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Abstract 

Background: Dynamic prediction of patient mortality risk in the ICU with time series data is limited due to high 
dimensionality, uncertainty in sampling intervals, and other issues. A new deep learning method, temporal convolu‑
tion network (TCN), makes it possible to deal with complex clinical time series data in ICU. We aimed to develop and 
validate it to predict mortality risk using time series data from MIMIC III dataset.

Methods: A total of 21,139 records of ICU stays were analysed and 17 physiological variables from the MIMIC III data‑
set were used to predict mortality risk. Then we compared the model performance of the attention‑based TCN with 
that of traditional artificial intelligence (AI) methods.

Results: The area under receiver operating characteristic (AUCROC) and area under precision‑recall curve (AUC‑PR) 
of attention‑based TCN for predicting the mortality risk 48 h after ICU admission were 0.837 (0.824 ‑0.850) and 0.454, 
respectively. The sensitivity and specificity of attention‑based TCN were 67.1% and 82.6%, respectively, compared to 
the traditional AI method, which had a low sensitivity (< 50%).

Conclusions: The attention‑based TCN model achieved better performance in the prediction of mortality risk with 
time series data than traditional AI methods and conventional score‑based models. The attention‑based TCN mortal‑
ity risk model has the potential for helping decision‑making for critical patients.

Trial registration: Data used for the prediction of mortality risk were extracted from the freely accessible MIMIC III 
dataset. The project was approved by the Institutional Review Boards of Beth Israel Deaconess Medical Center (Bos‑
ton, MA) and the Massachusetts Institute of Technology (Cambridge, MA). Requirement for individual patient consent 
was waived because the project did not impact clinical care and all protected health information was deidentified. 
The data were accessed via a data use agreement between PhysioNet, a National Institutes of Health–supported data 
repository (https://www.physionet.org/), and one of us (Yu‑wen Chen, Certification Number: 28341490). All methods 
were carried out in accordance with the institutional guidelines and regulations.
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Introduction
The in-hospital mortality of patients in the intensive care 
unit (ICU) is relatively high, ranging from 6.7% to 44.0% 
worldwide [1, 2]. With the development of critical care 
medicine, larger amounts of data help doctors to make 
decisions; however sometimes this can be counterpro-
ductive, overwhelming the doctors. Thus, tools that help 
doctors make decisions based on large amounts of both 
monitoring results and clinical data are badly needed.

In the past, score-based models, such as simplified 
acute physiology score (SAPS II), Acute Physiology and 
Chronic Health Evaluation II (APACHE II), were com-
monly used in patient evaluations for prediction of mor-
tality risk [3, 4]. When applied to larger populations, the 
diagnostic performances of score-based models are rela-
tively poor [1, 2, 5–8]. Recently, methods based on arti-
ficial intelligence (AI), including conventional machine 
learning (ML) methods and deep learning methods, have 
been applied to help doctors’ decision-making by pre-
dicting patients’ mortality risk [9–11]. Compared with 
statistical score-based models, methods based on AI 
usually have better model performance, which may be 
related to the advantages of AI methods such as the abil-
ity to deal with complex non-linear relationships between 
variables and patient outcome.

However, there are some limitations of the research 
mentioned above. One of the most important problems 
is that the repeated measured variables such as vital signs 
to predict the mortality risk are replaced with statisti-
cal variables, such as maximum, and minimal. In ICU, 
the overall trend and coupling of changes between dif-
ferent physiological variables may provide prognostic 
information, which will also help to elevate the accuracy 
of prediction model [12]. The ideal tool to help doctors’ 
decision-making requires optimum use of all the associ-
ated routine variables, especially time series data, to real-
ize dynamic prediction. However, due to the complexity 
of the time series data, studies on dynamic prediction 
using temporal clinical data are limited.

The challenges of predicting mortality risk in the ICU 
were summarized by Ikaro et al. [12]: Firs, measurements 
of time series data from each patient vary; moreover, the 
time interval is irregular. Second, the chosen measure-
ments and the trends of time series data are coupled with 
each other. In terms of time series models in deep learn-
ing, the Long Short-Term Memory (LSTM) [13] and its 
derivatives Gated-Recurrent Unit (GRU) [14], have been 
used to predict the mortality risk of ICU patients, which 

achieved better area under receiver operating char-
acteristic (AUCROC) and area under precision-recall 
curve (AUC-PR) than conventional score-based models. 
However, because data are processed sequentially over 
time, LSTM and GRU have the shortcomings such as 
high computing load, time consumption, and hardware 
requirements, as well as vanishing gradients, which result 
in difficulties in dealing with big data and applying them 
to clinical popularization. It is widely accepted that deep 
learning also has other shortcomings such as low expla-
nation capability and larger computing. While the atten-
tion mechanism simulates the data processing of the 
human brain, it is combined with LSTM or other deep 
learning methods to improve computational efficiency 
or interpretability [7, 15, 16]. However, the limitations 
regarding inefficient, particularly when processing long 
sequences, still exist due to characteristics of the method 
itself. A better deep learning method that overcomes the 
current limitations is urgently needed. Recently, a new 
deep learning method, the temporal convolution network 
(TCN), was developed, with the characteristics of paral-
lelism, fixed gradient, and smaller memory of training. 
Furthermore, Bai et  al. [17] reported that the TCN has 
even better performance than LSTM or GRU. Developing 
an attention-based TCN model may not only elevate the 
interpretability and reduce the computation complexity 
but also extend the clinical use due to its higher efficiency 
for long sequences. Therefore, we aimed to develop an 
attention-based TCN model to predict the in-hospital 
mortality risk 48  h after admission in ICUs with time 
series data and compare the model performances with 
conventional ML methods, namely, random forest (RF), 
logistic regression (LR), decision tree (DT) and support 
vector machine (SVM).

Materials and Methods
Ethics and data extraction
Data used for the prediction of mortality risk were 
extracted from the multi-parameter intelligent monitor-
ing in intensive care (MIMIC) database [18]. The pro-
ject was approved by the Institutional Review Boards 
of Beth Israel Deaconess Medical Center (Boston, MA) 
and the Massachusetts Institute of Technology (Cam-
bridge, MA). The requirement for individual patient 
consent was waived because the project did not impact 
clinical care and all protected health information was 
deidentified [18]. The data were accessed via a data use 
agreement between PhysioNet, a National Institutes of 
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Health–supported data repository (https:// www. physi 
onet. org/), and one of us (Yu-wen Chen, Certification 
Number: 28341490). All methods were carried out in 
accordance with the institutional guidelines and regu-
lations. There were 61,532 records of ICU stays in Beth 
Israel Deaconess Medical Center ICUs, including clini-
cal notes, physiological waveforms, laboratory meas-
urements, and nurse-verified numerical data [18]. The 
exclusion criteria were as follows: any hospital admission 
with multiple ICU stays or transfers between different 
ICUs or wards, which would reduce the ambiguity of out-
comes associated with hospital admissions rather than 
ICU stays; patients younger than 16; patients whose ini-
tial ICU stay was missing or less than 48 h; ICU events 
with no events in the initial 48 h. As a result, a total of 
18,094 were included in the final analysis. As shown in 
Fig. 1, to avoid overfitting, we split the dataset into train-
ing set (15331patients, 17,917 ICU stays) and testing 
set (2763 patients, 3222 ICU stays). Five fold cross vali-
dation was performed on the training set to determine 
the model parameters. We obtained the best model 
parameters after cross-validation on the training set and 
obtained the scores of the model on the testing set.

Data preprocessing
Herein, we mainly focused on common and repeat-
edly measured variables in ICUs that were effective for 
reflecting the disease status and efficacy of treatment. 
We used 17 physiologic variables (shown in Table  1) 
representing a subset from the Physionet/CinC Chal-
lenge 2012 [12]. Up to 17 variables were recorded at least 
once during the first 48  h after admission. Not all vari-
ables were available in all cases. We used all raw values 
for time series measurements included in the score. For 
Glasgow Comma Score (GCS), we included GCS verbal 
response, GCS motor response, GCS eye opening and 
GCS total as different features. The rest of the variables 

included weight, height, temperature, respiratory rate 
(RR), heart rate (HR), diastolic blood pressure (DBP), 
Mean blood pressure (MBP), systolic blood pressure 
(SBP), fraction inspired oxygen  (FiO2), oxygen saturation 
(OS), pH, glucose, and capillary refill rate (CRR). When 
the value was more than three standard deviations away 
from each individual mean value, it was removed. Twelve 
of the variables were continuous and five discrete. All of 
the time series variables were re sampled into hourly rate 
starting from ICU admission. When there was a continu-
ous variable that was missing at a point in time, we filled 
the data with the nearest neighbour value. When the 
indicator had no record data during the observation time, 

Fig. 1 Data partition and verification

Table 1 Physiological variables to predict the mortality risk of 
patients in ICU

Sequence 
number

Physiological variables Data type

1 Capillary refill rate Discrete value

2 Diastolic blood pressure Continuous value

3 Fraction inspired oxygen Continuous value

4 Glascow coma scale eye opening Discrete value

5 Glascow coma scale motor response Discrete value

6 Glascow coma scale total Discrete value

7 Glascow coma scale verbal response Discrete value

8 Glucose Continuous value

9 Heart Rate Continuous value

10 Height Continuous value

11 Mean blood pressure Continuous value

12 Oxygen saturation Continuous value

13 Respiratory rate Continuous value

14 Systolic blood pressure Continuous value

15 Temperature Continuous value

16 Weight Continuous value

17 pH Continuous value
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we assumed that the nurse did not measure the attribute 
and that the indicator was considered normal so that we 
filled the data using the normal value of the attribute. For 
discrete variables, we performed one-hot encoding. For 
continuous variables, we performed Z-score normaliza-
tion to scale the feature values. Each patient’s record was 
summarized into a visualization data matrix 59 × 48 for 
48-h observation period as the input for deep learning.

Model construction for Attention‑based TCN
In this work, we developed an attention-based TCN 
model to predict the mortality risk of ICU patients 
with time series and static data. The TCN is a convolu-
tional network, which is composed of causal convolu-
tion, diluted convolution, and residual connections. The 
causal convolution makes the TCN a strict temporal 
model, which uses data from time t and earlier in the 
previous step to predict the status at time t, when model 
trained. TCN allows the input of convolution to be sam-
pled at intervals to broaden the field of perception (i.e., 
to make the most of information) through the use of the 
dilated convolution. The residual connections enable the 
network to transmit information across layers, which 
are usually used to train deep network. In addition, the 
TCN adds dropout to each hole in the residual module 
to achieve regularization. An attention mechanism was 

introduced into the TCN model to elevate the efficiency 
and the interpretability.

The structure of the attention-based TCN model was 
shown in Fig.  2. Patients’ raw data were pre-processed 
as data flow for model in put; then, the TCN (Tempo-
ral Convolutional Network) [17] was directly applied to 
process the ICU patient’s temporal data. The network 
was similar to the basic structure of the literature [17]. 
In brief, the model consists of a stack of temporal atten-
tion convolutional networks. Each temporal attention 
convolutional layer was composed of a one-dimensional 
full convolution layer, self-attention layer and residual 
layer. Feature extraction was carried out using a one-
dimensional causal full convolution layer, and the resid-
ual layer was used to deepen the convolution network. 
The self-attention layer simulates the attention model of 
human brain and makes the model focus on data relevant 
to the predicted results. The number of attributes for 
the patients was 59, so we set the convolution kernel to 
3 and the stacked temporal convolutional attention layer 
to 7. When the network layer was set to 7, the recep-
tive field of the network exactly covered all the patients’ 
input data. The patient’s vital signs data are extracted 
by 7-level TCN and then connected to the attention 
layer; finally, the mortality risk was predicted by a linear 
layer. The implementation parameters of the TCN were 

Fig. 2 The structure of the attention‑based TCN model for prediction of mortality risk in ICU
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batch_size = 32, dropout = 0.2, kernel size = 3, levels of 
TCN = 7, initial learning rate = 0.02, number of hidden 
units per layer = 59, and optimization algorithm = Adam. 
The loss function used is binary cross entropy:

pred: prediction tensor with arbitrary shape.
label: target tensor with values in range  [0, 1]. Must 

have the same size as pred.

Non‑time series model construction
We also predicted the mortality risk by non-time series 
ML methods such as RF [19], LR, DT and SVM. Due to 
the limitation of these ML methods, the in-put for these 
models were not time series data but results of feature 
extraction (statistical variables, such as the minimum, 
maximum, average of the variables). Then the preproc-
essed data were used for model construction and evalu-
ation. For the machine learning models compared in 
the experiments, the parameters were set through the 

prob =
1

1+ exp(−pred)

L = −

∑

i

labeli ∗ log
(

probi
)

+ (1− labeli) ∗ log(1− probi)

gridSearchCV method. The corresponding parameters 
were shown in Table 2.

Model evaluation
Model performance was assessed by overall performance, 
discrimination, and calibration. The overall performance 
is determined by the F1 score. The F1 score is defined as 
the harmonic mean of accuracy and recall, which consid-
ers both the precision and the recall equally. Discrimina-
tion is the capability to distinguish between those who 
survival and those who do not 48  h after admission in 
ICU by AUCROC and the area under the precision-recall 
curve (AUC-PR). The AUC-PR is sensitive to the imbal-
anced distribution of the negative and positive data, 
especially when there is an extreme small portion of posi-
tive data. Calibration is assessed by the Brier score via 
calculating the averaged squared deviation between the 
predicted probability and the actual outcome.

Statistical analysis
The statistical analyses were carried out using SPSS soft-
ware for Windows, V.19.0 (SPSS). Quantitative variables 
were presented using basic descriptive statistics: mean 
and SD (for normally distribution data), or median and 
IQR (for nonnormally distribution data). Comparisons 
among datasets were performed using the chi-square 

Table 2 The model parameters

Model The parameter settings

Decision Tree (DT) criterion = “gini” # The function to measure the quality of a split, supported criteria
# are “gini” for the Gini impurity
splitter = “best” # The strategy used to choose the split at each node
max_depth = None # The maximum depth of the tree
min_samples_split = 2 # The minimum number of samples required to split an
# internal node
min_samples_leaf = 1 # The minimum number of samples required to be at a leaf
# node
min_weight_fraction_leaf = 0.0 # The minimum weighted fraction of the sum total
# of weights required to be at a leaf node
max_features = None # The number of features to consider when looking for the
# best split
random_state = None # It is the seed used by the random number generator
max_leaf_nodes = None # Grow trees with max_leaf_nodes in best‑first fashion,
# if None then unlimited number of leaf nodes
class_weight = None # Weights associated with classes, if not given, all classes are
# supposed to have weight one
presort = False # The data is not presorted

support vector machine (SVM) kernel = “rbf” # Specifies the kernel type to be used in the algorithm
# “rbf” is Gaussian kernel function
gamma = “auto” # Kernel coefficient for ‘rbf’
probability = True # Whether to enable probability estimates

logistic regression (LR) solver = “lbfgs” # The optimized algorithm is “lbfgs”
multi_class = “auto” # Determines the multi‑class strategy if y contains more than
# two classes
penalty = “l2” # Specifies the norm used in the penalization, the ‘l2’ penalty is the
# standard used in SVC

Random forest (RF) n_estimators = 100 # The number of trees in the forest
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test, Fisher’s exact test, or Kruskal–Wallis test. All sta-
tistical tests were two sided, and a P value less than 0.05 
indicated statistical significance.

Results
Data distribution
Ultimately, there were 18,094 patients for analysis. The 
patient demographics and characteristics of the three 
datasets are presented in Table  3. There were no statis-
tically significant differences in age, sex, and ICU length 
of stay between the groups. The mortality rate of our 

cohort was 15.4%. Although the mortality rate of patients 
in the testing dataset was significantly lower than that of 
the patients in the training datasets, the mortality rate of 
patients in test dataset was similar to that of patients in 
our whole cohort.

Model performance of time series and non‑time 
series models
We evaluated the new model in 3 aspects. First, we 
compared the attention-based TCN with traditional 
score-based methods; second, we compared the atten-
tion-based TCN with models which do not use time 
series data; and finally, we compared the attention-
based TCN with LSTM that used time series data. 
The purpose of the comparison with traditional ML 
models was not to use complex models to compare 
with simple model but to show that models based on 
patient time series data are effective in improving the 
accuracy of predictions compared to models not using 
time series data. As shown in Tab 4 and Fig. 3 A, com-
pared with the statistical methods, AI methods had 
larger AUCROC and AUC-PR, which indicated better 
capacity of discrimination. However, the AUCROC and 
AUC-PR of the attention-based TCN were smaller than 
those of the non-time series ML methods, which also 
had an acceptable discrimination ability. Furthermore, 
compared with non-time series ML methods, the atten-
tion-based TCN had the highest sensitivity (67.1%) and 
F1 score (0.46). Models with high specificity but lower 
sensitivity resulting in missing patients who are poten-
tially at risk, which would violate our initial purpose of 
helping doctors dynamically evaluate the mortality risk 
of patients. For other time series methods, the sensitiv-
ity of the attention-based TCN was much higher than 

Table 3 The baseline of patients in training and testing  dataset

Mean (SD) presented for normally distributed continuous variables, while 
median (IQR) was given to those with non-normally distributed continuous 
variable. Unless otherwise state n is as indicated in the column headings. The 
portion of admission in different ICU was statistically compared with the training 
dataset (*P < 0.05). F female, M male, CCU  Coronary Care Unit, CSRU Cardiac 
Surgery Recovery Unit, MICU Medical ICU, SICU Surgical ICU, TSICU Trauma 
Surgical intense care unit

Variables Training 
(n = 15,331)

Testing (n = 2763) P

Age 67.3(54.0–78.8) 67.7(53.9–79.2) 0.527

Sex (F/M) 6861/8470 1229/1534 0.791

ICU admission 0.014

CCU 2071 380

CSRU 2768 572*

MICU 5919 1037

SICU 2654 455

TSICU 1919 319

survival/Death 12,910/2421 2389/374* 0.003

ICU length of stay 
(hours)

88.8 (63.7–149.9) 86.9 (62.5–147.0) 0.180

Table 4 The performances of different ML models for prediction of in‑hospital mortality in the test dataset

Statistical quantifications were demonstrated with 95% CI, when applicable. ML machine learning, attention-based TCN attention-based Temporal Convolution 
Network, LR Logistic Regression, SVM Support Vector Machine, SAPS Simplified Acute Physiology Score, APS Acute Physiology Score, OASIS Oxford Acute Severity of 
Illness Score, 1, data referring to Hrayr et al. Scientific Data.2017; 2, data referring to Ruo-xi Yu, et al. IEEE J Biomed Health Inform.2019

Methods Sens Spec F1 score Brier score AUCROC AUC-PR

Non‑time series methods

 DT 22.7% 96.9% 0.28 0.088 0.804(0.789–0.817) 0.381

 LR 35.0% 96.8% 0.43 0.081 0.838(0.824–0.850) 0.459

 RF 25.1% 98.5% 0.36 0.077 0.865(0.853–0.877) 0.511

 SVM 29.1% 97.9% 0.39 0.080 0.822(0.808–0.835) 0.477

 SAPS‑II1 0.777 0.376

 APS‑III1 0.750 0.357

  OASIS1 0.760 0.312

Time series methods

  LSTM2 46.1% 0.451

 Attention‑based 
TCN

67.1% 82.6% 0.46 0.142 0.837(0.824–0.850) 0.454

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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that of model by LSTM (46.1%) based on the same 
database [7], although there was only a small difference 
in the AUC-PRs between them. This result indicated 
that models developed by the attention-based TCN had 
higher accuracy and a lower omission diagnosis rate 
than those by LSTM, which may be related to the dif-
ference between the input variables. In terms of model 
calibration, the Brier score of attention-based TCN was 
higher than that of the other conventional ML models, 
which may be associated with the high dimension of 
time series data. Taking the purpose and clinical appli-
cation into consideration, due to the high sensitivity, F1 
score and relative satisfied discrimination ability. Based 

on these variables, the model performance of the atten-
tion-based TCN was the best among the listed methods 
in Table 4.

Visualization of attention weights at different time 
points
By visualizing the attention weights, we could clearly 
see which variables and time points were considered 
when predicting the risk of death. Typical heatmaps for 
attention weights of non-survival and survival patients 
were shown in Fig. 3 B and C. The larger portion of the 
coloured area in the heatmap of non-surviving patient 
suggest that the patient is instable. The values of the 

Fig. 3 The ROC curves of different AI methods and the typical visualization of attention weight. A The ROC curves for predicting ICU patients’ 
in‑hospital mortality 48 h after admission based on different AI methods. B The typical heatmap for attention weight of variables and time points for 
the non‑survival patient. C The typical heatmap for attention weight of variables and time points for the surviving patient. AI, artificial intelligence; 
TCN, temporal convolution network; DT, Decision Tree; LR, Logistic Regression; RF, Random Forest; SVM, Support Vector Machine; TCN, temporal 
convolution network
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variables at time points represented by these coloured 
areas contributed more than other factors to the patient’s 
death. The time point with most of the coloured variables 
may correspond to rescue in the clinical reality. In addi-
tion to good model performance, the attention-based 
TCN method also has the potential advantage of better 
interpretability.

Discussion
There are several score-based models for predicting the 
mortality risk, such as SAPS [3], APACHE [20], OASIS 
[21] and Sequential Organ Failure Assessment (SOFA) 
[22]. All of these models use non-time series data and 
are based on statistical methods (i.e., the input data 
are static data or statistical data, such as comorbidities 
and the minimum of systolic pressure in the first 24 h), 
which make it impossible to predict the mortality risk in 
the first 24 h or to update data for predicting long-term 
mortality risk. Despite the AUCROCs of the score-based 
models are satisfied, either the sensitivity or the specific-
ity was poor [23, 24]. It’s not surprising that these models 
have been modified several times to improve their pre-
dictive performance since they initially being published 
[25]. Recently, for representing the complex, non-linear 
relationship between clinical variables and the outcome, 
non-time series AI methods, such as Artificial neural 
work (ANN), SVM, DT, RF, Naive Bayes, projective adap-
tive resonance theory (PART) and AutoTriage, were used; 
demonstrating the ability to predict the mortality risk of 
patients in ICUs [5, 11, 24, 26, 27] with relatively satis-
fied model performance. However, in these non-time 
series methods, all the variables are static or extracted 
from time series data, which makes it impossible to real-
ize dynamic prediction. The AUCROCs and AUC-PRs 
of attention-based TCN model were larger than that of 
conventional score-based models in the same database 
according to Harutyunyan et al.’s study [8]. It is a pity that 
Harutyunyan et al. did not show the sensitivity and speci-
ficity of conventional models. Regardless of the slight 
difference in AUCROCs and AUC-PRs among attention-
based TCN and other non-time series ML methods, the 
sensitivity of attention-based TCN was much higher than 
others. During decision-making in clinical work, doctors 
should take medical history, physical examination and 
trend of vital signs into consideration. The ideal model 
for predicting mortality risk is to take both time series 
and static clinical data into consideration; moreover, 
simultaneously realize dynamic prediction. Furthermore, 
due to the unstable status of ICU patients, sensitivity 
seems to be more important than specificity, as missing 
potential patients who are at risk may be fatal for them. 
In brief, attention-based TCN method was preferable 
to non-time series methods in predicting the mortality 

risk of ICU patients. In addition, Hao et al. [28] tried to 
apply attention-based TCN to language models result-
ing a significant elevation of model performance, which 
suggests attention-based TCN is a promising method for 
sequence modeling.

Recently, Yu et al. [7], Harutyunyan et al. [8] and Song 
et  al. [16] combined two AI methods (including one 
time series method) to predict the mortality risk of ICU 
patients with large AUCROCs and AUC-PRs but lower 
sensitivity (the variables and sensitivity were not pre-
sented in Harutyunyan’s study). Along with the low sen-
sitivity, there were other shortcomings in these studies. 
First, Yu et  al.’s and Harutyunyan’s methods were based 
on LSTM, which addresses time series data sequentially 
from beginning to end, while TCN can perform paral-
lel processing by causal convolutions in the architecture 
[17]. Due to the limitations of LSTM, attention-based 
TCN methods would be more proper for higher dimen-
sions and amounts of data and require less in hardware, 
which would be more suitable for clinical extension. Sec-
ond, Yu et  al.’s study included vital signs, namely, HR, 
SBP and temperature, while ours included RR, HR, DBP, 
MBP, SBP and temperature. Currently, MBP and DBP are 
widely accepted as important predictors for ICU patients 
[29–31]. Therefore, it may be insufficient to predict the 
mortality risk without MBP and DBP. Moreover, some of 
the variables, such as urinary output in Yu et al.’s study, 
are the sum or mean of clinical data in a set period time 
and have a longer acquisition time interval than that of 
vital signs. Vital signs in our study were more reasonable 
and easier to obtain than those in Yu et al.’s, while vari-
ables more frequently collected could help for dynamic 
prediction. Third, Harutyunyan et  al.’s and Song et  al.’s 
study focused on the algorithms, the clinical value was 
slightly overlooked. Fourth, these three studies combined 
an attention mechanism was mainly intended to elevate 
the efficiency of computing rather than interpretabil-
ity. Moreover, we furtherly applied the attention-based 
TCN to predict the patients’ mortality risk 48  h after 
ICU admission in MIMIC IV (version 1.0) with the same 
clinical variables and model parameters as that used in 
MIMIC III. As shown in supplementary Table  1 and 2, 
the AUC-PR, sensitivity, specificity and F1 score of mod-
els based on MIMIC IV were 0.470, 66.0%, 66.0% and 
0.35, which were lower than but similar to those based 
on MIMIC III. Our results suggested that the attention-
based TCN had acceptable generalization ability and 
relatively satisfied robustness. In summary, our attention-
based TCN method also had the advantages of higher 
efficiency, better interpretability and ease of promotion.

In Fig.  4, we present a diagram for the clinical use of 
predicting the mortality risk of ICU patients by atten-
tion-based TCN methods. For a new critical patient, the 
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patient’s baseline information and monitoring data were 
put into the attention-based TCN model as data flow 
after automatically data preprocessing. Then the mortal-
ity risk was predicted at different time points according 
to the patient’s specific condition (here we predict the 
mortality risk 48 h after ICU admission). If the estimated 
mortality risk is high, the patient will receive intensive 
monitoring and intensive treatment; if the estimated 
mortality risk is low, the patient will receive intensive 
monitoring and routine treatment. In brief, the whole 
process is Warning → Intervention → Warning → Inter-
vention → …… → Patient outcome.

There are several limitations in this study. First, 
although the variables in our study were routine, most 
of them being time series, some more routine and fre-
quently collected variables would be helpful. New, 
promising, and repeatedly measured variables should be 
considered to help elevate the prediction accuracy in fur-
ther study. Second, clinical data are extracted from one 
medical center, so the generalization ability of the model 

and its possibility of clinical application is not validated. 
Prospective multi-center studies should be carried out to 
investigate the clinical value of combing TCN with atten-
tion mechanism to predict patient’s mortality risk using 
temporal clinical data.

Conclusion
Attention-based TCN methods achieved better perfor-
mance in predicting mortality risk with time series data 
than non-time series models, suggested that there might 
be potential for decision-making in ICU by dynamic pre-
diction of mortality risk through continuous data flow.
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