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During the past forty years, since the first book with a title mentioning quantitative and remote
sensing was published [1], quantitative land remote sensing has advanced dramatically, and numerous
books have been published since then [2–6] although some of them did not use quantitative land
remote sensing in their titles. Quantitative land remote sensing has not been explicitly defined in the
literature, but we consider it as a sub-discipline of remote sensing including the following components
(see Figure 1): radiometric preprocessing, inversion, high-level product generation, and applications.
Many inversion algorithms rely on physical models of radiation regimes of landscapes, which link
with remotely-sensed data. Generating high-level satellite products of land surface biophysical
and biochemical variables create the key bridge between remote sensing science and applications.
Conducting in situ measurements for validation of inversion algorithms and satellite products is also
a critical component. Application of satellite products to address scientific and societal relevant issues
will ultimately decide the future of quantitative land remote sensing.

Figure 1. The scope of quantitative land remote sensing.

One of the major drivers of the rapid development of quantitative remote sensing in China is the
availability of a huge amount of satellite data not only from the international space agencies but also
from Chinese satellite sensors. Figure 2 shows the major Chinese satellite missions for land surface
monitoring, such as the China-Brazil Earth resource satellites (CBERS), environment (Huang-Jing, HJ),
resources (Zhi-Yuan, ZY), meteorological (Feng-Yun, FY), and high-resolution (Gao-Fen, GF) satellite
series. Most of them are polar-orbiting satellites, but GF-5 and FY-4 are geostationary satellites. With the
constellation of multiple satellites, both high spatial and temporal resolutions are being achieved.
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Figure 2. Major Chinese satellites relevant to land remote sensing.

Because of the increased data volume and sophistication of information extraction, one of the
trends in quantitative remote sensing is the production of high-level satellite products, mostly by
the data centers with centralized facilities and specialized experts. It started from the NASA Earth
Observing System (EOS) program in the 1990s. Since then, China has started to produce and distribute
satellite products worldwide. One of the major product suites is the Global Land Surface Satellite
(GLASS) products [7,8]. It has been expanded from the original 5 products into the present 12 products
(see Table 1) that are being distributed free of charge through the China National Data Sharing
Infrastructure of Earth System Science (http://www.geodata.cn/thematicView/GLASS.html) and the
Global Land Cover Facility at the University of Maryland (http://glcf.umd.edu/data).

The GLASS products have some unique features, for example, long-time times series (several
products span from 1981 to present), high-spatial resolution of the radiation products (5 km instead
of the typical resolutions of ~100 km), and high quality and accuracy [9–11]. Efforts are being made
in China [12] to develop more Climate Data Records (CDR) that are defined as the time series of
measurements of sufficient length, consistency, and continuity to determine climate variability and
change by the National Research Council [13].

Table 1. Overview of the Global Land Surface Satellite (GLASS) products and their characteristics.

No. Product Spatial
Resolution

Temporal
Resolution

Temporal
Range References

1 Leaf area index 1–5 km, 0.05◦ 8 days 1981–2017 [14,15]
2 Albedo 1–5 km, 0.05◦ 8 days 1981–2017 [16–18]
3 Emissivity 1–5 km, 0.05◦ 8 days 1981–2017 [19,20]
4 FAPAR 1–5 km, 0.05◦ 8 days 1981–2017 [21]

5 Downward
shortwave radiation 0.05◦ 1 day 1983, 1993,

2000–2017 [22]

6 PAR 0.05◦ 1 day 1983, 1993
2000–2017 [22]

7 Longwave net
radiation 0.05◦ Instantaneous 1983, 1993,

2003, 2013 [23,24]

8 All-wave net
radiation 0.05◦ 1 day 1983, 1993

2000–2017 [25]

9 Land Surface
Temperature 1–5 km, 0.05◦ Instantaneous 1983, 1993,

2003, 2013 [26]

10 Fraction of vegetation
cover 500 m, 0.05◦ 8 days 1981–2017 [27]

11 Latent heat (ET) 1–5 km, 0.05◦ 8 days 1981–2017 [28]

12 Gross Primary
Productivity 1–5 km, 0.05◦ 8 days 1981–2017 [29]

Many members of our community have made significant contributions to the development
of quantitative land remote sensing. Professor Xiaowen Li was one of leading figures. Trained as
an electrical engineer, Professor Li started to work on physical modeling of the vegetation radiation
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field in the early 1980s under the supervision of Professor Alan Strahler. He developed the well-known
Li–Strahler geometric-optical vegetation reflectance model [30,31], and later coupled it with radiative
transfer modeling [32,33]. He pioneered the simplified “kernels” to model land surface directional
reflectance for developing the MODIS surface albedo products [34], These “kernels” have been widely
used for analyzing various satellite observations. He also explored the angular behavior and scaling of
the thermal-infrared remote sensing signatures [35], and proposed to constrain the remote sensing
inversion using prior knowledge [36]. In the second half of his career, Professor Li devoted his time and
energy to facilitate and promote quantitative land remote sensing research in China by leading several
extensive research projects, directing the Research Institute on Remote Sensing under the Chinese
Academy of Sciences, and helping establish the State Key Laboratory of Remote Sensing Science
under the Chinese Ministry of Science and Technology. Those are just few examples of areas where
Professor Li has made outstanding contributions. A comprehensive summary of his achievements has
been provided by Liu et al. [37].

In memory of Professor Li, we organized the Third National Forum on Quantitative Remote
Sensing at Beijing Normal University during 14–15 July 2017. There were 296 meeting participants
from 65 research institutes and universities in China, and almost all aspects of quantitative land remote
sensing were discussed.

The papers of this Special Issue are mainly from this forum. Although 40 articles cannot
comprehensively characterize different aspects of quantitative land remote sensing in China,
they clearly represent the current level of research in this area by Chinese scientists. These papers
are related to various satellite data products, such as incident solar radiation [38–40], chlorophyll
fluorescence [41], surface directional reflectance [42–44], aerosol optical depth [45], albedo [46,47],
land surface temperature [48–50], upward longwave radiation [51], leaf area index [52–55],
fractional vegetation cover [56], forest biomass [57], precipitation [58], evapotranspiration [59–61],
freeze/thaw [62], snow cover [63], vegetation productivity [64–68], phenology [69,70], biodiversity
indicators [71], drought monitoring [72], forest disturbance [55], air-quality monitoring [73], sensor
design [74], and sampling strategy [75] for validation with in situ measurements. Most of these
papers are based on optical-thermal remotely-sensed observations, but a few papers are also based on
microwave [62,63] and Lidar [54,76] data.

Although these 40 papers do not represent a large sample, they demonstrate that few studies
have been undertaken on physical modeling for understanding remotely-sensed signals and use of
Chinese satellite data in their analysis. This latter shortcoming calls for the further improvement of
Chinese satellite data quality.
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