analytic
on an open set that includes the interval

Ic =
[
lim inf
p→∞ λA

minδ(0,1)(c)(1 − √
c)2, lim sup

p→∞
λA

max(1 + √
c)2

]
.

Also let

Yn = p
{
Gn(f1), . . . ,Gn(fk)

}
be the vector of k normalized LSSs with respect to f1, . . . , fk . Then Yn converges in distribution to a
k-dimensional Gaussian random vector ξ = (ξ1, . . . , ξk) with mean function

E(ξj ) = − 1

2π i

∮
C1

fj (z)
[
μ1(z) + (τ − 3)μ2(z)

]
dz,

where

μ1(z) =
∫

c(m′t)2 dH(t)

m(1 + mt)3
−
∫

2m′(1 + zm)t2 dH(t)

(1 + mt)2

+
∫

(α2t − t2) dH(t)

1 + mt

∫
2cmm′t dH(t)

(1 + mt)2
,

μ2(z) = cm′

m2
g′

u(u, v)

∣∣∣∣
u=v= −1

m

+ζ

∫
(1 + zm)tm′ dH(t)

(1 + mt)2

− (1 + zm)m′

m2
h′(u)

∣∣∣∣
u= −1

m

−
∫

cm′t dH(t)

(1 + mt)2
h

(−1

m

)
,

and covariance function

Cov(ξj , ξ	) = − 1

4π2

∮
C1

∮
C2

fj (z)f	(z̃)
[
σ1(z, z̃) + (τ − 3)σ2(z, z̃)

]
dzdz̃,

where

σ1(z, z̃) = 2∂2

∂z∂z̃

[
log

m(z) − m(z̃)

m(z)m(z̃)(z − z̃)
+
(

α2

c
+ 1

cm(z)
+ 1

cm(z̃)

)(
1 + zm(z)

)(
1 + z̃m(z̃)

)
− zm(z) − z̃m(z̃) − 2

]
,

σ2(z, z̃) = ∂2

∂z∂z̃

[
cg

( −1

m(z)
,

−1

m(z̃)

)
+ ζ

c

(
1 + zm(z)

)(
1 + z̃m(z̃)

)
− (

1 + zm(z)
)
h

( −1

m(z̃)

)
− (

1 + z̃m(z̃)
)
h

( −1

m(z)

)]
,

in which α2 = ∫
t2dH(t). The contours C1 and C2 are non-overlapping, closed, counter-clockwise

orientated in the complex plane and enclosing the interval Ic.
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The proof of this theorem is presented in Section 3.2.

Remark 2.3. The matrix T defined in (2.7) is actually an approximation of the population SSCM
� � EBn. With the condition E|zij |5 < ∞, that is, δ = 1 as assumed in Theorem 2.2, we can later
prove that in terms of spectral norm, ‖� − T‖ = o(p−1), see Lemma A.3. This ensures that we can
centralize the LSS of Bn by

∫
f (x)dF cn,H̃p (x) (see (2.10)), which relies on the spectrum of the matrix

T. Note that under our general model settings in (2.1), the spectrum of the matrix T depends not only
on the eigenvalues of the shape matrix A but also on its eigenvectors. However, for those elliptical
distributions where we could assume zj ∼ N (0, Ip) as discussed in Remark 2.2 and then the fourth
moment τ = 3, the spectrum of the matrix T depends only on the eigenvalues of A (up to the order
p−1). Indeed, Dürre, Tyler and Vogel [10] has already show that for those elliptical distributions, the
shape matrix A shares the same eigenvectors as the population SSCM � and their eigenvalues have
a one-to-one correspondence which can be represented through certain integrals. Our approximation,
that is the one given in (2.7) and Lemma A.3, is however explicit and is not restricted to elliptical
distributions only.

Remark 2.4. When the shape matrix A = Ip , we note that from (2.7), T ≡ A = Ip this time.
Then the three auxiliary quantities defined in (2.11) are equal to their limits, that is, ζp = ζ =
1, hp(u) = h(u) = (1 − u)−1 and gp(u, v) = g(u, v) = (1 − u)−1(1 − v)−1. After a little bit calcula-
tion, we have all the quantities in Theorem 2.2 involving the factor τ − 3 equal zero, which gives the
fact that the CLT is actually independent of the fourth moment when the underlying shape matrix is
identity.

Remark 2.5. Theorem 2.2 contains the CLT for LSSs of high dimensional correlation matrices [14].
To see this, consider the simplest case that m = 0, wj ≡ 1 and A = Ip in (2.1), then the sample SSCM
under study can be written as

Bn = p

n

n∑
j=1

zj

‖zj‖
z′
j

‖zj‖ = p

n

(
z1

‖z1‖ , . . . ,
zn

‖zn‖
)(

z1

‖z1‖ , . . . ,
zn

‖zn‖
)′

.

Denote its companion matrix as

Bn = p

n

(
z1

‖z1‖ , . . . ,
zn

‖zn‖
)′( z1

‖z1‖ , . . . ,
zn

‖zn‖
)

, (2.12)

which shares the same non-zero eigenvalues as Bn. Thus the result in Theorem 2.2 gives the CLT for
LSSs of Bn. Now let’s denote the data matrix as Z = (z1, . . . , zn) = (v1, . . . ,vp)′, where zj is the j -th
column (j -th observation) and v′

j is the j -th row (j -th coordinate) of Z. Moreover, the table Z consists
of independent and identically distributed entries across both the rows and columns so permuting the
entries in Z will not change its distribution. On the other hand, the correlation matrix Rn associated
with the data set Z can be expressed as

Rn =
(

v1

‖v1‖ , . . . ,
vp

‖vp‖
)′( v1

‖v1‖ , . . . ,
vp

‖vp‖
)

, (2.13)

which has the same structure (up to a constant factor) as Bn in (2.12) by interchanging the roles of p

and n. Therefore in the case of A = Ip , the CLT for LSSs of Rn is readily derived from an application
of Theorem 2.2 to the matrix Bn.
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2.5. Example

As an illustration, we exhibit the CLT for a widely used LSS which is the second moment of the
eigenvalues of Bn, denoted by

β̂2 = 1

p
tr
(
B2

n

)
.

We consider the case where the population shape matrix A is diagonal. Thus the matrix T given in
(2.7) can be simplified as

T = A − τ − 1

p
A2 + τ − 1

p2
tr A2 · A, (2.14)

whose spectrum depends on the eigenvalues of A only. Let αk,p = 1
p

tr(Tk) = ∫
tk dH̃p(t), we have

according to (2.14), αk,p → αk �
∫

tk dH(t). Moreover, the three auxiliary quantities in (2.11) have
limits

ζ =
∫

t2 dH(t), h(u) =
∫

t2

t − u
dH(t), g(u, v) =

∫
t2

(t − u)(t − v)
dH(t),

which are also functions of the eigenvalues of A only.
By the relations in (2.8) and (2.9), the centering term for the statistic β̂2 is

β2,p �
∫

x2 dF cn,H̃p (x) = α2,p + cn.

The limiting mean and variance of p[β̂2 − β2,p] can be figured out through the residue theorem. For
illustration, we calculate the integral corresponding to the first term in μ1(z), that is,

− 1

2π i

∮
C1

z2
∫

c(m′(z)t)2 dH(t)

m(z)(1 + m(z)t)3
dz. (2.15)

Taking derivatives with respect to z on both sides of (2.8), we obtain

m′(z) =
(

1

m2(z)
− c

∫
t2

(1 + tm(z))2
dH(t)

)−1

.

It then follows that

(2.15) =
∫

− 1

2π i

∮
C1

z2 cm′(z)t2

m(z)(1 + m(z)t)3
dm(z)dH(t)

=
∫

− 1

2π i

∮
C1

ct2(zm(z))2

m(z)(1 + m(z)t)3

(
1 − c

∫
u2m2(z)

(1 + um(z))2
dH(u)

)−1

dm(z)dH(t)

= −
∫ {

ct2(zm(z))2

(1 + m(z)t)3

(
1 − c

∫
u2m2(z)

(1 + um(z))2
dH(u)

)−1 ∣∣∣∣
m(z)=0

}
dH(t)

= −cα2.
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Similar procedure can be repeated to find the values of the remaining contour integrals. As a result and
by Theorem 2.2, the distribution of p[β̂2 −β2,p] converges to a Gaussian distribution N(μ,σ 2), where
the mean and variance parameters are given by

μ = −cα2,

σ 2 = 8c
(
α3

2 − 2α2α3 + α4
)+ 4c2α2

2 + 4c(τ − 3)
(
α3

2 − 2α2α3 + α4
)
.

3. Proofs of the main results

This section presents the proofs of Theorem 2.1 and Theorem 2.2. In all the proofs, we assume the
location vector m = 0, otherwise, it can be directly subtracted from the sample {xj }. We will denote
by K some constants appearing in inequalities that can vary from place to place.

3.1. Proof of Theorem 2.1

Let gj = p/(z′
j Azj ) for j = 1, . . . , n, and denote

Z = (zij ), G = diag(g1, . . . , gn), Bn = 1

n
A

1
2 ZGZ′A

1
2 , Sn = 1

n
A

1
2 ZZ′A

1
2 . (3.1)

Under Assumptions (a)–(c), the generalized MP law holds true for the sample covariance matrix Sn

[26]. Thus it is sufficient to show

‖Bn − Sn‖ a.s.−−→ 0. (3.2)

To this end, with the moment conditions in Assumption (c), we shall truncate the variables (zij ) at
n2/γ for some γ ∈ (4,4 + δ]. Some relevant quantities are denoted as below. For i = 1, . . . , p and
j = 1, . . . , n,

ẑij = zij I
(|zij |γ ≤ n2), ẑj = (ẑ1j , . . . , ẑpj )

′, ĝj = p/
(
ẑ′
j Aẑj

)
,

Ẑ = (ẑij ), Ĝ = diag(ĝ1, . . . , ĝn),

B̂n = 1

n
A

1
2 ẐĜẐ′A

1
2 , Ŝn = 1

n
A

1
2 ẐẐ′A

1
2 .

(3.3)

Note that for the truncated variables (ẑij ), the following results hold automatically

|Eẑij | = o
(
n−2+2/γ

)
, E

(
ẑ2
ij

)= 1 + o
(
n−2+4/γ

)
,

E
(
ẑ4
ij

)= τ + o(1), E|ẑij |γ < ∞, |ẑij |γ < n2,
(3.4)

and ∑
k

2k
E|zij |γ /2I

(|zij | > 22k/γ
)
< ∞. (3.5)

From (3.5) and similar arguments as in the proof of Lemma 5.12 in [2], we have

P(B̂n �= Bn, i.o.) = P(̂Sn �= Sn, i.o.) = 0. (3.6)
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Next, we will prove that for any ε > 0 and k ≥ 2,

P
(‖B̂n − Ŝn‖ > ε

)≤ Kε−k
(
n− k

2 +1 + n
− k(γ−4)

γ
)
. (3.7)

Notice that the spectral norm of the difference between B̂n and Ŝn can be bounded by

‖B̂n − Ŝn‖ ≤ ‖A‖‖ẐẐ′‖
n

max
1≤j≤n

|ĝj − 1|. (3.8)

From [4], almost surely, the spectral norm ‖ẐẐ′‖/n is bounded for all large n. Thus, we only need
to control the convergence rate of maxj |ĝj − 1| or maxj |1/ĝj − 1|. By Markov’s inequality, for any
ε > 0 and k ≥ 2, we have

P

(
max

j

∣∣∣∣ 1

ĝj

− 1

∣∣∣∣> ε

)
≤np−kε−k

E
∣∣ẑ′

1Aẑ1 − p
∣∣k. (3.9)

To bound the expectation in (3.9), we divide it into three parts as follows

E
∣∣ẑ′

1Aẑ1 − p
∣∣k ≤KE

∣∣ẑ′
1Aẑ1 − z̃′

1Az̃1
∣∣k + KE

∣∣z̃′
1Az̃1 −Ez̃′

1Az̃1
∣∣k + K

∣∣Ez̃′
1Az̃1 − p

∣∣k,
where z̃1 � ẑ1 − Eẑ1. From (3.4), the boundedness of ‖A‖ and Lemma A.1, the first term can be
controlled by

E
∣∣ẑ′

1Aẑ1 − z̃′
1Az̃1

∣∣k ≤KE
∣∣z̃′

1AEẑ1
∣∣k + K

∣∣Eẑ′
1AEẑ1

∣∣k
≤KE

1
2
∣∣z̃′

1z̃1
∣∣k∣∣Eẑ′

1Eẑ1
∣∣ k

2 + Kn(−3+4/γ )k

≤K
[
E
∣∣z̃′

1z̃1 −Ez̃′
1z̃1

∣∣k + ∣∣Ez̃′
1z̃1

∣∣k] 1
2 n(−3/2+2/γ )k + Kn(−3+4/γ )k

≤KE
1
2
∣∣z̃′

1z̃1 −Ez̃′
1z̃1

∣∣kn(−3/2+2/γ )k + Kn(−3+4/γ )k

≤Kn−1/2+(−3/2+4/γ )k + Kn(−1+2/γ )k, (3.10)

where we use the abbreviation E
1
2 (·) � [E(·)]1/2 above and also throughout all the remaining proofs.

Again from Lemma A.1, the second term is bounded by

E
∣∣z̃′

1Az̃1 −Ez̃′
1Az̃1

∣∣k ≤ K
(
nk/2 + nE|z̃11|2k

)≤ K
(
nk/2 + n−1+4k/γ

)
. (3.11)

For the third one, we have from (3.4)∣∣Ez̃′
1Az̃1 − p

∣∣k = pk
∣∣Var(ẑ11) − 1

∣∣k ≤ Kn(−1+4/γ )k. (3.12)

Collecting the results in (3.10)–(3.12) yields

E
∣∣ẑ′

1Aẑ1 − p
∣∣k ≤ K

(
nk/2 + n−1+4k/γ

)
, (3.13)

which together with (3.8) and (3.9) give the result in (3.7). Hence, the conclusion of (3.2) follows from
(3.6) and (3.7) by taking some large k. The proof is then complete.
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3.2. Proof of Theorem 2.2

3.2.1. Sketch of the proof

Following the truncation step in the proof of Theorem 2.1, we now centralize the truncated variables.
In addition to the notations in (3.1) and (3.3), some quantities are denoted as below.

z̃ij = ẑij −E(ẑij ), z̃j = (z̃1j , . . . , z̃pj )
′, g̃j = p/

(
z̃′
j Az̃j

)
, G̃ = diag(g̃1, . . . , g̃n),

Z̃ = (z̃ij ), B̃n = 1

n
A

1
2 Z̃G̃Z̃′A

1
2 , Bn = 1

n
A

1
2 Z̃ĜZ̃′A

1
2 , S̃n = 1

n
A

1
2 Z̃Z̃′A

1
2 .

Similar to the derivation of (3.7), one may show that

max
{
P
(‖B̃n − S̃n‖ > ε

)
,P
(‖Bn − S̃n‖ > ε

)}≤ Kε−k
(
n− k

2 +1 + n
− k(γ−4)

γ
)
. (3.14)

It thus follows from [4] that, almost surely, lim supn ‖B̂n‖, lim supn ‖B̃n‖ and lim supn ‖Bn‖ are all
bounded.

Let F Bn , F B̂n , F Bn , and F B̃n be the ESDs of the matrices Bn, B̂n, Bn, and B̃n, respectively. Then,
for each function fj (x), we have from (3.6)

p

∣∣∣∣∫ fj (x) dF Bn −
∫

fj (x) dF B̂n

∣∣∣∣ a.s.−−→ 0. (3.15)

By Corollary A.37 in [2], it holds that

p

∣∣∣∣∫ fj (x) dF B̂n −
∫

fj (x) dF Bn

∣∣∣∣
≤ Kj

p∑
k=1

∣∣λB̂n

k − λ
Bn

k

∣∣
≤ 2Kj

[
cn tr A

1
2 (Ẑ − Z̃)Ĝ(Ẑ − Z̃)′A

1
2
(‖B̂n‖ + ‖Bn‖

)]1/2
. (3.16)

where Kj is an upper bound on |f ′
j (x)| and λB

k denotes the k-th largest eigenvalue of the matrix B. By
(3.4) and (3.9), one may get∣∣tr A

1
2 (Ẑ − Z̃)Ĝ(Ẑ − Z̃)′A

1
2
∣∣≤ ‖A‖max

j
|ĝj | tr

(
EẐEẐ′) a.s.−−→ 0,

and thus (3.16) is oa.s.(1). Moreover, from (3.9) and (3.10), applying Markov’s inequality, we have
also

p

∣∣∣∣∫ fj (x) dF Bn −
∫

fj (x) dF B̃n

∣∣∣∣≤Kjp‖Bn − B̃n‖

≤Kjp‖A‖ ·
∥∥∥∥1

n
Z̃Z̃′

∥∥∥∥max
j

|ĝj − g̃j | a.s.−−→ 0. (3.17)

Collecting (3.15), (3.16), and (3.17), we get

p

∣∣∣∣∫ fj (x) dF Bn −
∫

fj (x) dF B̃n

∣∣∣∣ a.s.−−→ 0. (3.18)
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Therefore, it is sufficient to prove the theorem by replacing the matrix Bn with its truncated and cen-
tralized version B̃n, or equivalently, we assume

E(z11) = 0, E
(
z2

11

)= 1, E
(
z4

11

)= τ + o(1),

E
(|z11|γ

)
< ∞, max

i,j
|zij |γ < n2 (3.19)

for the proof of the theorem. Note that for those (z̃ij ) after truncation and centralization, its variance
might not equal to 1, however since the sample spatial-sign vectors {A1/2z̃j /‖A1/2z̃j‖} are all self-
normalized, we could then assume E(z̃2

11) = 1 as in (3.19).
Next we define a rectangular contour enclosing the interval Ic = [sl, sr ],

sl = lim inf
p→∞ λA

min(1 − √
c)2I(0,1)(c) and sr = lim sup

p→∞
λA

max(1 + √
c)2, (3.20)

and thus enclosing all supports of the LSDs {Fcn,H̃p }. Choosing two numbers xl < xr such that
[sl, sr ] ⊂ (xl, xr ) and letting v0 > 0 be arbitrary, then the contour can be described as

C = {
x ± iv0 : x ∈ [xl, xr ]

}∪ {
x + iv : x ∈ {xr, xl}, v ∈ [−v0, v0]

}
.

Denote

mn(z) =
∫

1

x − z
dF Bn(x), mn(z) = −1 − cn

z
+ cnmn(z),

m0(z) =
∫

1

x − z
dF cn,H̃p (x), m0(z) = −1 − cn

z
+ cnm0(z).

We then define a random process on C as

Mn(z) = p
[
mn(z) − m0(z)

]= n
[
mn(z) − m0(z)

]
, z ∈ C.

From Cauchy’s integral formula, for any k analytic functions (f	) and complex numbers (a	), we have

k∑
	=1

pa	

∫
f	(x) dGn(x) = −

k∑
	=1

a	

2π i

∮
C

f	(z)Mn(z) dz

when all sample eigenvalues fall in the interval (xl, xr), which holds with probability 1 − o(n−s) for
any s > 0. That is,

P
(‖Bn‖ > xr

)= o
(
n−s

)
and P

(
λ

Bn

min < xl

)= o
(
n−s

)
, ∀s > 0, (3.21)

which follows from (3.14) and a similar conclusion for Sn, see [5]. In order to deal with the small prob-
ability event where some eigenvalues are outside the interval (xl, xr ) in finite dimensional situations,
[5] suggested truncating Mn(z) as, for z = x + iv ∈ C,

M̂n(z) =

⎧⎪⎨⎪⎩
Mn(z) z ∈ Cn,

Mn

(
x + in−1εn

)
x ∈ {xl, xr} and v ∈ [0, n−1εn

]
,

Mn

(
x − in−1εn

)
x ∈ {xl, xr} and v ∈ [−n−1εn,0

]
,
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where Cn = {x ± iv0 : x ∈ [xl, xr ]} ∪ {x ± iv : x ∈ {xl, xr}, v ∈ [n−1εn, v0]}, a regularized version of C
excluding a small segment near the real line, and the positive sequence (εn) decreases to zero satisfying
εn > n−a for some a ∈ (0,1). From this and (3.21), one may thus find∮

C
f	(z)Mn(z) dz =

∮
C

f	(z)M̂n(z) dz + op(1),

for every 	 ∈ {1, . . . , k}. Hence, the proof of Theorem 2.2 can be completed by verifying the conver-
gence of M̂n(z) on C as stated in the following lemma.

Lemma 3.1. In addition to Assumptions (a)–(c), suppose that the conditions in (3.19) hold with γ = 5.
We have

M̂n(z)
d= M(z) + op(1), z ∈ C,

where the random process M(z) is a two-dimensional Gaussian process. The mean function is

EM(z) = μ1(z) + (τ − 3)μ2(z), (3.22)

and the covariance function is

Cov
(
M(z),M(z̃)

)= σ1(z, z̃) + (τ − 3)σ2(z, z̃),

where μ1(z), μ2(z), σ1(z, z̃), σ2(z, z̃) are defined in Theorem 2.2.

3.2.2. Proof of Lemma 3.1

At the beginning of the proof of Lemma 3.1, we list some quantities below which will be used fre-
quently throughout this proof.

sj = s(xj ), rj =√
p/nsj , Bn =

n∑
j=1

rj r′
j , � = EBn = nEr1r′

1,

D(z) = Bn − zI, Dj (z) = D(z) − rj r′
j , Dij (z) = D(z) − rir′

i − rj r′
j , (i �= j),

εj (z) = r′
j D−1

j (z)rj − 1

n
tr�D−1

j (z), γj (z) = r′
j D−1

j (z)rj − 1

n
E tr�D−1

j (z),

δj (z) = r′
j D−2

j (z)rj − 1

n
tr�D−2

j (z),

βj (z) = 1

1 + r′
j D−1

j (z)rj

, β̄j (z) = 1

1 + n−1 tr�D−1
j (z)

, bn(z) = 1

1 + n−1E tr�D−1
j (z)

,

βjk(z) = 1

1 + r′
j D−1

kj (z)rj

, β̄jk(z) = 1

1 + n−1 tr�D−1
kj (z)

, b̄n(z) = 1

1 + n−1E tr�D−1
kj (z)

.

Note that the last six quantities are all bounded in absolute value by |z|/v for any z = u + iv ∈ C
+

(see, e.g., Page 568 in [5]). Now we split M̂n(z) into two parts as

M̂n(z) =p
[
mn(z) −Emn(z)

]+ p
[
Emn(z) − m0(z)

]
:=M(1)

n (z) + M(2)
n (z).



High-dimensional spatial-sign covariance matrix 619

Hence, the convergence of M̂n(z) can be obtained through the following three steps.

Step 1: Finite dimensional convergence of M
(1)
n (z). Let z1, . . . , zq be any q complex numbers on

Cn, this step approximates joint distribution of[
M(1)

n (z1), . . . ,M
(1)
n (zq)

]
(3.23)

through martingale CLT [8]. Beyond the techniques used in [5], a particularly important problem
is to find new approaches to deal with the non-linear correlation structure among the entries of
s(xj ). And such non-linear correlation is actually introduced by the spatial-sign transform of the
data, to be precise, the norm ‖xj‖ that appears in the denominator of s(xj ). To this end, by giving
an asymptotic expansion of s(xj ), we develop Lemma A.2 concerning the covariance of certain
quadratic forms, which turns out to be one of the cornerstones for establishing our new CLT.
Moreover, we develop Lemma A.3 for bounding the spectral norm of the difference between the
population SSCM � and the matrix T introduced in (2.7). In this way, we link the population
SSCM � to the shape matrix A of our model and once coming across the first order asymptotic
concerning the matrix �, we can always replace it with the shape matrix A. That is, for any
analytical function f , we have the following convergence

lim
p→∞

∫
f (t) dH̃p(t) = lim

p→∞

∫
f (t) dHp(t) =

∫
f (t) dH(t).

Step 2: Tightness of M
(1)
n (z) on Cn. We illustrate in this step the basic idea for proving the tight-

ness. The result in (3.21) controls the probability of extreme eigenvalues falling outside the con-
tour C. By virtue of this and Lemma A.4, the tightness can be obtained following similar argu-
ments in [5].
Step 3: Convergence of M

(2)
n (z). In this final step, we approximate the quantity M

(2)
n (z). In par-

allel with Step 1, dealing with the nonlinear effects as shown in Lemma A.2 is the main focus in
this part. As will be seen, such nonlinear effects will contribute several new terms to the mean
of ξ .

Step 1: Finite dimensional convergence of M
(1)
n (z) in distribution.

Let E0(·) denote expectation and Ej (·) denote conditional expectation with respect to the σ -field
generated by r1, . . . , rj , j = 1, . . . , n. From the martingale decomposition and the identity

D−1(z) − D−1
j (z) = −D−1

j (z)rj r′
j D−1

j (z)βj (z), (3.24)

we get

M(1)
n (z) =

n∑
j=1

(Ej −Ej−1) tr
[
D−1(z) − D−1

j (z)
]

= −
n∑

j=1

(Ej −Ej−1)
r′
j D−2

j rj

1 + r′
j D−1

j rj

= −
n∑

j=1

(Ej −Ej−1)

[ r′
j D−2

j rj

1 + r′
j D−1

j rj

− n−1 tr D−2
j �

1 + n−1 tr D−1
j �

]
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= −
n∑

j=1

(Ej −Ej−1)

[
d

dz
logβ−1

j (z) − d

dz
log β̄−1

j (z)

]

=
n∑

j=1

(Ej −Ej−1)
d

dz
log

(
βj (z)/β̄j (z)

)

= d

dz

n∑
j=1

(Ej −Ej−1) log
[
1 − β̄j (z)εj (z) + β̄j (z)βj (z)ε

2
j (z)

]
, (3.25)

where the last equality is from the identity βj (z) = β̄j (z) − β̄2
j (z)εj (z) + β̄2

j (z)βj (z)ε
2
j (z). Note that

βj (z) and β̄j (z) are bounded because the imaginary part of their respective denominator is lower
bounded. Thus from Lemma A.4 we have

E|
n∑

j=1

(Ej −Ej−1)β̄j (z)βj (z)ε
2
j (z)|2 ≤ KnE

∣∣εj (z)
∣∣4 → 0.

Thus applying Taylor’s expansion to the log function in (3.25), one may conclude

M(1)
n (z) = − d

dz

n∑
j=1

(Ej −Ej−1)β̄j (z)εj (z) + op(1)

= − d

dz

n∑
j=1

Ej β̄j (z)εj (z) + op(1).

Therefore, we turn to consider the martingale difference sequence

Ynj (z) := d

dz
Ej β̄j (z)εj (z), j = 1, . . . , n.

The Lyapunov condition for this sequence is guaranteed by the fact that

n∑
j=1

E
∣∣Ynj (z)

∣∣4 =
n∑

j=1

E

∣∣∣∣Ej

(
δj (z)β̄j (z) − εj (z)β̄

2
j (z)

1

n
tr�D−2

j (z)

)∣∣∣∣4

≤ K

n∑
j=1

( |z|4E|δj (z)|4
v4

+ |z|8p4
E|εj (z)|4

v16n4

)
→ 0,

where the convergence is from Lemma A.4.
We next consider the sum σn(z, z̃)�

∑n
j=1 Ej−1[Ynj (z)Ynj (z̃)], for z �= z̃ ∈ {z1, . . . , zw}. From sim-

ilar arguments on Pages 571 and 576 of [5], we have

E
∣∣β̄j (z) − bn(z)

∣∣≤ K

n
E
∣∣tr�D−1

j (z) −E tr�D−1
j

∣∣→ 0 and bn(z) + zm(z) → 0, (3.26)

which implies

σn(z, z̃) = ∂2

∂z∂z̃
zz̃m(z)m(z̃)

n∑
j=1

Ej−1
(
Ej εj (z)Ej εj (z̃)

)+ op(1).
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Moreover, applying Lemma A.2 to the above conditional expectations, one may get

zz̃m(z)m(z̃)

n∑
j=1

Ej−1
(
Ej εj (z)Ej εj (z̃)

)
= 2T1 + 2

p
tr
(
A2)T2 − 2T3 − 2T4 + (τ − 3)(T5 + T6 − T7 − T8) + o(1),

where

T1 = zz̃m(z)m(z̃)

n2

n∑
j=1

tr
[
Ej AD−1

j (z)Ej AD−1
j (z̃)

]
,

T2 = zz̃m(z)m(z̃)

pn2

n∑
j=1

tr
[
Ej AD−1

j (z)
]

tr
[
Ej AD−1

j (z̃)
]
,

T3 = zz̃m(z)m(z̃)

pn2

n∑
j=1

tr
[
Ej A2D−1

j (z)
]

tr
[
Ej AD−1

j (z̃)
]
,

T4 = zz̃m(z)m(z̃)

pn2

n∑
j=1

tr
[
Ej AD−1

j (z)
]

tr
[
Ej A2D−1

j (z̃)
]
,

T5 = zz̃m(z)m(z̃)

n2

n∑
j=1

tr
[
Ej

(
A

1
2 D−1

j (z)A
1
2
) ◦Ej

(
A

1
2 D−1

j (z̃)A
1
2
)]

,

T6 = zz̃m(z)m(z̃)

p2n2

n∑
j=1

tr
[
Ej AD−1

j (z)
]

tr
[
Ej AD−1

j (z̃)
]

tr[A ◦ A],

T7 = zz̃m(z)m(z̃)

pn2

n∑
j=1

tr
[
Ej AD−1

j (z)
]

tr
[
Ej

(
A

1
2 D−1

j (z̃)A
1
2
) ◦ A

]
,

T8 = zz̃m(z)m(z̃)

pn2

n∑
j=1

tr
[
Ej

(
A

1
2 D−1

j (z)A
1
2
) ◦ A

]
tr
[
Ej AD−1

j (z̃)
]
.

Following similar steps as in [5] and [15], applying Lemma A.3 and Lemma A.4, we obtain

T1 = log
m(z) − m(z̃)

m(z)m(z̃)(z − z̃)
+ op(1),

T2 = T6

ζ
= c

∫
tm(z) dH(t)

1 + tm(z)

∫
tm(z̃) dH(t)

1 + tm(z̃)
+ op(1) = [1 + zm(z)][1 + z̃m(z̃)]

c
+ op(1).

Notice that T3 and T4 will reduce to T2 if A2 is replaced with A. By this, we have

T3 = c

∫
t2m(z)dH(t)

1 + tm(z)

∫
tm(z̃) dH(t)

1 + tm(z̃)
+ op(1) =

[
1 − 1 + zm(z)

cm(z)

][
1 + z̃m(z̃)

]+ op(1),
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T4 = c

∫
tm(z) dH(t)

1 + tm(z)

∫
t2m(z̃) dH(t)

1 + tm(z̃)
+ op(1) =

[
1 − 1 + z̃m(z̃)

cm(z̃)

][
1 + zm(z)

]+ op(1).

For the terms T5, T7, and T8, following similar procedure as in [25] for proving their Theorem 1.4,
using Lemma A.3, Lemma A.4 and Theorem 2.1, one may get

T5 = 1

n
tr
[(

A
1
2
(
m−1(z)I + �

)−1A
1
2
) ◦ (A 1

2
(
m−1(z̃)I + �

)−1A
1
2
)]+ op(1)

= cg

( −1

m(z)
,

−1

m(z̃)

)
+ op(1),

T7 = 1

pn
tr
[
A
(
m−1(z)I + �

)−1] tr
[(

A
1
2
(
m−1(z̃)I + �

)−1A
1
2
) ◦ A

]+ op(1)

= h

( −1

m(z̃)

)[
1 + zm(z)

]+ op(1),

T8 = 1

pn
tr
[(

A
1
2
(
m−1(z)I + �

)−1A
1
2
) ◦ A

]
tr
[
A
(
m−1(z̃)I + �

)−1]+ op(1)

= h

( −1

m(z)

)[
1 + z̃m(z̃)

]+ op(1).

Collecting the above results, we get

(3.23)
d= [

M(1)(z1), . . . ,M
(1)(zq)

]+ op(1),

where [M(1)(z1), . . . ,M
(1)(zq)] is a q-dimensional zero-mean Gaussian random vector with covari-

ance function

Cov
[
M(1)(z),M(1)(z̃)

]= σ1(z, z̃) + (τ − 3)σ2(z, z̃).

Step 2: Tightness of M
(1)
n (z). The tightness can be established by verifying the moment condition

(12.51) of [7]:

sup
n,z1,z2∈Cn

E|M(1)
n (z1) − M

(1)
n (z2)|2

|z1 − z2|2 < ∞. (3.27)

By (3.21) and arguments on Page 579 in [5], one may verify that moments of D−1(z), D−1
j (z) and

D−1
ij (z) are uniformly bounded in n and z ∈ Cn, that is, for any positive q ,

max
{
E
∥∥D−1(z)

∥∥q
,E
∥∥D−1

j (z)
∥∥q

,E
∥∥D−1

ij (z)
∥∥q}≤ K. (3.28)

By such boundedness, the inequality in Lemma A.4 can be extended to∣∣∣∣∣E
[
a(v)

k∏
l=1

(
r′Bl (v)r − 1

n
tr�Bl(v)

)]∣∣∣∣∣≤ Kn−1−k(γ−4)/γ , k ≥ 2. (3.29)

The matrices Bl (v) in (3.29) are independent of r and

max
{∣∣a(v)

∣∣,∥∥Bl (v)
∥∥}≤ K

[
1 + psI

(‖Bn‖ ≥ xr or λB̃
min ≤ xl

)]
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for some positive s, where B̃ denotes Bn =∑
rj r′

j , Bj =∑
k �=j rkr′

k , or Bij =∑
k �=i,j rkr′

k . Finally,
following similar procedure as in Section 3 of [5], and applying Lemma A.3, Lemma A.4 together with
(3.21), (3.28), and (3.29), one may verify (3.27). The details are thus omitted.

Step 3: Convergence of M
(2)
n (z). To finish the proof, it is enough to show that the sequence of

M
(2)
n (z) is bounded and equicontinuous, and is equal to the mean function (3.22) asymptotically. The

boundedness and equicontinuity can be verified following the arguments on Pages 592-593 in [5]. We
thus propose a novel method to approximate M

(2)
n (z), which is quite different from the idea in [5]. This

new procedure is more straightforward and easier to follow. Before the proof, we first list some results
that will be used in this part:

sup
z∈Cn

E
∣∣εj (z)

∣∣k ≤ Kn−k/2 + Kn−1−k(γ−4)/γ ,

sup
z∈Cn

E
∣∣γj (z)

∣∣k ≤ Kn−k/2 + Kn−1−k(γ−4)/γ ,

(3.30)

sup
n,z∈Cn

∣∣bn(z) + zm(z)
∣∣→ 0, sup

n,z∈Cn

∥∥zI − bn(z)�
∥∥−1

< ∞, (3.31)

sup
n,z∈Cn

E
∣∣tr D−1(z)M −E tr D−1(z)M

∣∣2 ≤ K‖M‖2, (3.32)

where k ≥ 2 and M is a nonrandom p × p matrix. These results can be verified step by step following
the discussions in [5] and we omit the details.

Writing V(z) = zI − bn(z)�, we decompose M
(2)
n (z) in two ways:

M(2)
n (z) = [

pEmn(z) + tr V−1(z)
]− [

tr V−1(z) + pm0(z)
] := Sn(z) − Tn(z),

M(2)
n (z) = [

nEmn(z) + nbn(z)/z
]− [

nbn(z)/z + nm0(z)
] := Sn(z) − T n(z).

Notice that by Lemma A.3,

Tn(z) = p

∫
dH̃p(t)

z − bn(z)t
− p

∫
dH̃p(t)

z + zm0(z)t
+ o(1)

= p
[
bn(z) + zm0(z)

] ∫ tdH̃p(t)

(z − bn(z)t)(z + zm0(z)t)
+ o(1)

= cT n(z)

∫
tdH(t)

z(1 + m(z)t)2
+ o(1).

From this and the convergence in (3.31), we have

M
(2)
n (z) − Sn(z)

M
(2)
n (z) − Sn(z)

= Tn(z)

T n(z)
= c

z

∫
t dH(t)

(1 + m(z)t)2
+ o(1). (3.33)

Our next task is to study the convergence of Sn(z) and Sn(z). For simplicity, we suppress the ex-
pression z in the sequel when it is served as independent variables of some functions. All expressions
and convergence statements hold uniformly for z ∈ Cn.
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We first simplify the expression of Sn. Using the identity r′
j D−1 = r′

j D−1
j βj , we have

Sn = E tr
(
D−1 + V−1)= E tr

[
V−1

(
n∑

j=1

rj r′
j − bn�

)
D−1

]

= nEβ1r′
1D−1

1 V−1r1 − bnE tr�D−1V−1. (3.34)

From (3.24) and β1 = bn − bnβ1γ1,

E tr V−1�
(
D−1

1 − D−1)= E tr V−1�D−1
1 r1r′

1D−1
1 β1

= bnE(1 − β1γ1)r′
1D−1

1 V−1�D−1
1 r1,

where |Eβ1γ1r′
1D−1

1 V−1�D−1
1 r1| ≤ Kn−1/2. From this and (3.34), we get

Sn = nEβ1r′
1D−1

1 V−1r1 − bnE tr�D−1
1 V−1 + 1

n
b2
nE tr D−1

1 V−1�D−1
1 � + o(1).

Then plugging β1 = bn − b2
nγ1 + b3

nγ
2
1 − β1b

3
nγ

3
1 into the first term in the above equation, we obtain

nEβ1r′
1D−1

1 V−1r1 = bnE tr D−1
1 V−1� − nb2

nEγ1r′
1D−1

1 V−1r1

+ nb3
nEγ 2

1 r′
1D−1

1 V−1r1 − nb3
nEβ1γ

3
1 r′

1D−1
1 V−1r1.

Note that, from (3.29), (3.30) and (3.32),

Eγ1r′
1D−1

1 V−1r1 = E

[
r′

1D−1
1 r1 − 1

n
tr D−1

1 �

][
r′

1D−1
1 V−1r1 − 1

n
tr D−1

1 V−1�

]
+ 1

n2
Cov

(
tr D−1

1 �, tr D−1
1 V−1�

)
= E

[
r′

1D−1
1 r1 − 1

n
tr D−1

1 �

][
r′

1D−1
1 V−1r1 − 1

n
tr D−1

1 V−1�

]
+ o

(
1

n

)
,

Eγ 2
1 r′

1D−1
1 V−1r1 = Eγ 2

1

[
r′

1D−1
1 V−1r1 − 1

n
tr D−1

1 V−1�

]
+ 1

n
Cov

(
γ 2

1 , tr D−1
1 V−1�

)+ 1

n
Eγ 2

1 E tr D−1
1 V−1�

= 1

n
Eγ 2

1 E tr D−1
1 V−1� + o

(
1

n

)
,

Eβ1γ
3
1 r′

1D−1
1 V−1r1 = o

(
1

n

)
.

We thus arrive at

Sn = −nb2
nE

[
r′

1D−1
1 r1 − 1

n
tr D−1

1 �

][
r′

1D−1
1 V−1r1 − 1

n
tr D−1

1 V−1�

]
+ b3

nEγ 2
1 E tr D−1

1 V−1� + 1

n
b2
nE tr D−1

1 V−1�D−1
1 � + o(1).
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On the other hand, by the identity r′
j D−1 = r′

j D−1
j βj , we have

p + z tr D−1 = tr
(
BnD−1)=

n∑
j=1

βj r′
j D−1

j rj = n −
n∑

j=1

βj ,

which implies nzmn = −∑n
j=1 βj . From this, together with β1 = bn − b2

nγ1 + b3
nγ

2
1 − β1b

3
nγ

3
1 and

(3.29), we get

Sn = −n

z
E(β1 − bn) = −n

z
b3
nEγ 2

1 + o(1).

Applying Lemma A.2 to the simplified Sn and Sn, and then replacing Dj with D in the derived results
yield

Sn = −b2
n

n

[
E tr D−1AD−1V−1A + 2

p

(
1

n
tr A2

E tr AD−1 tr AD−1V−1

−E tr A2D−1 tr AD−1V−1 −E tr AD−1 tr A2D−1V−1
)]

+ 2b3
n

n2

[
E tr D−1AD−1A + 1

p

(
1

n
tr A2

E tr AD−1 tr AD−1 − 2E tr A2D−1 tr AD−1
)]

·E tr D−1V−1� − (τ − 3)b2
n

n

[
E tr

[(
A

1
2 D−1A

1
2
) ◦ (A 1

2 D−1V−1A
1
2
)]

+ 1

p2
E tr

(
D−1A

)
tr
(
D−1V−1A

)
tr[A ◦ A]

− 1

p
E tr

(
D−1A

)
tr
[(

A
1
2 D−1V−1A

1
2
) ◦ A

]− 1

p
E tr

(
D−1V−1A

)
tr
[(

A
1
2 D−1A

1
2
) ◦ A

]]
+ (τ − 3)b3

n

n2

[
E tr

[(
A

1
2 D−1A

1
2
) ◦ (A 1

2 D−1A
1
2
)]+ 1

p2
Etr2(D−1A

)
tr[A ◦ A]

− 2

p
E tr

(
D−1A

)
tr
[(

A
1
2 D−1A

1
2
) ◦ A

]]
E tr D−1V−1� + o(1),

Sn = −2b3
n

zn

[
E tr D−1AD−1A + 1

p

(
1

p
tr A2

E tr AD−1 tr AD−1 − 2E tr A2D−1 tr AD−1
)]

− (τ − 3)b3
n

zn

[
E tr

[(
A

1
2 D−1A

1
2
) ◦ (A 1

2 D−1A
1
2
)]+ 1

p2
Etr2(D−1A

)
tr[A ◦ A]

− 2

p
E tr

(
D−1A

)
tr
[(

A
1
2 D−1A

1
2
) ◦ A

]]+ o(1).

To study the convergence of Sn and Sn, we need to figure out the difference between D−1 and V−1.
Write

D−1 + V−1 = bnR̃1 + R̃2 + R̃3, (3.35)
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where

R̃1 =
n∑

j=1

V−1(rj r′
j − n−1�

)
D−1

j , R̃2 =
n∑

j=1

V−1rj r′
j D−1

j (βj − bn),

R̃3 = 1

n

n∑
j=1

bnV−1�
(
D−1

j − D−1).
From equations (4.15) and (4.16) in [5], we have for any p × p matrix M,

|E tr R̃2M| ≤ n1/2K
(
E‖M‖4)1/4 and | tr R̃3M| ≤ K

(
E‖M‖2)1/2 (3.36)

and, for nonrandom matrix M,

|E tr R̃1M| ≤ n1/2K‖M‖. (3.37)

Taking a step further, for M nonrandom, we write

tr R̃1�D−1M = R̃11 + R̃12 + R̃13, (3.38)

where

R̃11 = tr
n∑

j=1

V−1rj r′
j D−1

j �
(
D−1 − D−1

j

)
M,

R̃12 = tr
n∑

j=1

V−1(rj r′
j − n−1�

)
D−1

j �D−1
j M,

R̃13 = −1

n
tr

n∑
j=1

V−1�D−1
j �

(
D−1 − D−1

j

)
M.

It’s clear that ER̃12 = 0 and moreover, using (3.28), (3.29) and (3.32), we get

|ER̃13| ≤ K‖M‖, (3.39)

ER̃11 = −nEβ1r1D−1
1 �D−1

1 r1r′
1D−1

1 MV−1r1

= −bnn
−1

E
(
tr D−1

1 �D−1
1 �

)(
tr D−1

1 MV−1�
)+ o(1)

= −bnn
−1

E
(
tr D−1�D−1�

)(
tr D−1MV−1�

)+ o(1)

= −bnn
−1

E
(
tr D−1�D−1�

)
E
(
tr D−1MV−1�

)+ o(1). (3.40)

Applying (3.26), (3.35)–(3.40), and Lemma A.3, one may approximate each components of Sn and
Sn. Specifically, we have

1

n
E tr D−1Ak = −

∫
ctk dH(t)

z(1 + mt)
+ o(1),

1

n
E tr D−1V−1Ak = −

∫
ctk dH(t)

z2(1 + mt)2
+ o(1),
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1

n
E tr D−1AD−1A = −1

n
E tr V−1AD−1A − b2

n

n2
E tr D−1AD−1AE tr V−1AD−1A + o(1)

= −1

n
E tr V−1AD−1A

[
1 + b2

n

n
E tr V−1AD−1A

]−1

+ o(1),

=
∫

ct2 dH(t)

z2(1 + mt)2

[
1 −

∫
cm2t2 dH(t)

(1 + mt)2

]−1

+ o(1),

1

n
E tr D−1AD−1V−1A = −1

n
E tr V−1AD−1V−1A

[
1 + b2

n

n
E tr D−1AD−1A

]
+ o(1)

= −1

n
E tr V−1AD−1V−1A

[
1 + b2

n

n
E tr V−1AD−1A

]−1

+ o(1),

=
∫

ct2 dH(t)

z3(1 + mt)3

[
1 −

∫
cm2t2 dH(t)

(1 + mt)2

]−1

+ o(1).

Combining the above results, we obtain

Tn/T n =
∫

ctdH(t)

z(1 + mt)2
+ o(1),

Sn − SnTn/T n = −
∫

cm2t2 dH(t)

z(1 + mt)3

[
1 −

∫
cm2t2 dH(t)

(1 + mt)2

]−1

− 2cm2

z

[∫
(α2t − t2) dH(t)

1 + mt

∫
tdH(t)

(1 + mt)2
−
∫

tdH(t)

1 + mt

∫
t2 dH(t)

(1 + mt)2

]
− c(τ − 3)

{
1

zm
g′

u(u, v)|
u=v= −1

m
+ ζ

∫
tmdH(t)

1 + mt

∫
tmdH(t)

z(1 + mt)2

−
[∫

tdH(t)

z(1 + mt)
h′(u)|

u= −1
m

+
∫

tmdH(t)

z(1 + mt)2
h

(−1

m

)]}
+ o(1).

Therefore, from (3.33) and the identities[
1 −

∫
ctdH(t)

z(1 + mt)2

]−1

= −zm

[
1 −

∫
cm2t2 dH(t)

(1 + mt)2

]−1

= −zm′

m
,

we obtain

M(2)
n (z) = Sn − SnTn/T n

1 − Tn/T n

= μ1(z) + (τ − 3)μ2(z) + o(1).

The proof is complete.

Appendix: Additional lemmas and proofs

In this appendix, we list some supporting lemmas and their proofs. In order to ease the reading, we
recall some notations that will be frequently encountered in this appendix. The population x has the
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structure x = wA
1
2 z, where z = (z1, . . . , zp)′ is a random vector with i.i.d. standardized entries. Denote

s(x) = x
‖x‖ , r =

√
p

n
s(x) =

√
p

n
s
(
A

1
2 z
)
, � = nE(rr′),

T = A − 2

p
A2 − τ − 3

p
A

1
2 diag(A)A

1
2 +

(
2

p2
tr A2 + τ − 3

p2
tr(A ◦ A)

)
A.

K is some constant that can vary from place to place and ‖ · ‖ denotes the Euclidean norm of a vector
or the spectral norm of a matrix.

A.1. Lemmas

Lemma A.1 (Lemma 2.7 in [4]). For z = (z1, . . . , zp)′ i.i.d. standardized entries, C p × p matrix
(complex) we have for any k ≥ 2

E
∣∣z′Cz − tr C

∣∣k ≤ K
[(
E|z1|4 tr CC∗) k

2 +E|z1|2k tr
(
CC∗) k

2
]
,

where K is a constant depending only on k.

Lemma A.2. Suppose that Assumptions (a)–(c) and (3.19) hold with γ ∈ (4,4 + δ] for some δ > 0.
Then for any p × p complex matrices C and C̃ with bounded spectral norms,

E

(
r′Cr − 1

n
tr�C

)(
r′C̃r − 1

n
tr�C̃

)
= 1

n2
tr ACAC̃ + 1

n2
tr ACAC̃′ + 2

p2n2
tr A2 tr AC tr AC̃ − 2

pn2
tr A2C tr AC̃ − 2

pn2
tr AC tr A2C̃

+ τ − 3

n2

{
tr
[(

A
1
2 CA

1
2
) ◦ (A 1

2 C̃A
1
2
)]+ 1

p2
tr CA tr C̃A tr[A ◦ A]

− 1

p
tr CA tr

[(
A

1
2 C̃A

1
2
) ◦ A

]− 1

p
tr C̃A tr

[(
A

1
2 CA

1
2
) ◦ A

]}+ o
(
p−1).

Lemma A.3. Suppose that Assumptions (a)–(c) and (3.19) hold with γ = 5. We have

‖� − T‖ = o
(
p−1).

Lemma A.4. Suppose that Assumptions (a)–(c) and (3.19) hold with γ ∈ (4,4 + δ]. For any k ≥ 2 and
p × p complex matrices C with bounded spectral norm,

E

∣∣∣∣r′Cr − 1

n
tr�C

∣∣∣∣k ≤ Kn−k
[
E|z1|2k tr(C�)k + (

E|z1|4 tr(C�)2) k
2

+ ‖C�‖k
(
p

k
2 E

k
2 |z1|4 + pE|z1|2k

)]
≤ K

(
n− k

2 + n
−1− k(γ−4)

γ
)
. (A.1)

where K is a constant depending only on k.



High-dimensional spatial-sign covariance matrix 629

A.2. Proof of Lemma A.2

Denote W = A
1
2 CA

1
2 , U = A

1
2 C̃A

1
2 , and s = z′Az/p. We consider the product of the quadratic form

n2r′Crr′C̃r = z′Wzz′Uz/s2. From Lemma A.1 and the fact tr A = p, it holds that

E|s − 1|k ≤ K
(
p− k

2 + p
−1− k(γ−4)

γ
)
, k ≥ 2. (A.2)

By the identity

1

s2
= 2 − s2 + (

1 − s2)2 + s−2(1 − s2)3

and the inequality

E
(
z′Wzz′Uz

)(
s−2(1 − s2)3)≤ Kp2

E|1 − s|3 = o(p),

we have

n2
Er′Crr′C̃r = E

(
z′Wzz′Uz

)(
6 − 8s + 3s2)+ o(p). (A.3)

Therefore, the main task in the following is to derive the limits for the three terms Ez′Wzz′Uz,
Ez′Wzz′Uzs and Ez′Wzz′Uzs2 up to the order O(p).

For the first term Ez′Wzz′Uz, we have

Ez′Wzz′Uz = E

∑
i,j,k,	

zizj zkz	Wij Uk	.

Since all the p components zi are independent and standardized, with mean zero, variance one and
finite fourth moment, the terms that will contribute are the ones with their indexes either can be glued
together or divided into two groups, that is, i = j = k = 	, or i = j �= k = 	, or i = k �= j = 	 or
i = 	 �= j = k. All the four cases together gives

Ez′Wzz′Uz = tr W tr U + tr WU + tr W′U + (τ − 3)
∑

i

WiiUii + o(p). (A.4)

For the second term Ez′Wzz′Uzs, we have

Ez′Wzz′Uzs = 1

p
E

∑
i,j,k,	,s,u

zizj zkz	zszuWij Uk	Asu. (A.5)

The terms that will contribute up to order O(p) are in
∑

(2) and
∑

(3), where the index (·) denotes the
number of distinct integers in the set {i, j, k, 	, s, u}. It can be checked that the following three cases
should be counted in

∑
(2) (all have the form of the product of two traces)

case 1: i = j �= k = 	 = s = u,
case 2: k = 	 �= i = j = s = u,
case 3: s = u �= i = j = k = 	,
while in

∑
(3) the following four cases should be taken into account,

case 1: k = s �= 	 = u �= i = j and k = u �= 	 = s �= i = j ,
case 2: i = s �= j = u �= k = 	 and i = u �= j = s �= k = 	,
case 3: i = 	 �= j = k �= s = u and i = k �= j = 	 �= s = u,
case 4: i = j �= k = 	 �= s = u.
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Combining the contribution of each cases in
∑

(2) and
∑

(3), we have

case 1 = τ + o(1)

p

∑
i �=k

WiiUkkAkk + 2

p

∑
i �=k �=	

WiiUk	A	k

= τ − 2

p

∑
i �=k

WiiUkkAkk + 2

p

∑
i �=k

Wii (UA)kk + o(p)

= τ − 2

p
tr W

∑
k

UkkAkk + 2

p
tr W tr(UA) + o(p),

case 2 = τ + o(1)

p

∑
i �=k

WiiUkkAii + 2

p

∑
i �=j �=k

Wij UkkAji

= τ − 2

p

∑
i �=k

WiiAiiUkk + 2

p

∑
i �=k

Ukk(WA)ii + o(p)

= τ − 2

p
tr U

∑
i

WiiAii + 2

p
tr U tr(WA) + o(p),

case 3 = τ + o(1)

p

∑
s �=i

WiiUiiAss + 1

p

∑
i �=j �=s

Wij UjiAss + 1

p

∑
i �=j �=s

Wij U∗
jiAss

= τ − 2

p

∑
s �=i

WiiUiiAss + 1

p

∑
i �=s

Ass(WU)ii + 1

p

∑
i �=s

Ass

(
WU∗)

ii
+ o(p)

= τ − 2

p
tr A

∑
i

WiiUii + 1

p
tr A tr(WU) + 1

p
tr A tr

(
WU∗)+ o(p),

case 4 = 1

p

∑
i �=k �=s

WiiUkkAss

= 1

p
tr W tr U tr A − 1

p
tr A

∑
i

WiiUii − 1

p
tr U

∑
i

WiiAii

− 1

p
tr W

∑
i

AiiUii + o(p),

which further gives

Ez′Wzz′Uzs = case 1 + case 2 + case 3 + case 4 + o(p)

= 1

p
tr W tr U tr A + 2

p
tr W tr(UA) + 2

p
tr U tr(WA)

+ 1

p
tr A tr(WU) + 1

p
tr A tr

(
WU∗)+ τ − 3

p
tr W

∑
k

UkkAkk

+ τ − 3

p
tr U

∑
i

WiiAii + τ − 3

p
tr A

∑
i

WiiUii + o(p). (A.6)
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Finally, for the third term Ez′Wzz′Uzs2, we have

Ez′Wzz′Uzs2 = 1

p2
E

∑
i,j,k,	,s,u,m,b

zizj zkz	zszuzmzbWij Uk	AsuAmb.

The terms that will make the main contribution up to order O(p) are in
∑

(3) and
∑

(4). For example,
when considering

∑
(1), we have

∑
(1)

= E

∑
i

1

p2
z8
i WiiUiiA2

ii = O
(
p1−4(γ−4)/γ

)= o(p)

by using the assumptions in (3.19). Similar technique can be applied to dealing with the terms in
∑

(2)

and get their o(p) bounds, which thus can be neglected. For terms in
∑

(3) and
∑

(4), we list in the
following all the cases that should be counted, which are all up to order O(p). For

∑
(3), we have six

cases
case 1: i = j �= k = 	 �= s = u = m = b,
case 2: i = j = s = u �= k = 	 �= m = b,
case 3: i = j = m = b �= k = 	 �= s = u,
case 4: k = 	 = m = b �= i = j �= s = u,
case 5: i = j = k = 	 �= s = u �= m = b,
case 6: k = 	 = s = u �= i = j �= m = b,
while in

∑
(4), we have seven cases

case 1: i = j �= k = 	 �= u = m �= s = b and i = j �= k = 	 �= s = m �= u = b,
case 2: i = s �= j = u �= k = 	 �= m = b and i = u �= j = s �= k = 	 �= m = b,
case 3: i = m �= j = b �= u = s �= k = 	 ang i = b �= j = m �= k = 	 �= s = u,
case 4: k = m �= 	 = b �= i = j �= s = u and k = b �= 	 = m �= i = j �= s = u,
case 5: i = k �= j = 	 �= s = u �= m = b and i = 	 �= j = k �= s = u �= m = b,
case 6: k = s �= 	 = u �= i = j �= m = b and k = u �= 	 = s �= i = j �= m = b,
case 7: i = j �= k = 	 �= s = u �= m = b.
Combining the above, we have

case 1 = 2

p2

∑
i �=k �=m �=s

WiiUkkAmsAms + τ + o(1)

p2

∑
i �=k �=s

WiiUkkA2
ss

= 2

p2

∑
i �=k �=s

WiiUkk(AA)ss + τ − 2

p2

∑
i �=k �=s

WiiUkkA2
ss + o(p)

= 2

p2
tr A2 tr W tr U + τ − 2

p2
tr W tr U

∑
s

A2
ss + o(p),

case 2 = 2

p2

∑
i �=j �=k �=m

Wij UkkAij Amm + τ + o(1)

p2

∑
i �=k �=m

WiiUkkAiiAmm

= 2

p2

∑
i �=k �=m

(WA)iiUkkAmm + τ − 2

p2

∑
i �=k �=m

WiiUkkAiiAmm + o(p)

= 2

p2
tr(WA) tr U tr A + τ − 2

p2
tr U tr A

∑
i

WiiAii + o(p),
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case 3 = case 2,

case 4 = 2

p2

∑
k �=	�=i �=s

WiiUk	AssAk	 + τ

p2

∑
k �=i �=s

WiiUkkAkkAss

= 2

p2

∑
k �=i �=s

(UA)kkWiiAss + τ − 2

p2

∑
k �=i �=s

WiiUkkAssAkk + o(p)

= 2

p2
tr(UA) tr W tr A + τ − 2

p2
tr W tr A

∑
k

UkkAkk + o(p),

case 5 = 1

p2

∑
i �=j �=s �=m

Wij Uij AssAmm + 1

p2

∑
i �=j �=s �=m

Wij UjiAssAmm

+ τ

p2

∑
i �=s �=m

WiiUiiAssAmm

= 1

p2

∑
i �=s �=m

(WU)iiAssAmm + 1

p2

∑
i �=s �=m

(
WU∗)

ii
AssAmm

+ τ − 2

p2

∑
i �=s �=m

WiiUiiAssAmm + o(p)

= 1

p2
tr(WU)(tr A)2 + 1

p2
tr
(
WU∗)(tr A)2 + τ − 2

p2
(tr A)2

∑
i

WiiUii + o(p),

case 6 = case 4,

case 7 = 1

p2

∑
i �=k �=s �=m

WiiUkkAssAmm

= 1

p2
tr W tr U(tr A)2 − 1

p2
tr W tr U

∑
s

A2
ss − 2

p2
tr W tr A

∑
s

AssUss

− 1

p2
(tr A)2

∑
i

WiiUii − 2

p2
tr U tr A

∑
i

WiiAii + o(p),

which finally leads to

E
(
z′Wzz′Uz

)
s2

= 1

p2
tr W tr U(tr A)2 + 2

p2
tr A2 tr W tr U + 4

p2
tr(WA) tr U tr A

+ 4

p2
tr(UA) tr W tr A + 1

p2
tr(WU)(tr A)2 + 1

p2
tr
(
WU∗)(tr A)2
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+ τ − 3

p2
tr W tr U

∑
s

A2
ss + 2τ − 6

p2
tr U tr A

∑
i

WiiAii

+ 2τ − 6

p2
tr W tr A

∑
k

UkkAkk + τ − 3

p2
(tr A)2

∑
i

WiiUii + o(p). (A.7)

Collecting (A.3), (A.4), (A.6), (A.7), we have

Er′Crr′C̃r = τ − 3

n2

∑
i

WiiUii + 1

n2
tr W trU + 1

n2
tr(WU) + 1

n2
tr
(
W′U

)+ 6

p2n2
tr A2 tr W tr U

− 4

pn2
tr(WA) tr U − 4

pn2
tr(UA) tr W + 3(τ − 3)

p2n2
tr W tr U

∑
s

A2
ss

− 2(τ − 3)

pn2
tr W

∑
k

UkkAkk − 2(τ − 3)

pn2
tr U

∑
i

WiiAii + o
(
p−1). (A.8)

On the other hand, using the identity

1

s
= 2 − s + (1 − s)2 + s−1(1 − s)3

and the inequality (A.2), we can derive

nEr′Cr = E
1

s
z′Wz = Ez′Wz

(
3 − 3s + s2)+ o(1). (A.9)

It is trivial to have

Ez′Wz = tr W (A.10)

and by applying (A.4) and (A.6) again,

Ez′Wzs = τ − 3

p

∑
i

WiiAii + tr W + 1

p
tr(WA) + 1

p
tr
(
W∗A

)
, (A.11)

Ez′Wzs2 = tr W + 2

p2
tr W tr

(
A2)+ 4

p
tr(WA) + 2(τ − 3)

p

∑
i

WiiAii

+ τ − 3

p2
tr W

∑
i

A2
ii + o(1). (A.12)

Collecting (A.9)–(A.12) leads to

nEr′Cr = tr W + τ − 3

p2
tr W

∑
i

A2
ii + 2

p2
tr W tr A2

− τ − 3

p

∑
i

WiiAii − 2

p
tr(WA) + o(1). (A.13)
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Therefore, combining (A.8)–(A.13), we have reached

E

(
r′Cr − 1

n
tr�C

)(
r′C̃r − 1

n
tr�C̃

)
= Er′Crr′C̃r −Er′CrEr′C̃r

= 1

n2
tr
[(

W′ + W
)
U
]+ 2

p2n2
tr A2 tr W tr U − 2

pn2
tr(WA) tr U

− 2

pn2
tr(UA) tr W + τ − 3

n2
tr(W ◦ U) + τ − 3

p2n2
tr W tr U tr(A ◦ A)

− τ − 3

pn2
tr W tr(U ◦ A) − τ − 3

pn2
tr U tr(W ◦ A) + o

(
p−1). (A.14)

The proof is then complete.

A.3. Proof of Lemma A.3

Using the identity

1

s
= 2 − s + (1 − s)2 + s−1(1 − s)3

we have

� = E
1

s
A

1
2 zz′A

1
2 = EA

1
2 zz′A

1
2
(
2 − s + (1 − s)2 + s−1(1 − s)3), (A.15)

where s = z′Az/p. First, we show that∥∥EA
1
2 zz′A

1
2 s−1(1 − s)3

∥∥= o
(
p−1). (A.16)

Define an event A = {|s − 1| > 1/2} then, by Markov’s inequality and (A.2), we have P(A) = o(n−s)

for any s > 0. Therefore,∥∥EA
1
2 zz′A

1
2 s−1(1 − s)3

∥∥≤ K
∥∥Ezz′s−1(1 − s)3I (A)

∥∥+ K
∥∥Ezz′s−1(1 − s)3I

(
Ac
)∥∥

≤ K
∥∥Ezz′|1 − s|3∥∥+ o

(
n−s

)
.

Applying Hölder’s inequality and (A.2), we have∥∥Ezz′|1 − s|3∥∥= max
α∈Rp,‖α‖=1

Eα′zz′α|1 − s|3 ≤ max
α∈Rp,‖α‖=1

E
∣∣z′αα′z − 1

∣∣|1 − s|3 +E|1 − s|3

≤ max
α∈Rp,‖α‖=1

E
1
2
∣∣z′αα′z − 1

∣∣2E 1
2 |1 − s|6 + o

(
p−1),

which is o(p−1) from (A.2) and the fact E|z′αα′z − 1|2 = O(1). Therefore, (A.16) is verified, which
together with (A.15) give

� = EA
1
2 zz′A

1
2
(
2 − s + (1 − s)2)+ o

(
p−1)= A

1
2
[
Ezz′(3 − 3s + s2)]A 1

2 + o
(
p−1), (A.17)

where the “o(p−1)” is in terms of spectral norm.
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Next, we deal with the terms Ezz′s and Ezz′s2. For Ezz′s, we have its (i, j)-th entry given by

[
Ezz′s

]
(i,j)

= 1

p
Ezizj

∑
k,	

zkz	Ak	 =

⎧⎪⎨⎪⎩
1

p
Aij + 1

p
Aji i �= j,

1 + 1

p

(
τ − 1 + o(1)

)
Aii i = j,

which gives

Ezz′s = Ip + 2

p
A + 1

p

(
τ − 3 + o(1)

)
diag(A)

and

EA
1
2 zz′A

1
2 s = A + 2

p
A2 + 1

p
(τ − 3)A

1
2 diag(A)A

1
2 + o

(
p−1). (A.18)

For the term Ezz′s2, similar to the derivation of (A.5), we have its (i, j)-th entry is given by[
Ezz′s2]

(i,j)
= 1

p2
Ezizj

∑
k,	,s,u

zkz	zszuAk	Asu

=

⎧⎪⎪⎨⎪⎪⎩
4

p
Aij − 4

p2
AiiAij − 4

p2
Aij Ajj + o

(
p−2) i �= j,

1

p2
(τ − 3)

∑
k

A2
kk + 2

p
(τ − 1)Aii + 2

p2
tr A2 + 1 + o

(
p−1) i = j.

Therefore, we get

Ezz′s2 = 4

p
A + 1

p2
(τ − 3) tr(A ◦ A)Ip + Ip + 2

p
(τ − 3)diag(A) + 2

p2
tr A2 · Ip + o

(
p−1),

which further gives that

EA
1
2 zz′A

1
2 s2 = 4

p
A2 + 1

p2
(τ − 3) tr(A ◦ A)A + A

+ 2

p
(τ − 3)A

1
2 diag(A)A

1
2 + 2

p2
tr A2 · A + o

(
p−1). (A.19)

Collecting (A.17), (A.18) and (A.19), we obtain

� = A − τ − 3

p
A diag(A)A′ − 2

p
A2 +

(
τ − 3

p2
tr(A ◦ A) + 2

p2
tr A2

)
A + o

(
p−1)

= T + o
(
p−1).

The proof is thus complete.

A.4. Proof of Lemma A.4

This lemma can be obtained from similar arguments for the proof of Lemma 6 in [24]. We omit the
details.
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