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a b s t r a c t

Bitcoin is a popular and widely traded cryptocurrency. The Bitcoin blockchain technology makes it easy
for users to conduct pseudo-anonymous financial transactions. However, it also facilitates criminals to
secrete their actual identities from law enforcement agencies. Heuristic-based address clustering is the
subject regarding Bitcoin de-anonymization. But no heuristic algorithm has a known or potential error
rate due to the lack of ground truth. This paper uses sensitivity analysis to validate and verify a con-
structed Bitcoin simulation model. The evaluation and validation processes examine the model behavior
and model outputs from multiple simulation runs to demonstrate fidelity and credibility. The analysis
results show no model uncertainties, and the simulation model is stable and can effectively simulate
Bitcoin transactions. With a reasonable number of nodes and transaction volumes in the simulated
network, the simulation model can be used to verify the effectiveness of two widely used heuristic-based
address clustering algorithms and measure the corresponding error rates.
© 2022 The Author(s). Published by Elsevier Ltd on behalf of DFRWS This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bitcoin, a well-known decentralized peer-to-peer (P2P) cryp-
tocurrency, was first invented in 2008 and used in 2009
(Antonopoulos, 2014). Bitcoin blockchain technology has many
vital features, such as anonymity and immutability, ensuring user
privacy and data security (Peng et al., 2021). New developments in
blockchain technology make it harder to trace the actual owner
behind a particular Bitcoin address. Users can perform pseudo-
anonymous financial transactions with ease. But this also facili-
tates the ability of criminals to hide their true identities from law
enforcement agencies. In 2021, cryptocurrency-based crime
reached a new high, with illegitimate addresses receiving $14
billion (Chainalysis Team, 2022).

Previous research on the Bitcoin de-anonymization for identi-
fying real-world identities has been actively developed. Address
clustering is a main research topic that divides addresses that may
belong to the same user into the same group (called a cluster)
(Harrigan and Fretter, 2016). Among them, one popular method is
heuristic-based address clustering. However, the lack of ground-
truth labels for identifying the actual owner behind each Bitcoin
address makes it hard to determine the accurate linkage between
ng).
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addresses and assess the quality of clustering results. It is not ad-
missible in court. For digital evidence, the Daubert standard defines
how to determine the admissibility of an expert witness's scientific
testimony, and it has five criteria (Daubert Standard; Legal
Information Institute, 2022; Garrie, 2014; Luu and Imwinkelried,
2016). Because of the heuristic nature and the features of Bitcoin
blockchain technology, the third condition has not been addressed.
The determination of error rates can determine how the court can
rely on such evidence. No heuristic-based address clustering algo-
rithm has a known or potential error rate.

A simulationmodel represents the construction of a specific real
system (Maria, 1997). Due to considerations like cost, privacy, and
anonymity, configuring and deriving accurate error rates on the real
Bitcoin network is impossible. Thus, a simulation model can help to
study the behavior and properties of the real Bitcoin network.
Model validity is crucial in modeling (Maria, 1997). Many reasons,
such as incorrect parameter settings and improper assumptions,
will lead to errors in amodel, and sensitivity analysis can help parse
model behavior and identify potential problems. Sensitivity anal-
ysis methods have been used across various disciplines and can aid
in validating and verifying a model (Christopher Frey and Patil,
2002). Sensitivity analysis includes analytical examination and is
an essential aspect of model development (Hamby, 1995). Appro-
priate sensitivity analysis reduces model uncertainties and in-
creases confidence in the model results. Our research aims to
perform sensitivity analysis for a constructed simulation model to
ensure its credibility and validity. The evaluation and validation
n open access article under the CC BY-NC-ND license (http://creativecommons.org/
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processes will verify whether the model behavior effectively sim-
ulates Bitcoin transactions and whether the model outputs have
uncertainties when changing important model parameters and
settings. The analysis results show that the simulation model is
stable, and model outputs can be used to validate heuristic-based
address clustering algorithms. The rest of the paper is organized
as follows. Section 2 overviews related research. Section 3 briefly
introduces the simulation model construction. Section 4 demon-
strates the evaluation and validation processes. The last section
concludes the paper and outlines the research directions for future
studies.

2. Related work

Address clustering groups Bitcoin addresses belonging to the
same user into the same cluster, which is related to Bitcoin de-
anonymization. First, heuristic-based address clustering exploits
the structural details of transactions (Zhang et al., 2020).
Meiklejohn et al. (2013) demonstrate a multi-input heuristic
method. It is also called the common spending heuristic in (Ermilov
et al., 2017). While making transactions, the private keys are
required to create signatures. Thus, all the input addresses may
belong to the same user for multi-input transactions. The one-time
change address heuristic algorithm is also put forward by
Meiklejohn et al. (2013). For transactions having changes, the
change address and all input addresses are likely to belong to a
single user. Zhang et al. (2020) have improved the one-time change
address heuristic to identify more change addresses precisely,
called the address reuse-based change address detection heuristic.
Nick (2015) has developed the optimal change heuristic derived
from Bitcoin client behavior and the consumer heuristic regarding
redeeming transactions. The second type of address clustering
method uses information other than transactions' structural details
in different ways. Biryukov et al. (2014) associate Bitcoin users’
pseudonyms behind firewalls of ISPs or NATs with the public IP
address of the host through eight octets of Bitcoin peers (entry
nodes). Ermilov et al. (2017) collect and analyze public information
that can be found on the Internet (off-chain information) to create
key phrase-entity (tags), which are divided into six categories.
Combine heuristics and the off-chain information to generate
clusters. Kang et al. (2020) construct a custom Bitcoin client to
collect data and conduct a statistical analysis to explore reliable
mappings between Bitcoin addresses and IP addresses. Zhu et al.
(2017) design a system for analyzing blockchain data and
network traffic data to find the correlation between Bitcoin address
and IP address.

A simulation model close to the real Bitcoin network can help
understand the behavior of the Bitcoin system. Based on design
structures, there are two broad types of simulators (Alsahan et al.,
2020). The first type of simulator is the event-based simulator. In
such a system, state variables change in discrete times (Banks,
2005). BlockSim, developed by Faria et al. (Faria and Correia,
2019), includes many fundamental simulation models common to
blockchains. And users can flexibly expand the framework to assess
deployment determinations and different setups. Shadow Bitcoin
belongs to this simulation type, capable of scalability and direct
execution of multi-threaded applications (Miller and Jansen, 2015).
Fattahi et al. (2020) have implemented an improved version of
BlockSim, called SIMBA, by including Merkle tree features for
effective transaction authentication and consistency. The second
one is the virtualization-based simulation, which utilizes light-
weight virtualization approaches. Chen et al. (2017) have created a
framework including the Docker platform and containers, which
reaches a good tradeoff between expense and model performance.
With the introduction of virtualization into blockchain testing,
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several logical nodes running a custom Bitcoin application can
model a large-scale P2P network. Alsahan et al. (2020) have pro-
posed the simulation framework with lightweight virtualization,
which supports quick simulation of large-scale networks. This
framework incorporates the Linux kernel traffic control (tc) tool
and allows different network topologies.

Sensitivity analysis is usually used to investigate how changes in
specific parameters in a model affect the generated results. The
analysis results may indicate whether the constructed model is a
suitable representative of the corresponding real system. Within a
neighborhood of validity, whether the simulation results can be
proven to be consistent with the behavior of the related real sys-
tem. For developed simulation models, sensitivity analysis can
assist researchers in uncovering the effects of parameters on output
variability and which parameters interact with each other, and
reducing output uncertainties, among other aspects (Chan et al.,
1997). The model parameter is an internal configuration variable.
Improper parameter settings can result in errors in a model.
Sargent (2010) point out that sensitivity analysis can determine the
effect of parameter variability to examine the model's output
behavior. It is one of the validation approaches that are widely used
in model verification and validation. Iterations may be needed to
ensure the sensitive parameters are sufficiently accurate. Some-
times it may be that optimal values for some parameters cannot be
determined in a simulation model; sensitivity analysis can help
define intervals in which the parameters are expected to lie
(Murray-Smith, 2015). Christopher Frey and Patil (Christopher Frey
and Patil, 2002) present the identification and qualitative com-
parison of sensitivity analysis methodologies utilized in different
disciplines. Depending on the applicability to different types of
models to use suitable approaches, sensitivity analysis is helpful for
the identification of crucial control points and the validation of a
model. Saltelli (2002) goes through some instances in which
sensitivity analysis has played an essential role in model-based
analysis and describes the methods that satisfy these requirements.

3. Bitcoin simulation model

According to the modeling process in (Murray-Smith, 2015),
modeling should start with the target purpose, the prior knowl-
edge, and relevant requirements analysis. These aspects signifi-
cantly affect the choice of modeling methods, model structure and
parameters. For Bitcoin heuristic-based address clustering, the
multi-input and one-time change heuristics are two broadly used
and representative heuristics (Mun et al., 2020). This Bitcoin
simulation model aims to simulate real-world Bitcoin transactions
to validate these two primary heuristic methods and assess their
error rates. Because of the diversity of research objectives and
design structures, most existing simulation models and measure-
ments pay more attention to network-level implementations and
propagation efficiency. The structural details inside the simulated
Bitcoin transactions are not the focus. Thus, an appropriate simu-
lation model is required for the objective.

3.1. Prior knowledge

Prior knowledge about the real system can considerably impact
the model generated and the modeling techniques used (Murray-
Smith, 2015). Therefore, the real Bitcoin system should be investi-
gated before modeling. The investigation results can provide in-
sights into the real Bitcoin system and be used later to observe the
model behavior and compare themodel outputs. The two heuristics
depend on the number of input or output addresses and address
reuse (Meiklejohn et al., 2013). As a result, the prior knowledge
covers transaction distribution and address reuse. Blockchain data
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from when Bitcoin was first used until the end of 2021 is parsed.
There are 716,548 blocks (block height: 0e716547) and
699,285,797 transactions.

3.1.1. Transaction distribution
Transactions are not categorized into standard and non-

standard transactions based on scripts (Bistarelli et al., 2019).
Instead, transactions are divided into four categories according to
the numbers of inputs and outputs: transfer, multiple payments,
consolidation, and complex transactions (Cotten, 2018).

The distributions of the four types of transactions are shown in
Fig. 1. Multiple payments constitute the most significant type.
Figs. 2 and 3 present the distribution of different numbers of inputs/
outputs in all transactions. Transactions with only one input have
the largest number, accounting for 73.01%. Also, transactions hav-
ing two outputs count for the highest proportion, accounting for
75.20% of all transactions. Regarding the transaction volume in each
block, blocks with 1e500 Bitcoin transactionsmake up around one-
half of all blocks.

3.1.2. Address reuse
An address is new if it emerges as an output address the first

time. Conversely, the address is old if it appears as the output
multiple times in the whole blockchain. New addresses are
encouraged in each new transaction for user privacy; however, it is
still typical to get payments with old Bitcoin addresses (Gaihre
et al., 2018). Fig. 4 shows the address reuse rates during each
year. In the first four years, the address reuse rate grew. After that,
the reuse rate declined and fluctuated around 10% in the following
years. As a result, a ten percent address reuse rate will be set for
simulation.

3.2. Model structure

The model is based on Simchain (Simchain). In the real Bitcoin
network, nodes can propagate, send and receive transactions and
perform verification. The obtained ground truth should help vali-
date the two widely used heuristics. Referring to the real bitcoin
transaction structure (Antonopoulos, 2014), the simulated trans-
action details should cover information like txid, vin, vout, and used
UTXOs. Therefore, in the Bitcoin simulation model, nodes are full
nodes holding four functions: consensus, storage, wallet, and
Fig. 1. Transaction Type Distribution (Bitcoin blockchain).

3

routing (Simchain). Bitcoin mixing services are for enhancing an-
onymity. When applying Bitcoin mixing, the linkages between
input and output addresses are hard to derive (Wu et al., 2021).
Thus, the model will generate transactions from multiple nodes to
multiple nodes, similar to Bitcoin mixing services, for a more
realistic simulation. Three log files (basicdata.log, bitcoin.log, and
detaildata.log) record model logs and required simulation data.
Details of the model structure and the generated simulation data
can be found in (Gong et al., 2022).

4. Evaluation and validation

Reasons like improper parameter settings and mistakes in
experimental procedures can lead to uncertainties and errors in the
models. After modeling, what is really examined when assessing
the quality is whether the model is invalid under certain condi-
tions. It is impossible to completely prove that a model is valid from
all aspects (Murray-Smith, 2015). In addition, our understanding of
the real system is never complete, and the ability of measurements
and computations is limited. At best, we may be able to show that
the developed model looks to be an acceptable representation of
the real system for the specific objectives of the desired application
(Murray-Smith, 2015).

4.1. Sensitivity analysis

Modeling includes parameter settings. The quality of a model
should be questioned when the parameter variability within the
predicted interval results in considerable variations in simulation
results (Murray-Smith, 2015). Sensitivity analysis can deal with
such situations. It can identify the critical parameters in the model
and assess how model behavior and outputs are affected by
parameter variability. Sensitivity analysis results are essential for
model development and refinement and help improve the whole
model's credibility.

4.1.1. Experimental setup
Generally, all input addresses of a multiple-input transaction

should be from the same user, as related private keys are required
to make the signature. With the development of mixing services,
unrelated users can be grouped to create a single transaction.
Therefore, what appears to be regular user transactions may utilize
mixing services. In (Pakki et al., 2021), there are examples of
transactions usingmixers, and it can be seen that a transactionwith
a regular number of inputs and outputs (e.g., a transactionwith one
input and two outputs) can be related to a mixer. In the real Bitcoin
network, it is not practical to identify the actual owners behind all
addresses and calculate the proportions of mixing transactions in
all Bitcoin transactions because of anonymity, etc.

In the constructed simulation model, functions to simulate
mixing services are integrated, but the settings regarding the per-
centage of mixing transactions are uncertain. For transaction types
with multiple inputs/outputs, i.e., Multiple Payments, Consolida-
tion, and Complex, there are two different situations. For example, a
consolidation transaction is assumed to have two inputs and one
output. These two input addresses may come from the same user or
two different users with mixing. Thus this transaction may be from
one node to one node or from multiple nodes to one node, i.e., the
one-to-one or one-to-many setting. Please note that there may be
the case that the user sends Bitcoin to his/her another address, i.e.,
the sender and receiver are the same user. This situation is already
considered in these two settings. All input addresses should belong
to the same user from the aspect of themulti-input heuristic. When
two inputs are from two different users, i.e., the one-to-many case,
it causes a false positive. Therefore, the probability distributions of



Fig. 2. Distribution of the numbers of inputs (Bitcoin blockchain).

Fig. 3. Distribution of the numbers of outputs (Bitcoin blockchain).
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these two settings may influence the error rates of heuristic
algorithms.

In the real Bitcoin system, the percentage of mixing transactions
is unknown. Since no reference is derived from the real system, the
probability distributions for these two settings in the simulation
model are also uncertain. The number of nodes in the simulated
network and the total number of transactions generated can be set
when simulating a Bitcoin network. As the real-world blockchain is
dynamic and changing, the total transaction volume can be set, but
the model will generate a transaction volume approximately equal
to the set value. There is no fixed absolute generated transaction
volume to simulate the real Bitcoin system as close as possible.
Therefore, the sensitivity analysis needs to be performed on these
three aspects, i.e., the probability distributions of the two settings,
the number of nodes in the simulated network, and the total
number of transactions generated. The effect of parameter changes
4

on the simulation model can be studied by repeating simulation
runs and directly comparing the model behavior before and after
the changes (Murray-Smith, 2015).

The experiments can be divided into three sets: (i) repeated
simulation runs with initial settings, (ii) simulation runs for different
probability distribution settings for three transaction types having
multiple inputs/outputs, and (iii) simulation runs for different
numbers of nodes and generated transactions in the simulated
network. Eachnodestartswithabalanceof 1,000BTC in the simulated
network. The transaction fee is 0.001% of the total input amount. As
the number of miners in the real Bitcoin network is variable, the
number of miners in the simulated network will be random. The
winning miner receives a 6 BTC mining incentive. The number of
transactionsproducedperblock follows theprobability distribution in
the real blockchain. The initial probability distributions are 50%/50% in
the simulation model for the one-to-one and one-to-many settings.



Fig. 4. Address reuse rates (Bitcoin blockchain).

Table 1
Simulation results for experimental group I.

Group Num of TX Address reuse rate

Group I 4908 9.7498%
Group II 4916 10.1265%
Group III 4942 9.5222%
Group IV 4887 9.8225%
Group V 4892 9.7498%
Group VI 4899 9.8425%
Group VII 4888 9.7402%
Group VIII 4907 9.9387%
Group IX 4912 9.5980%
Group X 4914 9.6877%
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Experimental group I. The simulation network includes 100
nodes and generates around 5,000 transactions. It can be seen as
the initial control data for the model. Repeat simulation runs ten
times to get ten sets of experimental data.

Experimental group II. Change the probability distribution
settings by 5% each time. For three transaction types having mul-
tiple inputs/outputs, each has four sets of probability change trials
(i.e., 60%/40%, 55%/45%, 45%/55%, 40%/60%) and one set of initial
probability experimental results (50%/50%). In total, there are
thirteen sets of experimental data.

Experimental group III. Set the total number of generated
transactions to be 5,000, then simulate the Bitcoin network with
50/100/150/200 nodes separately. Set 100 simulated nodes and
create 3,000/5,000/8,000/10,000 transactions individually in the
simulated network. A total of eight sets of experimental results are
generated.

4.1.2. Evaluation analysis
By applying the two heuristics separately and in combination to

the simulation results, there are three heuristic methods (i.e.,
multi-input (MI) heuristic, one-time change (OTC) heuristic, and
the multi-input and one-time change (MI þ OTC) heuristics). The
corresponding error rates can be obtained from real and heuristic
clusters. Hi and Ri represent a heuristic and the corresponding real
clusters, respectively. To get the matching accuracy, the number of
correctly clustered addresses appearing in both clusters divides the
number of addresses in the real cluster.

Accuracyi ¼
jHi∩Rij
jRij

: (1)

The error rate can be derived from the results of cluster
matching.

Error Ratei ¼ 1� Accuracyi: (2)

The average error rate of a heuristic algorithm can be calculated
if N is the total number of heuristic clusters.

Average Error Rate ¼ 1
N

XN

i¼1
Error Ratei: (3)
5

Details and explanations of the error rate calculation are in
(Gong et al., 2022).

Experimental group I. Table 1 and Fig. 5 show the simulation
results. Experimental group I tested whether the model could
achieve a stable mode under the same conditions. Fig. 5 shows that
although the error rates fluctuate slightly, values stay within a
reasonable range, and the results are relatively stable. The real
blockchain is constantly changing. In reality, various users create
transactions that make up the whole Bitcoin blockchain. The
transaction behavior of users is not static either. For example, user A
transfers funds to an address of user B, and then user A may not
make transactions or create transactions with more users the next
day. More precisely, in two blocks with the same number of
transactions, the distributions of the four transaction types and the
number of inputs/outputs may not be entirely the same. Even if the
same number of nodes are set in the model and the same total
number of transactions are generated, the blockchain patterns and
generated data may not be the same in each simulation. Conse-
quently, the simulation results may not necessarily yield the same
error rate values. The error rate values are acceptable to keep
relatively stable within a reasonable range even with minor fluc-
tuations. The simulation model can generate relatively stable
experimental results under the initial settings.

The average error rate of the one-time change heuristic is
90.3612%, and the average error rate for the multi-input heuristic is
46.5040%. A combination of multi-input and one-time change
heuristics reaches the lowest average error rate, 41.2528%.



Fig. 5. Error rates for experimental group I.

Table 3
Error rates for different number of simulated nodes.

Heuristic 50 nodes 100 nodes 150 nodes 200 nodes

MI 43.6111% 42.0374% 54.7933% 64.5358%
OTC 90.7736% 89.2898% 91.9105% 92.3373%
MI þ OTC 37.7789% 37.3955% 51.1058% 60.3073%

Table 4
Error rates for different number of simulated transactions.

Heuristic 3,000 TX 5,000 TX 8,000 TX 10,000 TX

MI 56.9285% 42.0374% 44.5944% 40.1742%
OTC 91.5657% 89.2898% 91.2838% 91.0004%
MI þ OTC 53.6982% 37.3955% 39.3155% 32.9108%

Y. Gong, K.P. Chow, S.M. Yiu et al. Forensic Science International: Digital Investigation 43 (2022) 301449
Experimental group II. Experimental group II tested the effect
of the changes in the probability distributions of two settings in the
model. Table 2 shows the experimental data for the three trans-
action types after changing the probability distributions. As can be
seen from the results, the variations in the probability distributions
did not result in significant fluctuations in the model behavior and
outputs. Overall, the error rates are relatively stable. The initial
probability settings can be adopted to simulate a real Bitcoin sys-
tem. There are no model uncertainties or significant variations in
the outputs with changes in probability distributions.

In this experimental group, the average error rate of the one-
time change heuristic is 90.1208%, and the average error rate of the
multi-input heuristic is 46.2002%. Combining these two heuristics
achieves the lowest average error rate, 41.3515%.

Experimental group III. Tables 3 and 4 show the results of
experimental group III. From the results, it can be seen that setting
too many nodes in the simulated network cause an increase in the
error rate when the total number of transactions is approximately
the same. Andwhen the number of nodes in the simulated network
is the same, simulating too few transactions also causes a slight
increase in the error rate. The total number of nodes in the real
Bitcoin system does not exceed 20,000 (Bitnodes.io, 2022). But the
total number of transactions in the network is very vast. When
investigating the real Bitcoin blockchain, if only two blocks are
Table 2
Error rates for experimental group II.

Heuristic 50%/50% 60%/40% 55%/45% 45%/55% 40%/60%

(Multiple Payments)
MI 42.0374% 50.7475% 47.9594% 49.4501% 48.4136%
OTC 89.2898% 89.6748% 90.6635% 92.8460% 89.7218%
MI þ OTC 37.3955% 45.7048% 42.9171% 45.5864% 44.3664%
(Consolidation)
MI 42.0374% 41.2070% 49.8715% 49.0407% 47.7597%
OTC 89.2898% 90.0283% 91.3795% 90.2998% 90.6686%
MI þ OTC 37.3955% 37.2552% 44.7385% 43.7914% 42.6561%
(Complex)
MI 42.0374% 46.3862% 41.4211% 45.5494% 49.0839%
OTC 89.2898% 88.4260% 90.0479% 89.6427% 90.5432%
MI þ OTC 37.3955% 40.2432% 36.9914% 39.7100% 44.1257%

Fig. 6. Transaction Type Distribution (Simulation model).
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Fig. 7. Distribution of the numbers of inputs (Simulation model).
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randomly selected for study, the results obtained are not repre-
sentative of the real Bitcoin system. Because the total sample size is
large, the random sampling size is too small and cannot reflect the
overall manners and features of the whole system. Therefore, sit-
uations with too many simulated nodes or few generated trans-
actions are similar to not adopting a sufficient sample size. It is
reasonable to bring about an extensive range of fluctuations in the
simulation results. Hence, when simulating the real Bitcoin system,
more considerations need to be incorporated for the cases
involving numerical computations like error rates, such as whether
the generated transaction volume in the simulated network is
sufficient to represent the entire Bitcoin system.

4.2. Validation analysis

The validation process requires determining the model fidelity.
All simulation results are examined for consistency of the model
Fig. 8. Distribution of the numbers

7

with the real-world Bitcoin system. Before modeling, the investi-
gation of the real Bitcoin system included transaction distribution
and address reuse. Therefore, the simulation validation process
should cover these aspects, namely the distribution of transaction
types, the distribution of different numbers of inputs/outputs, and
the address reuse rate.

All experimental data were processed to get the corresponding
results. Due to the space limit, a set of experimental data was
randomly selected, and the results are displayed here. Fig. 6 shows
the patterns of a simulated network having 100 nodes and a total
transaction volume of 9,874. It can be seen that multiple payments
constitute the most significant type of transaction. Additionally,
Figs. 7 and 8 show the proportions of the different numbers of
inputs/outputs. The address reuse rate in this simulation is 9.7238%.
Regarding the one-time change heuristic, for more precise identi-
fication, Ermilov et al. (2017) have recommended using it for
transactions with exactly two outputs. In addition, in the real
of outputs (Simulation model).
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Bitcoin system, the number of transactions having outputs larger
than six is only 2.69% of the enormous total number of transactions.
Therefore, the maximum number of outputs for a transaction is
limited to six in the simulation model because the total number of
simulated transactions is not very large. The transaction distribu-
tion patterns and address reuse rates in all simulated networks are
similar to the investigation results from the real Bitcoin system.

In the evaluation and validation phase of the simulation model,
sensitivity analysis is adopted to establish the model credibility,
and the model fidelity is examined using the investigation results
from the real Bitcoin system. The study of the simulation results
from multiple simulation runs demonstrates the stability and
reasonableness of the constructed model. The model behavior and
outputs are consistent with the real system. In summary, the con-
structed model can effectively simulate real-world Bitcoin trans-
actions. By setting a reasonable number of nodes and transaction
volume in the simulated network, the simulation model can be
adopted to validate the error rates of two widely used address
clustering heuristics. From the results, it can be seen that a com-
bination of multi-input and one-time change heuristics achieves
the best clustering results. In experimental groups I and II, the
average error rate for the one-time change heuristic is 90.2410%,
and the average error rate of the multi-input heuristic is 46.3521%.
The average error rate for combing the two heuristics is 41.3021%.
The lack of ground truth leads to the linkage between addresses
derived from heuristic algorithms may be inaccurate. The error
rates allow the court to determine how much it relies on inferred
evidence. Potential error rates can increase the likelihood that the
results from address clustering heuristics are accepted in court.

5. Conclusion

Sensitivity analysis methods are an essential aspect of model
development. In this paper, sensitivity analysis is adopted to
establish credibility and validity in the simulation model. The
analysis compares simulation outputs from multiple simulation
runs to reduce model uncertainties and determine the impact of
parameter changes on model behavior and outputs. The evaluation
and validation processes present the fidelity and credibility of the
model. The analysis results show that with a reasonable number of
nodes and transaction volumes in the simulated network, the
model can be used to verify the effectiveness of two widely used
heuristic-based address clustering algorithms and measure the
corresponding error rates. The potential error rates can increase the
likelihood that the court will admit the clustering results of the
heuristic algorithms.

As the real-world blockchain is changing, future research will
focus on more analytical investigations of the real Bitcoin system,
such as why address reuse rates cannot continue to decrease and
the ratio of mixing addresses. New developments in blockchain
technology, such as anonymity enhancement techniques, hinder
the effectiveness of address clustering, and there is a need to find
clustering algorithms with better performance. In addition, more
functionalities will be added to enhance the performance and us-
age of the simulation model.
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