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Online bipartite matching is one of the most fundamental problems in the online algorithms literature. Karp,

Vazirani, and Vazirani (STOC 1990) gave an elegant algorithm for unweighted bipartite matching that achieves

an optimal competitive ratio of 1 − 1/e . Aggarwal et al. (SODA 2011) later generalized their algorithm and

analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem

aside from the trivial 1/2-competitive greedy algorithm. In this article, we present the first online algorithm

that breaks the long-standing 1/2 barrier and achieves a competitive ratio of at least 0.5086. In light of the

hardness result of Kapralov, Post, and Vondrák (SODA 2013), which restricts beating a 1/2 competitive ratio

for the more general monotone submodular welfare maximization problem, our result can be seen as strong

evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in

an online setting.

The main ingredient in our online matching algorithm is a novel subroutine called online correlated selec-

tion (OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead

of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across

different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique

is of independent interest and will find further applications in other online optimization problems.

CCS Concepts: • Theory of computation→ Online algorithms;

Additional Key Words and Phrases: Factor-revealing linear program, free disposal, online bipartite matching,

online correlated selection, primal-dual method

ACM Reference format:

Matthew Fahrbach, Zhiyi Huang, Runzhou Tao, and Morteza Zadimoghaddam. 2022. Edge-Weighted Online

Bipartite Matching. J. ACM 69, 6, Article 45 (November 2022), 35 pages.

https://doi.org/10.1145/3556971

1 INTRODUCTION

Matchings are fundamental graph-theoretic objects that play an indispensable role in combinato-
rial optimization. For decades, there have been tremendous ongoing efforts to design more efficient
algorithms for finding maximum matchings in terms of their cardinality and, more generally, their
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total weight. In particular, matchings in bipartite graphs have found countless applications in set-
tings where it is desirable to assign entities from one set to those in another, for example, matching
students to schools, physicians to hospitals, computing tasks to servers, and impressions in online
media to advertisers. Due to the enormous growth of matching markets in digital domains, effi-
cient online matching algorithms have become increasingly important. For example, search engine
companies have created opportunities for online matching algorithms to have a massive impact in
multibillion-dollar advertising markets. Motivated by these applications, we consider the problem
of matching a set of impressions that arrive one by one to a set of advertisers that is known in
advance. When an impression arrives, its edges to the advertisers are revealed and an irrevocable
decision must be made about which advertiser to assign the impression. Karp et al. [38] provided an
elegant online algorithm called Ranking to find matchings in unweighted bipartite graphs with
a competitive ratio of 1 − 1/e. They also proved that this is the best achievable competitive ratio.
Aggarwal et al. [1] later generalized this algorithm to the vertex-weighted online bipartite match-
ing problem and showed that a 1 − 1/e competitive ratio is still attainable.

The edge-weighted case, however, is less understood. This is partly due to the fact that no
competitive algorithm exists without an additional assumption. To see this, consider two instances
of the edge-weighted problem, each with one advertiser and two impressions. The edge weight of
the first impression is 1 in both instances, and the weight of the second impression is 0 in the first
instance andW in the second instance, for some arbitrarily largeW . An online algorithm cannot
distinguish between the two instances when the first impression arrives. However, it has to decide
whether to assign this impression to the advertiser. Not assigning it gives a competitive ratio of 0 in
the first instance, and assigning it gives an arbitrarily small competitive ratio of 1/W in the second.
This problem cannot be tackled unless assigning both impressions to the advertiser is an option.1

In display advertising, assigning more impressions to an advertiser than they paid for only
makes them happier. In other words, we can assign multiple impressions to a given advertiser.
However, instead of gaining the weights of all edges assigned to it, we gain only the maximum
weight, that is, the objective equals the sum of the heaviest edge weight assigned to each ad-
vertiser. This is equivalent to allowing the advertiser to dispose of previously matched edges for
free to make room for new, heavier edges. This assumption is known as the free disposal model.
In the display advertising literature [14, 39], the free-disposal assumption is well received and
widely used because of its natural economic interpretation. More generally, edge-weighted online
bipartite matching in the free disposal model is a special case of monotone submodular welfare
maximization, for which we can apply known 1/2-competitive greedy algorithms [16, 41].

1.1 Our Contributions

Despite 30 years of research in online matching since the seminal work of Karp et al. [38] and
more than a decade of efforts after Feldman et al. [14] introduced the free disposal model, deciding
whether there exists an edge-weighted online bipartite matching algorithm that achieves a com-
petitive ratio greater than 1/2 has remained a tantalizing open problem. This article presents a new
online algorithm and answers the question affirmatively, breaking the long-standing 1/2 barrier
(under free disposal).

Theorem 1.1. There is a 0.5086-competitive algorithm for edge-weighted online bipartite

matching.

1The text addresses only deterministic algorithms. To rule out randomized algorithms, consider n instances, each with

one advertiser and n impressions. In instance i , the first i impressions have weights 1, W , W 2, . . . , W i−1 whereas the

remaining impressions have zero weights. The probability that an online algorithm assigns impression i to the advertiser

must be consistent for instances i to n; denote this by pi . Since
∑n

i=1 pi ≤ 1, we have that pi∗ ≤ 1/n for some i∗. The

algorithm is then at most 1/n competitive for instance i∗.
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Given the hardness result of Kapralov et al. [36] that restricts beating a 1/2 competitive ratio for
monotone submodular welfare maximization assuming that NP � RP, our algorithm shows that
edge-weighted bipartite matching is strictly easier than submodular welfare maximization in an
online setting.

From here, we will use the more formal terminologies of offline and online vertices in a bipartite
graph instead of advertisers and impressions. One of our main technical contributions is a novel
algorithmic ingredient called online correlated selection (OCS), which is an online subroutine that
takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of
using a fresh random bit to make each of its decisions, the OCS asks to what extent the decisions
across different pairs can be negatively correlated and guarantees that a vertex appearing in k
pairs is selected at least once with probability strictly greater than 1−2−k . See Section 3 for a short
introduction and Section 5 for the full details.

Given an OCS, we can achieve a better than 1/2 competitive ratio for unweighted online bipartite
matching with the following (barely) randomized algorithm. For each online vertex, either pick
a pair of offline neighbors and let the OCS select one or choose one offline neighbor determinis-
tically. Concretely, among the neighbors that have not been matched deterministically, find the
least-matched ones, that is, those that have appeared in the least number of pairs so far. Pick two
if there are at least two; otherwise, choose one deterministically. We analyze this algorithm in
Appendix A.

Although the competitive ratio of the just described algorithm is far worse than the optimal
1 − 1/e ratio by Karp et al. [38], it benefits from improved generalizability. To extend this algo-
rithm to the edge-weighted problem, we need a reasonable notion of “least-matched” offline neigh-
bors. Suppose that one neighbor’s heaviest edge weight is either 1 or 4 each with probability
1/2 (over the randomness of the algorithm), another neighbor’s heaviest edge is 2 with certainty,
and their edge weights with the current online vertex are both 3. Which one is less matched?
To tackle this, we use the online primal-dual framework for matching problems by Devanur
et al. [9] along with an alternative formulation of the edge-weighted online bipartite matching
problem by Devanur et al. [8]. In short, we account for the contribution of each offline vertex by
weight levels. At each weight level, we consider the probability that the heaviest edge matched
to the vertex has weight of at least this level. This is the complementary cumulative distribution
function (CCDF) of the heaviest edge weight; hence, we call this the CCDF viewpoint. Then, for
each offline neighbor, we utilize the dual variables to compute an offer at each weight level should
the current online vertex be matched to it. The neighbor with the largest net offer aggregating over
all weight levels is considered the “least matched.” We introduce the online primal-dual framework
and the CCDF viewpoint in Section 2. We formally present our edge-weighted matching algorithm
in Section 4, followed by its analysis. In Appendix B, we include hard instances showing that the
competitive ratio of our algorithm is nearly tight.

We draw connections between the online primal-dual algorithm in this article and the original
algorithm of Fahrbach and Zadimoghaddam [12] in Appendix C. The algorithms share two key
ideas. First, the original algorithm uses a pairing mechanism to safely make adaptive decisions
based on potential past assignments. This is the initial version of negative correlation, that is,
the mechanism is a primitive OCS, and it is crucial for making their analysis of the conditional
probabilities tractable. Second, neither algorithm is fully adaptive—both algorithms operate in the
expected state over all of their possible branches instead of conditioning on the outcomes of their
internal randomness. This greatly limits the amount of randomness in the algorithms and means
that most of the variables are deterministic quantities governed solely by the input graph and
arrival order of the online vertices.
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1.2 Related Work

While the online weighted bipartite matching algorithms literature is extensive, most of these
works achieve competitive ratios greater than 1/2 by assuming that offline vertices have large
capacities or that some stochastic information about the online vertices is known in advance. In
this section, we list the most relevant works and refer interested readers to the excellent survey of
Mehta [44]. There have also been several significant advances in more general settings, including
new arrival models and non-bipartite graphs [2, 17, 18, 24, 25, 29].

Large Capacities. The capacity of an offline vertex is the number of online vertices that can
be assigned to it. Exploiting the large-capacity assumption to beat 1/2 dates back 2 decades to
Kalyanasundaram and Pruhs [35]. Feldman et al. [14] provided a (1 − 1/e)-competitive algorithm
for Display Ads, which is equivalent to edge-weighted online bipartite matching assuming large
capacities. Under analogous assumptions, the same competitive ratio was obtained for AdWords [6,
45], in which offline vertices have a budget constraint on the total weight that can be assigned to
them rather than the number of impressions. From a theoretical point of view, one of the main
goals in the online matching literature is to develop algorithms with a competitive ratio greater
than 1/2 without making any assumption on the capacities of offline vertices.

Stochastic Arrivals. If we have knowledge about the arrival patterns of online vertices, we
can often leverage this information to design better algorithms. Typical stochastic assumptions
include assuming that the online vertices are drawn from some known or unknown distribu-
tion [4, 10, 15, 22, 26, 32, 37, 43] or that they arrive in a random order [7, 13, 20, 21, 28, 33, 42].
These works achieve a 1 − ε competitive ratio if the large-capacity assumption holds in addition
to the stochastic assumptions, or at least 1 − 1/e for arbitrary capacities. Hybrid models that mix
adversarial and stochastic assumptions have also been studied and are known to be very powerful
in practice [11, 46]. Korula et al. [40] showed that the greedy algorithm is 0.505-competitive for
the more general problem of submodular welfare maximization if the online vertices arrive in a
random order, without any assumption on the capacities. The analysis is later simplified and im-
proved to 0.509-competitive by Buchbinder et al. [5]. The random order assumption is particularly
justified because Kapralov et al. [36] proved that beating 1/2 for submodular welfare maximization
in the oblivious adversary model implies that NP = RP.

Subsequent Work. Several articles featuring work done concurrent with the work in this article
have explored the open problems in Section 6 about improving OCS. Gao et al. [19] showed that
the optimal “level of negative correlation” of an OCS is between [0.167, 0.25], improving on our
bounds of [0.1099, 1). Unlike the matching-based approach in this article, their OCS uses proba-
bilistic automata to obtain stronger negative correlation. Using their 0.167-OCS, they provided a
0.519-competitive algorithm for edge-weighted online bipartite matching. Blanc and Charikar [3]
showed that multiway OCS (i.e., considering more than two elements in each round) is strictly
more powerful than two-way OCS, obtaining a 0.5368 competitive ratio through a simpler re-
duction from online matching. Among other novelties, they relaxed the distinction between con-
secutive and inconsecutive steps in our definition of OCS to partially ignore small gaps. Shin
and An [47] constructed a three-way OCS composed of two-way OCS subroutines to provide a
0.513-competitive algorithm for edge-weighted online bipartite matching when combined with the
0.167-OCS of Gao et al. [19].

Huang et al. [31] generalized the OCS technique to break the 1/2 barrier for the AdWords problem,
achieving a 0.5016-competitive algorithm for general bids without any stochastic assumptions.

Huang et al. [27] applied an OCS to online stochastic matching and improved the competitive
ratios of unweighted and vertex-weighted matching to 0.716. Tang et al. [48] further used OCS to
break the 1 − 1/e barrier for online stochastic matching with non-IID online vertices.
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2 PRELIMINARIES

The edge-weighted online matching problem considers a bipartite graph G = (L,R,E), where L
and R are the sets of vertices on the left-hand side (LHS) and right-hand side (RHS), respectively,
and E ⊆ L × R is the set of edges. Every edge (i, j ) ∈ E is associated with a nonnegative weight
wi j ≥ 0, and we can assume without loss of generality that this is a complete bipartite graph, that
is, E = L × R, by assigning zero weights to the missing edges.

The vertices on the LHS are offline in that they are all known to the algorithm in advance. The
vertices on the RHS, however, arrive online one at a time. When an online vertex j ∈ R arrives,
its incident edges and their weights are revealed to the algorithm, which must then irrevocably
match j to an offline neighbor. Each offline vertex can be matched any number of times; however,
only the weight of its heaviest edge counts towards the objective. This is equivalent to allowing
a matched offline vertex i , say, to j, to be rematched to a new online vertex j ′ with edge weight
wi j′ > wi j , disposing of vertex j and edge (i, j ) for free. This assumption is known as the free

disposal model [14].
The goal is to maximize the total weight of the matching. A randomized algorithm is Γ-

competitive if its expected objective value is at least Γ times the offline optimal, in hindsight, for
any instance of edge-weighted online matching. We refer to 0 ≤ Γ ≤ 1 as the competitive ratio of
the algorithm.

2.1 Complementary Cumulative Distribution Function Viewpoint

Next, we describe an alternative formulation of the edge-weighted online matching problem due
to Devanur et al. [8]. This approach captures the contribution of each offline vertex i ∈ L to the
objective in terms of the CCDF of the heaviest edge weight matched to i . We refer to this method
as the CCDF viewpoint.

For any offline vertex i ∈ L and any weight level w ≥ 0, let yi (w ) be the CCDF of the weight
of the heaviest edge matched to i , that is, the probability that the algorithm has matched at least
one online vertex j to i such that wi j ≥ w . It follows that yi (w ) is a non-increasing function of w
that takes values between 0 and 1. Further observe that yi (w ) is a step function with polynomially
many pieces, since the number of pieces is at most the number of incident edges. Hence, we will
be able to maintain yi (w ) in polynomial time.

The expected weight of the heaviest edge matched to i then equals the area under yi (w ), that is,∫ ∞

0

yi (w ) dw . (1)

This follows from an alternative formula for the expected value of a nonnegative random variable
involving only its cumulative distribution function.

We illustrate this idea with an example in Figure 1. Suppose that an offline vertex i has four
online neighbors j1, j2, j3, and j4 with edge weights w1 < w2 < w3 < w4. Further, suppose that j1
is matched to i with certainty, whereas j2, j3, and j4 each have some probability of being matched
to i . (The latter events may be correlated.) Next, suppose that a new neighbor arrives whose edge
weight is alsow3. The values ofyi (w ) are then increased forw1 < w ≤ w3 accordingly, and the total
area of the shaded regions is the increment in the expected weight of the heaviest edge matched
to vertex i .

2.2 Online Primal-Dual Framework

We analyze our algorithm using a linear program (LP) for edge-weighted matching under the
online primal-dual framework. Consider the standard matching LP and its dual below. We interpret
the primal variables xi j as the probability that (i, j ) is the heaviest edge matched to vertex i .
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Fig. 1. Complementary cumulative distribution function (CCDF) viewpoint. The first function is the CCDF

of vertex i , and the second function demonstrates how the CCDF of vertex i is updated.

maximize
∑
i ∈L

∑
j ∈R

wi jxi j

subject to
∑
j ∈R

xi j ≤ 1 ∀ i ∈ L

∑
i ∈L

xi j ≤ 1 ∀ j ∈ R

xi j ≥ 0 ∀ i ∈ L,∀ j ∈ R

minimize
∑
i ∈L

αi +
∑
j ∈R

βj

subject to αi + βj ≥ wi j ∀ i ∈ L,∀ j ∈ R

αi ≥ 0 ∀ i ∈ L

βj ≥ 0 ∀ j ∈ R
Let P denote the primal objective. If xi j is the probability that (i, j ) is the heaviest edge matched
to i , then P also equals the objective of the algorithm. Let D denote the dual objective.

Online algorithms under the online primal-dual framework maintain not only a matching but
also a dual assignment (not necessarily feasible) at all times subject to the conditions summarized
in the following.

Lemma 2.1. Suppose that an online algorithm simultaneously maintains primal and dual assign-

ments such that for some constant 0 ≤ Γ ≤ 1, the following conditions hold at all times:

(1) Approximate dual feasibility: For any i ∈ L and any j ∈ R, we have that αi + βj ≥ Γ ·wi j .

(2) Reverse weak duality: The objectives of the primal and dual assignments satisfy P ≥ D.

Then, the algorithm is Γ-competitive.

Proof. By the first condition, the values Γ−1αi and Γ−1βj form a feasible dual assignment with
objective value Γ−1D. By weak duality of linear programming, the objective of any feasible dual
assignment upper bounds the optimal (i.e., D is at least Γ times the optimal). Applying the second
condition proves the lemma. �

Online Primal-Dual in the CCDF Viewpoint. In light of the CCDF viewpoint, for any offline vertex
i ∈ L and any weight level w > 0, we introduce and maintain new variables αi (w ) that satisfy

αi =

∫ ∞

0

αi (w ) dw . (2)

Accordingly, we rephrase approximate dual feasibility in Lemma 2.1 in the CCDF viewpoint as∫ ∞

0

αi (w ) dw + βj ≥ Γ ·wi j . (3)

Concretely, at each step of our primal-dual algorithm, αi (w ) is a piecewise constant function
with possible discontinuities at the weight levels w ∈ {wi j : online vertex j has arrived}. Initially,
all of the αi (w )s are the zero function. Then, as each online vertex j ∈ R arrives, if j is potentially
matched to an offline candidate i ∈ L, the function values of αi (w ) are systematically increased
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according to the dual update rules in Section 4.1. In contrast, each dual variable βj is a scalar value
that is initialized to zero and increased only once during the algorithm, at the time when j arrives.

3 ONLINE CORRELATED SELECTION: AN INTRODUCTION

This section introduces our novel ingredient for online algorithms, which we believe to be widely
applicable and of independent interest. To motivate this technique, consider the following thought
experiment in the case of unweighted online matching, that is, wi j ∈ {0, 1} for any i ∈ L and any
j ∈ R.

Deterministic Greedy. We first recall why all deterministic greedy algorithms that match each
online vertex to an unmatched offline neighbor are at most 1/2-competitive. Consider an instance
with a graph that has two offline and two online vertices. The first online vertex is adjacent to both
offline vertices; the algorithm deterministically chooses one of them. The second online vertex,
however, is adjacent to the previously matched vertex only.

Two-Choice Greedy with Independent Random Bits. We can avoid this problem by matching the
first online vertex randomly, which improves the expected matching size from 1 to 1.5. In this
spirit, consider the following two-choice greedy algorithm. When an online vertex arrives, iden-
tify its neighbors that are least likely to be matched (over the randomness in previous rounds). If
there is more than one such neighbor, choose any two, for example, lexicographically, and match
to one with a fresh random bit. Otherwise, match to the least-matched neighbor deterministically.
We refer to the former as a randomized round and the latter as a deterministic round. Since each
randomized round uses a fresh random bit, this is equivalent to matching to neighbors that have
been chosen in the least number of randomized rounds and in no deterministic round. Unfortu-
nately, this algorithm is also 1/2-competitive due to upper triangular graphs. We defer this standard
example to Appendix B.1.

Two-Choice Greedy with Perfect Negative Correlation. The last algorithm in this thought exper-
iment is an imaginary variant of two-choice greedy that perfectly and negatively correlates the
randomized rounds so that each offline vertex is matched with certainty after being a candidate in
two randomized rounds. It is impossible to achieve such perfect negative correlation in the online
setting in general (see Appendix B.3 for an explanation). Nevertheless, if we assume feasibility
then this algorithm is 5/9-competitive [30]. In fact, it is effectively the 2-matching algorithm of
Kalyanasundaram and Pruhs [35] by having two copies of each online vertex and allowing offline
vertices to be matched twice. This motivates the following question:

Can we use partial negative correlation to retain feasibility and break the 1/2 barrier?

We answer this affirmatively by introducing an algorithmic ingredient called online correlated

selection (OCS), which allows us to quantify the amount of negative correlation between the ran-
domized rounds. Appendix A provides an analysis of the two-choice greedy algorithm powered by
OCS in the unweighted case. Section 4 generalizes this approach to edge-weighted online match-
ing, giving us the first algorithm with a competitive ratio that is provably greater than 1/2.

Definition 3.1 (γ -semi-OCS). Consider a set of ground elements. For anyγ ∈ [0, 1], aγ -semi-OCS
is an online algorithm that takes as input a sequence of pairs of elements, and selects one element
per pair in an online fashion such that if an element has appeared in k ≥ 1 pairs, it is selected at
least once with probability at least

1 − 2−k (1 − γ )k−1.

Using independent random bits is a 0-semi-OCS, and the perfect negative correlation in the
thought experiment is a 1-semi-OCS, although it is typically infeasible. Our algorithms satisfy a
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stronger definition, which considers any collection of pairs containing an element i . This stronger
definition is useful for generalizing to the edge-weighted bipartite matching problem.

In the following definition, a subsequence (not necessarily contiguous) of pairs containing ele-
ment i is consecutive if it includes all of the pairs that contain element i between the first and last
pair in the subsequence. Two subsequences of pairs are disjoint if no pair belongs to both of them.
For example, consider the sequence ({a, i}, {b, i}, {c,d }, {e, i}, {i, z}). The subsequences ({a, i}, {b, i})
and ({i, z}) are consecutive and disjoint, but the subsequence ({a, i}, {b, i}, {i, z}) is not consecutive
because it does not include the pair {e, i}. As a special case, a pair is consecutive to another pair if
they share an element i and no other pairs between them contain element i .

Definition 3.2 (γ -OCS). Consider a set of ground elements. For any γ ∈ [0, 1], a γ -OCS is an on-
line algorithm that takes as input a sequence of pairs of elements and selects one per pair such that
for any element i and any disjoint subsequences of k1,k2, . . . ,km consecutive pairs containing i , i
is selected in at least one of these pairs with probability at least

1 −
m∏
�=1

2−k� (1 − γ )k�−1 .

Theorem 3.3. There exists a 13
√

13−35
108 > 0.1099-OCS.

We defer the design and analysis of the 0.1099-OCS to Section 5. Here, we describe a weaker
1/16-OCS, which suffices for breaking the 1/2 barrier. We give the formal proof of the 1/16-OCS con-
struction in Section 5.1.

Proof Sketch of a 1/16-OCS. Consider two sequences of independent random bits. The first se-
quence is used to construct a random matching among the pairs, where any two consecutive pairs
(with respect to some common element) are matched with probability 1/16. Each pair is consecutive
to at most four pairs, one before it and one after it for each of its two elements. For each pair,
choose one of its consecutive pairs, each with probability 1/4. Two consecutive pairs are matched
if they choose each other.

The second random sequence is used to select an element from each pair. For an unmatched
pair, choose one of its elements with a fresh random bit. For any two matched pairs, use a fresh
random bit to choose an element in the first pair. Then, make the opposite selection in the later
pair (i.e., select the common element if it is not selected in the earlier pair and vice versa). Observe
that even if two matched pairs are identical, there is no ambiguity in the opposite selection.

Next, fix any element i and any disjoint subsequences of k1,k2, . . . ,km consecutive pairs that
contain i . We bound the probability that i is never selected. If any two of these pairs are matched, i
is selected once in the two pairs. Otherwise, the selections from the pairs are independent and the
probability that i is never selected is

∏m
�=1 2−k� . Applying the law of total probability to the event

that i is in a matched pair, it remains to upper bound the probability that no pairs are matched by∏m
�=1 (1−1/16)k�−1. Intuitively, this is because there arek�−1 choices of two consecutive pairs within

the �-th subsequence, each of which is matched with probability 1/16. These events are negatively
dependent; thus, the probability that none of them happens is upper bounded by the independent
case. �

Readers familiar with the theory of negative association [34] can directly argue that the events
in this proof sketch are negatively dependent, which then makes this a complete proof. Instead
of using negative association, we present a proof of this warm-up case from first principles in
Section 5.1. In the process, we will build up tools for constructing and analyzing the OCS in
Theorem 3.3.
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4 EDGE-WEIGHTED ONLINE MATCHING

This section presents an online primal-dual algorithm for the edge-weighted online bipartite
matching problem. The algorithm uses a γ -OCS as a black box, and its competitive ratio depends
on the value of γ . For γ = 1/16 (as sketched in Section 3) it is 0.505-competitive and for γ ≈ 0.1099
(as in Theorem 3.3) it is 0.5086-competitive, proving our main result about edge-weighted online
matching.

4.1 Online Primal-Dual Algorithm

The algorithm is similar to the two-choice greedy in the previous section. It maintains an OCS
with the offline vertices as the ground elements. For each online vertex, the algorithm either
(1) matches it deterministically to one offline neighbor, (2) chooses a pair of offline neighbors and
matches to the one selected by the OCS, or (3) leaves it unmatched. We refer to the first case as a
deterministic round, the second as a randomized round, and the third as an unmatched round.

How does the algorithm decide whether it is a randomized, deterministic, or unmatched round,
and how does it choose the candidate offline vertices? We leverage the online primal-dual frame-
work. When an online vertex j arrives, it calculates for every offline vertex i how much the dual
variable βj would gain if j is matched to i in a deterministic round, denoted as ΔD

i βj , and similarly

ΔR
i βj for a randomized round. Then, it finds i∗ with the maximum ΔD

i βj and i1, i2 with the maxi-

mum ΔR
i βj . If both ΔR

i1
βj + ΔR

i2
βj and ΔD

i∗βj are negative, it leaves j unmatched. If ΔR
i1
βj + ΔR

i2
βj is

nonnegative and greater than ΔD
i∗βj , it matches j in a randomized round with i1 and i2 as the can-

didates using its OCS. Finally, if ΔD
i∗βj is nonnegative and greater than ΔR

i1
βj + ΔR

i2
βj , it matches j

to i∗ in a deterministic round. See Algorithm 1 for the formal definition.
It remains to explain how ΔD

i βj and ΔR
i βj are calculated. For any offline vertex i ∈ L and any

weight level w > 0, let ki (w ) be the number of randomized rounds in which i has been chosen
(as input to the OCS) and has edge weight at least w . The values of ki (w ) may change over time;
thus, we consider these values at the beginning of each online round. The increments to the dual
variables αi (w ) and βj depend on the values of ki (w ) via the following gain-sharing parameters,
which we determine later using a factor-revealing LP to optimize the competitive ratio. The gain-
sharing values are listed at the end of this section in Table 1.

• a(k ): Amortized increment in the dual variable αi (w ) if i is chosen as one of the two candi-
dates in a randomized round in which its edge weight is at least w and ki (w ) = k .
• b (k ): Increment in the dual variable βj due to an offline vertex i at weight level w ≤ wi j if j

is matched in a randomized round with i as one of the two candidates and ki (w ) = k .

Note that these gain-sharing valuesa(k ) andb (k ) are instance independent (i.e., they do not depend
on the underlying graph) and defined for all k ∈ Z≥0. We interpret these parameters according to
a gain-splitting rule. If i is one of the two candidates to be matched to j in a randomized round,
the increase in the expected weight of the heaviest edge matched to i equals the integration of
yi (w )’s increments, for 0 < w ≤ wi j , which can be related to the values of the ki (w )s. We then
lower bound the gain due to the increment of yi (w ) using the definition of a γ -OCS and split the
gain into two parts, a(ki (w )) and b (ki (w )). The former is assigned to αi (w ) and the latter goes
to βj .

In fact, we prove at the end of this subsection the following invariant about how the dual vari-
ables αi (w ) are incremented:

αi (w ) ≥
∑

0≤�<ki (w )

a(�). (4)
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ALGORITHM 1: Online Primal-Dual Edge-Weighted Bipartite Matching Algorithm

State variables:

• ki (w ) ≥ 0: Number of randomized rounds in which i is a candidate and its edge weight is at least w ;

ki (w ) = ∞ if it has been chosen in a deterministic round in which its edge weight is at least w .

On the arrival of an online vertex j ∈ R:

(1) For every offline vertex i ∈ L, compute ΔR
i βj and ΔD

i βj according to Equations (5) and (6).

(2) Find i1, i2 with the maximum ΔR
i βj .

(3) Find i∗ with the maximum ΔD
i βj .

(4) If ΔR
i1
βj + ΔR

i2
βj < 0 and ΔD

i∗βj < 0, leave j unmatched. (unmatched)

(5) If ΔR
i1
βj + ΔR

i2
βj ≥ 0 and ΔR

i1
βj + ΔR

i2
βj ≥ ΔD

i∗ , let the OCS pick one of i1 and i2. (randomized)

(6) If ΔD
i∗βj ≥ 0 and ΔD

i∗βj > ΔR
i1
βj + ΔR

i2
βj , match j to i∗. (deterministic)

(7) Update the ki (w )s accordingly.

Next, define ΔR
i βj to be

ΔR
i βj

def
=

∫ wi j

0

b (ki (w )) dw − 1

2

∫ ∞

wi j

∑
0≤�<ki (w )

a(�) dw . (5)

We should think of ΔR
i βj as the increase in the dual variable βj due to offline vertex i , if i is

chosen as one of the two candidates for j in a randomized round. The first term in Equation (5)
follows from the interpretation of b (k ) cited earlier (and would be the only term in the unweighted
case). The second term is designed to cancel out the extra help we get from the αi (w )s at weight-
levels w > wi j in order to satisfy approximate dual feasibility for the edge (i, j ). Concretely, if j is
matched in a randomized round to two candidates at least as good as i , our choice of b (k )’s ensures
approximate dual feasibility between i and j (i.e., the following inequality holds):∫ ∞

0

αi (w ) dw + 2 · ΔR
i βj ≥ Γ ·wi j .

Finally, for some 1 < κ < 2, define the value of ΔD
i βj to be

ΔD
i βj

def
= κ · ΔR

i βj = κ

∫ wi j

0

b (ki (w )) dw − κ

2

∫ ∞

wi j

∑
0≤�<ki (w )

a(�) dw . (6)

For concreteness, readers can assume that κ = 1.5. The competitive ratio, however, is insensitive
to the choice of κ as long as it is neither too close to 1 nor to 2. On one hand, κ > 1 ensures that
if the algorithm chooses a randomized round with offline vertex i1 and another vertex i2 as the
candidates, the contribution from i2 to βj must be at least aκ−1 fraction of what i1 offers. Otherwise,
the algorithm would have preferred a deterministic round with i1 alone. On the other hand, we have
κ < 2 because otherwise a randomized round would always be inferior to a deterministic round. We
further explain the definitions of ΔR

i βj and ΔD
i βj in Section 4.3 and demonstrate how their terms

interact when proving that the dual assignments always satisfy approximate dual feasibility.

Primal Increments. We have defined the primal algorithm and, implicitly, how the dual algorithm
updates the βj s. It remains to define the updates to the αi (w )s. First, we need to characterize the
primal increment since the dual updates are driven by it. Recall that by the CCDF viewpoint:

P =
∑
i ∈L

∫ ∞

0

yi (w ) dw .
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Since it is difficult to account for the exact CCDF yi (w ) due to complicated correlations in the
selections, we instead consider a lower bound for it given by the γ -OCS. A critical observation
here is that the decisions made by the primal-dual algorithm are deterministic except for the ran-
domness in the OCS. In particular, its choices of i1, i2, i∗ and the decisions about whether a round
is unmatched, randomized, or deterministic are independent of the selections in the OCS and,
therefore, deterministic quantities governed solely by the input graph and arrival order of the online

vertices. Hence, we may view the sequence of pairs of candidates the OCS considers as fixed.
For any offline vertex i and weight level w > 0, consider the randomized rounds in which i

is a candidate and has edge weight at least w . Decompose these rounds into disjoint collections
of, say, k1,k2, . . . ,km consecutive rounds. We consider the nontrivial partition of k1,k2, . . . ,km

subsequences instead of one large subsequence because i may have been chosen in intermediate
randomized rounds with weight level less than w . This is precisely why we need the guarantee of
a γ -OCS instead of a γ -semi-OCS. By Definition 3.2, vertex i is selected by the algorithm (either
deterministically or in a randomized round by the γ -OCS) with probability at least

yi (w )
def
=

⎧⎪⎨⎪⎩
1 if i has been matched in a deterministic round;

1 −∏m
�=1 2−k� (1 − γ )k�−1 otherwise.

(7)

Accordingly, we will use the following surrogate primal objective:

P =
∑
i ∈L

∫ ∞

0

yi (w ) dw .

Lemma 4.1. The primal objective is lower bounded by the surrogate, that is, P ≤ P.

It will often be more convenient to consider the following characterization of yi (w ):

• Initially, let yi (w ) = 0.
• If i is matched in a deterministic round in which its edge weight is at least w , set yi (w ) = 1.
• If i is chosen in a randomized round in which its edge weight is at leastw , further considerw ′,

its edge weight in the previous round involving i; letw ′ = 0 if it is the first randomized round
involving i . Then, decrease the gap 1 − yi (w ) by a 1/2(1 − γ ) factor if w ′ ≥ w , that is, if it is
the second or later pair of a collection of consecutive pairs containing i with edge weight at
leastw ; otherwise, just decrease 1−yi (w ) by 1/2. The missing 1−γ factor in the second case
corresponds to the −1 in the exponent of 1 − γ in Equation (7).

Lemma 4.2. For any offline vertex i and any weight level w > 0, we have that

1 − yi (w ) ≥ 2−ki (w ) (1 − γ )max{ki (w )−1,0} .

Proof. Initially, 1 − yi (w ) equals 1. Then, by Equation (7), it decreases by 1/2 in the first ran-
domized round involving i with edge weight at least w and by at most 1/2 (1 − γ ) in each of the
subsequent ki (w ) − 1 rounds. �

Recall thatyi (w ) increases to 1 in a deterministic round; Lemma 4.2 gives a lower bound for this
increment.

Lemma 4.3. For any offline vertex i and any weight level w > 0, if i is matched in a deterministic

round in which its edge weight is at least w , the increment in yi (w ) is at least

2−ki (w ) (1 − γ )max{ki (w )−1,0} .

Lemma 4.4. For any offline vertex i and any weight level w > 0, if i is chosen as a candidate in a

randomized round in which its edge weight is at least w , the increment in yi (w ) is at least

2−ki (w )−1 (1 − γ )max{ki (w )−1,0} .
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Suppose further that vertex i’s edge weight is also at leastw in the last randomized round involving i .
Then, it follows that ki (w ) ≥ 1 and the increment in yi (w ) is at least

2−ki (w )−1 (1 − γ )ki (w )−1 (1 + γ ) .

Proof. By definition, 1 − yi (w ) decreases by a factor of either 1/2(1 − γ ) or 1/2 in a randomized
round, depending on whether vertex i’s edge weight is at least w the last time it is chosen in a
randomized round. Therefore, the increment in yi (w ) is either a 1/2(1 + γ ) fraction of 1 − yi (w ) or
a 1/2 fraction. Putting this together with the lower bound for 1 − yi (w ) in Lemma 4.2 proves the
lemma. �

Dual Updates to Online Vertices. Consider any online vertex j ∈ R at the time of its arrival. The
dual variable βj will only increase at the end of this round depending on the type of assignment.
If j is left unmatched, then the value of βj remains zero. If j is matched in a randomized round, set

βj = ΔR
i1
βj + ΔR

i2
βj . Last, if j is matched in a deterministic round, set βj = ΔD

i∗βj .

Dual Updates to Offline Vertices: Proof of Equation (4). Fix any offline vertex i ∈ L. Sup-
pose that i is matched in a deterministic round in which its edge weight is wi j . Then, for any
weight level w > wi j , the value of ki (w ) stays the same. Thus, we leave αi (w ) unchanged. On
the other hand, for any weight level w ≤ wi j , the value of ki (w ) becomes ∞ by definition.
Therefore, to maintain the invariant in Equation (4), we increase αi (w ) for each weight level
w ≤ wi j by

∞∑
�=ki (w )

a(�). (8)

The updates in randomized rounds are more subtle. Suppose that i is one of the two candidates
in a randomized round in which its edge weight is wi j . Further, consider i’s edge weight the last
time it was chosen in a randomized round, denoted as w ′; let w ′ = 0 if this is the first randomized
round involving vertex i . Then, wi j and w ′ partition the weight levels w > 0 into up to three sub-
sets, each of which requires a different update rule for αi (w ). Concretely, the algorithm increases
αi (w ) by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a (ki (w )) if 0 < w ≤ wi j , and either w ≤ w ′ or ki (w ) = 0;

a (ki (w )) − 2−ki (w )−1 (1 − γ )ki (w )−1 γ if w ′ < w ≤ wi j and ki (w ) ≥ 1;

2−ki (w )−1 (1 − γ )ki (w )−1 γ if w > wi j and ki (w ) ≥ 1.

(9)

The first case is straightforward—we simply increase αi (w ) by a (ki (w )) to maintain the invari-
ant in Equation (4). Observe that this is the only case in the unweighted problem.

For a weight level w that falls into the second case (if there is any), the increment in αi (w ) is

smaller than the first case by 2−ki (w )−1 (1 − γ )ki (w )−1γ . This is the difference between the lower
bounds for the increments in yi (w ) in Lemma 4.4 depending on whether i’s edge weight was at
least w the last time it was chosen in a randomized round. Since the increase in the surrogate

primal objective P due to vertex i and weight level w (when w ′ < w) is less than the first case of
Equation (9), we subtract this difference from the increment in αi (w ) so that the update to βj is
unaffected.

How can we still maintain the invariant in Equation (4) given the subtraction in the second
case? Observe that if the second case happens, the same weight level must fall into the third case
in the previous randomized round involving i . Thus, an equal amount is prepaid to each αi (w ) in
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the previous round. This give-and-take in the offline dual vertex updates becomes clear when we
prove reverse weak duality in the next subsection.

4.2 Online Primal-Dual Analysis: Reverse Weak Duality

This subsection derives a set of sufficient conditions under which the increment in the surrogate

primal P is at least that of the dual solution D. Reverse weak duality then follows from P ≥ P ≥ D.

Deterministic Rounds. Suppose that j is matched to i in a deterministic round. Using the lower

bound for the increase of P in Lemma 4.3, the increase of the αi (w )s in Equation (8) and an upper
bound for βj by dropping the second term in Equation (6), we need

∫ wi j

0

∞∑
�=ki (w )

a(�) dw + κ

∫ wi j

0

b (ki (w )) dw ≤
∫ wi j

0

2−ki (w ) (1 − γ )max{ki (w )−1,0} dw .

We will ensure the inequality locally at every weight level; thus, it suffices to have

∀k ≥ 0 :

∞∑
�=k

a(�) + κ · b (k ) ≤ 2−k (1 − γ )max{k−1,0} . (10)

Randomized Rounds. Now, suppose that j is matched with candidates i1, i2 in a randomized round.

We show that the increment in P due to i1 is at least the increase in the αi1 (w )s plus its contribution
to βj (i.e., ΔR

i1
βj ). This also holds for i2 by symmetry; together, they prove reverse weak duality.

Let w1 be the edge weight of i ← i1 in this round, and let w ′1 be its edge weight the last time it
was chosen in a randomized round. Setw ′1 = 0 if this has not happened. Then,w1 andw ′1 partition
the weight levels w > 0 into three subsets corresponding to the three cases for incrementing the
dual variables αi (w ) in a randomized round, as in Equation (9).

The first case is when 0 < w ≤ wi j , and either w ≤ w ′ or ki (w ) = 0. By Lemma 4.4, the increase

in P due to vertex i at weight level w is at least

⎧⎪⎨⎪⎩
1
2 if ki (w ) = 0;

2−ki (w )−1 (1 − γ )ki (w )−1 (1 + γ ) if ki (w ) ≥ 1 and w ≤ min{w1,w
′
1}.

By the first case of Equation (9), the increase in αi (w ) is a(ki (w )). Finally, the contribution to the
first term of βj = ΔR

i βj + ΔR
i2
βj , at weight level w , in Equation (5) is b (ki (w )). Hence, it suffices to

ensure that

a(0) + b (0) ≤ 1

2
and ∀k ≥ 1 : a(k ) + b (k ) ≤ 2−k−1 (1 − γ )k−1 (1 + γ ) . (11)

The second case is whenw ′1 < w ≤ w1 and ki (w ) ≥ 1. By Lemma 4.4, the increment in P due to i

at weight levelw is at least 2−ki (w )−1 (1−γ )ki (w )−1. By the second case of Equation (9), the increase

in αi (w ) is a(ki (w )) − 2−ki (w )−1 (1 − γ )ki (w )−1γ . Finally, the contribution to the first term of βj , at
weight level w , is b (ki (w )). Hence, we need

a (ki (w )) − 2−ki (w )−1 (1 − γ )ki (w )−1 γ + b (ki (w )) ≤ 2−ki (w )−1 (1 − γ )ki (w )−1 .

Rearranging the second term to the RHS gives us the same conditions as the second part of
Equation (11).

The third case is when w > w1 and ki (w ) ≥ 1. The increment in P due to i at weight level w
is 0. By the last case of Equation (9), the increase in αi (w ) is 2−ki (w )−1 (1−γ )ki (w )−1γ . The negative
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contribution from the second term of βj , at weight level w , is 1
2

∑
0≤�<ki (w ) a(�). Hence, we need

2−ki (w )−1 (1 − γ )ki (w )−1 γ − 1

2

∑
0≤�<ki (w )

a(�) ≤ 0.

The first term is decreasing in ki (w ) and the second is increasing (in absolute value). Thus, it
suffices to consider ki (w ) = 1:

a(0) ≥ γ

2
. (12)

4.3 Online Primal-Dual Analysis: Approximate Dual Feasibility

This subsection derives a set of conditions that are sufficient for approximate dual feasibility, that
is, Equation (3). Start by fixing any i ∈ L and any j ∈ R, as well as the values of the ki (w )s when j
arrives.

Boundary Condition at the Limit. First, it may be the case that ki (w ) = ∞ for all 0 < w ≤ wi j

and j is unmatched. This means that βj = 0 in this round. Thus, the contribution from the αi (w )s
alone must ensure approximate dual feasibility. To do so, we will ensure that the value of αi (w ) is
at least Γ whenever ki (w ) = ∞. By the invariant in Equation (4), it suffices to have

∞∑
�=0

a(�) ≥ Γ. (13)

Next, we consider five different cases that depend on whether the round of j is randomized,
deterministic, or unmatched, and if i is chosen as a candidate. We first analyze the cases in which
j is in a randomized round. Then, we show that the other cases require only weaker conditions.

Case 1: Round of j is randomized, i is not chosen. By definition, βj = ΔR
i1
βj + ΔR

i2
βj . Since i is not

chosen, both terms on the RHS are at least ΔR
i βj . Using the definition of ΔR

i βj in Equation (5) and
lower bounding αi (w ) by Equation (4), approximate dual feasibility in Equation (3) reduces to∫ wi j

0

∑
0≤�<ki (w )

a(�) dw + 2

∫ wi j

0

b (ki (w )) dw ≥ Γ ·wi j .

We will again ensure this inequality at every weight level. Therefore, it suffices to have

∀k ≥ 0 :
∑

0≤�<k

a(�) + 2 · b (k ) ≥ Γ. (14)

Case 2: Round of j is randomized, i is chosen. By symmetry, suppose without loss of generality
that i ← i1 and i2 is the other candidate. By definition, βj = ΔR

i βj + ΔR
i2
βj . Next, we derive a lower

bound only in terms of ΔR
i βj . Since the algorithm does not choose a deterministic round with i

alone, we have that ΔR
i βj + ΔR

i2
βj ≥ ΔD

i βj . Further, we have that ΔD
i βj = κ · ΔR

i βj by Equation (6).

Combining these, we have that βj ≥ κ · ΔR
i βj . Finally, by the definition of ΔR

i βj in Equation (5), βj

is at least

κ · ���
∫ wi j

0

b
(
ki (w )

)
dw − 1

2

∫ ∞

wi j

∑
0≤�<ki (w )

a(�) dw	

� .

Lower bounding theαi (w )s is more subtle. Recall thatki (w ) denotes the value at the beginning of
the round when j arrives. Thus, the value of ki (w ) increases by 1 for any weight level 0 < w ≤ wi j
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and stays the same for any other weight level w > wi j . Therefore, the contribution of the αi (w )s
to approximate dual feasibility is at least

∫ wi j

0

∑
0≤�≤ki (w )

a(�) dw +

∫ ∞

wi j

∑
0≤�<ki (w )

a(�) dw .

Finally, since κ < 2, the net contribution from weight levels w > wi j is nonnegative; thus, we
can drop them. Then, approximate dual feasibility as in Equation (3) becomes

∫ wi j

0

��
�

∑
0≤�≤ki (w )

a(�) + κ · b (ki (w ))	
� dw ≥ Γ ·wi j .

Thus, it suffices to ensure the inequality locally at every weight level:

∀k ≥ 0 :
∑

0≤�≤k

a(�) + κ · b (k ) ≥ Γ. (15)

There are two differences between Equations (14) and (15). First, the summation above includes
� = k . We can do this because i is one of the two candidates and, therefore, ki (w ) increases by 1
in the round of j for any weight level w ≤ wi j . Second, the κ coefficient for the second term is
smaller.

Case 3: Round of j is deterministic, i is not chosen. By definition, βj = ΔD
i∗βj . Next, we derive a

lower bound in terms of ΔR
i βj . Since the algorithm does not choose a randomized round with i and

i∗ as the two candidates, we have that ΔD
i∗βj > ΔR

i∗βj + ΔR
i βj . By Equation (6) and κ < 2, we have

that ΔR
i∗βj >

1
2 · Δ

D
i∗βj . Here, we use the fact that ΔD

i∗βj ≥ 0, because i∗ is chosen in a deterministic

round. Putting this together gives us βj = ΔD
i∗βj > 2 · ΔR

i βj , which is identical to the lower bound
in the first case. Therefore, approximate dual feasibility is guaranteed by Equation (14).

Case 4: Round of j is deterministic, i is chosen. For any 0 < w ≤ wi j , we have that ki (w ) = ∞
after this round. Therefore, approximate dual feasibility follows from the contribution of theαi (w )s
alone due to the invariant in Equation (4) and the boundary condition in Equation (13).

Case 5: Round of j is unmatched. By definition, βj = 0. Moreover, ΔD
i βj < 0 since the algorithm

chooses to leave j unmatched, which further implies that ΔR
i βj < 0 by Equation (6). Therefore, we

have that βj ≥ 2 · ΔR
i βj , which is identical to the lower bound in the first case. Thus, approximate

dual feasibility is guaranteed by Equation (14).

4.4 Optimizing the Gain-Sharing Parameters

To optimize the competitive ratio Γ in the above online primal-dual analysis, it remains to solve
for the gain sharing parameters a(k ) and b (k ) using the following LP:

maximize Γ

subject to Equations (10)–(15)

We obtain a lower bound on the competitive ratio by solving a more restricted LP, which is finite.
In particular, we set a(k ) = b (k ) = 0 for all k > kmax for some sufficiently large integer kmax so
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Table 1. Approximately Optimal Solutions to the Factor-Revealing LP with κ = 3/2 and kmax = 8

(a) γ = 1/16, Γ = 0.50503484

k a(k ) b (k )

0 0.24748256 0.25251744
1 0.13684883 0.12877617
2 0.06415997 0.06035174
3 0.03009310 0.02827176
4 0.01413332 0.01322521
5 0.00666576 0.00615855
6 0.00318572 0.00282566
7 0.00158503 0.00123280
8 0.00088057 0.00044028

(b) γ = 13
√

13−35
108 ≈ 0.109927, Γ = 0.508672

k a(k ) b (k )

0 0.24566361 0.25433639
1 0.14597716 0.13150459
2 0.06497349 0.05851601
3 0.02892807 0.02602926
4 0.01289279 0.01156523
5 0.00576587 0.00511883
6 0.00260819 0.00223589
7 0.00122399 0.00093180
8 0.00063960 0.00031980

that it becomes

maximize Γ

subject to
∑

k≤�≤kmax

a(�) + κ · b (k ) ≤ 2−k (1 − γ )max{k−1,0} ∀ 0 ≤ k ≤ kmax

a(0) + b (0) ≤ 1

2

a(k ) + b (k ) ≤ 2−k−1 (1 − γ )k−1 (1 + γ ) ∀ 1 ≤ k ≤ kmax

a(0) ≥ γ

2∑
0≤�≤kmax

a(�) ≥ Γ

∑
0≤�<k

a(�) + 2 · b (k ) ≥ Γ ∀ 0 ≤ k ≤ kmax

∑
0≤�≤k

a(�) + κ · b (k ) ≥ Γ ∀ 0 ≤ k ≤ kmax

a(k ),b (k ) ≥ 0 ∀ 0 ≤ k ≤ kmax

We present an approximate solution to the finite LP in Table 1(a) with γ = 1/16, κ = 3/2, and
kmax = 8, which gives Γ > 0.505. We also tried different values of κ = 1 + �/16, for 0 ≤ � ≤ 16. If
κ = 1 or κ = 2, then Γ = 0.5; if κ = 1 + 15/16, then Γ ≈ 0.5026; for all other values of κ that are
multiples of 1/16, we have Γ > 0.505. Hence, the analysis is robust to the choice of κ so long as it

is neither too close to 1 nor to 2. Furthermore, even for kmax as small as 3 (and γ = 13
√

13−35
108 ), we

get a competitive ratio Γ > 0.504, improving upon greedy. Table 1(b) presents an approximately

optimal solution under the same setting except that we use a larger γ = 13
√

13−35
108 > 0.1099 as in

Theorem 3.3, which leads to the improved competitive ratio Γ > 0.5086.2

2The source code is available at https://github.com/fahrbach/edge-weighted-online-bipartite-matching.
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ALGORITHM 2: Online Correlated Selection (OCS)

State variables:

• τi ∈
{
selected, not selected, unknown

}
for each ground element i; initially, let τi = unknown.

On receiving a pair of elements i1 and i2:

(1) With probability 1/2: (sender)

(a) Draw �,m ∈ {1, 2} uniformly at random.
(b) Let τi−m

= unknown.
(c) Ifm = �, let τim

= selected; otherwise, let τim
= not selected.

(2) Otherwise (i.e., with probability 1/2): (receiver)

(a) Drawm ∈ {1, 2} uniformly at random.
(b) If τim

= selected, let � = −m;
if τim

= not selected, let � =m;
if τim

= unknown, draw � ∈ {1, 2} uniformly at random.
(c) Let τi1 = τi2 = unknown.

(3) Select i� .

5 ONLINE CORRELATED SELECTION: IN DETAIL

This section provides the formal description and analysis of the OCS used in Section 4. Section 5.1
introduces the basics of OCS with the proof of a 1/16-OCS, substantiating the sketch in Section 3.
Section 5.2 then shows how to improve the design and analysis of the OCS to prove Theorem 3.3.

5.1 Warmup: Constructing a 1/16-OCS

Algorithm 2 presents the 1/16-OCS. It maintains a state variable τi for each element i . If the state τi

equals selected or not selected, it reflects the selection in the last pair involving i and indicates that
this information can be used in the next pair involving i . If the state τi is unknown, it means that
the past selection result of element i cannot be used to determine the selections in future pairs.

For each pair of elements i1 and i2 in the sequence, the OCS first decides whether this pair is
a sender or a receiver uniformly at random. If it is a sender, use a fresh random bit to select i� ,
� ∈ {1, 2}, for this pair. Then, draw m ∈ {1, 2} uniformly at random and set τim

to reflect the
selection in this round; set τi−m

to be unknown, where −m is an abbreviation for 3−m. That is, the
OCS forwards the random selection in this round to subsequent rounds for only one of the two
elements in the current pair, chosen uniformly at random.

If it is a receiver, on the other hand, the OCS seeks to use the previous selection result of the
elements to determine its choice of i� . First, it draws m ∈ {1, 2} uniformly at random and checks
the state variable of im . To achieve negative correlation, the OCS makes the opposite selection in
this round whenever possible. If the state is selected, indicating that im is selected in the last pair
involving it, the OCS selects i−m this time, and vice versa. If the state variable equals unknown, the
OCS uses a fresh random bit to select i� . In either case, reset the states of i1 and i2 to be unknown.

In fact, we will show a result stronger than the definition of 1/16-OCS.

Lemma 5.1. For any fixed sequence of pairs of elements, any fixed element i , and any integer k ≥ 0,

Algorithm 2 ensures that after appearing in a collection of k consecutive pairs, i is selected at least

once with probability at least 1 − 2−k · fk , where fk is defined recursively as

fk =
⎧⎪⎨⎪⎩

1 if k = 0, 1;

fk−1 − 1
16 fk−2 if k ≥ 2.

(16)
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Fig. 2. Example of dependence graphs with five ground elements and a sequence of seven pairs.

Lemma 5.1 implies that Algorithm 2 is a 1/16-semi-OCS by considering the subsequence of all
pairs involving element i because

fk = fk−1 −
1

16
fk−2 ≤

(
1 − 1

16

)
fk−1 ≤

(
1 − 1

16

)k−1

f1 =
(
1 − 1

16

)k−1

.

Let P1 = {i11, i12}, P2 = {i21, i22}, . . . , Pn = {in1 , in2 } be the sequence of pairs of ground elements. We
start with a graph-theoretic interpretation of the OCS algorithm.

Ex-ante Dependence Graph. Consider a graph Gex-ante = (V ,Eex-ante) as follows, which we shall
refer to as the ex-ante dependence graph. To make a distinction with the vertices and edges in the
online matching problem, we shall refer to the vertices and edges in the dependence graph as nodes

and arcs, respectively. Let there be a node for each pair of elements in the collection. We will refer
to them as 1 ≤ j ≤ n, that is,

V =
{
j ∈ Z : 1 ≤ j ≤ n

}
.

Further, for any fixed element i in the ground set, let there be a directed arc from j1 to j2 for any
two consecutive pairs j1 < j2 involving i , that is,

Eex-ante =
{
(j1, j2)i : j1 < j2 s.t. i ∈ P j1 , i ∈ P j2 , and ∀j1 < t < j2, i � P t

}
.

The subscript i helps to distinguish parallel arcs when the pairs j1 and j2 have the same two ele-
ments. See Figure 2(a) for an illustrative example of the ex-ante dependence graph.
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Each arc in the ex-ante dependence graph represents two pairs in the sequence in which the
OCS could use the same random bit to select oppositely. By construction, there are at most two
outgoing arcs and at most two incoming arcs for each node.

In particular, consider any arc (j1, j2)i in the ex-ante dependence graph, with i being the common
element. If the randomness used by the OCS satisfies (1) pair j1 is a sender, (2) im = i in pair j1,
(3) pair j2 is a receiver, and (4) im = i in pair j2, the selections in the two pairs would be perfectly
negatively correlated in the sense that i is selected in exactly one of the two pairs. Each of these
four events happens independently with probability 1/2. Hence, we achieve this perfect negative
correlation with probability 1/16.

Ex-post Dependence Graph. The ex-post dependence graph Gex-post = (V ,Eex-post) is a subgraph
of the ex-ante dependence graph that keeps the arcs corresponding to pairs that are perfectly
negatively correlated given the realization of whether each step is a sender or a receiver and the
value of m therein. Equivalently, the ex-post dependence graph is realized as follows. Over the
randomness with which the OCS decides whether each step is a sender or a receiver, and the values
ofm, each node in the ex-ante dependence graph effectively picks at most one of its incident arcs,
each with probability 1/4. An arc is realized in the ex-post graph if both incident nodes choose it.
With this interpretation, we get that the ex-post graph is a matching. The OCS may be viewed as
a randomized online algorithm that picks a matching in the ex-ante graph such that each arc in
the ex-ante graph is chosen with probability lower bounded by a constant. See Figure 2(b) for an
example.

Proof of Lemma 5.1. Let j1 < j2 < . . . be the pairs involving a ground element i . We will use
the element a and k = 4 in Figure 2(c) as a running example, where j1 = 1, j2 = 3, j3 = 5, j4 = 7
and the relevant arcs in the dependence graphs are (1, 3)a , (3, 5)a , (3, 7)c , and (5, 7)a .

If at least one of the arcs among j1 < j2 < · · · < jk is realized in the ex-post dependence graph,
element i must be selected at least once. This is because the randomness (related to the choice
of � in the OCS) is perfectly negatively correlated in the two incident nodes of the arc and thus,
i is selected exactly once in these two steps. Importantly, this is true even if the arc is not due
to element i . For example, given that the arc (3, 7)c is realized in Figure 2(c), element a must be
selected at least once after step 7.

On the other hand, if none of these arcs is realized, then the random bits used in the k steps
j1 < j2 < · · · < jk are independent. For example, consider element a and k = 3 in Figure 2(c).
Element a is selected independently with probability 1/2 in steps j1 = 1, j2 = 3, and j3 = 5 given
that neither (1, 3)a nor (3, 5)a is realized.

Importantly, even if some of these pairs are receivers in that the selections therein are based on
the random bits realized earlier by some senders, from i’s point of view, they are still independent
of the randomness in the other rounds that i is involved in. For example, from c’s point of view
in Figure 2(c), even though the selection in step 2 is determined by the selection in step 1, it is
independent of the selections in steps 3 and 7, which involve c .

Putting this together, the probability that i is never selected after steps j1 < j2 < · · · < jk is equal
to the probability that (1) none of the arcs among these steps is realized, times the probability
that (2) none of the k independent random selections picks i . This follows from the law of total
probability. The latter quantity equals 2−k ; thus, it remains to analyze the former. We shall upper
bound it by the probability that none of the arcs (j1, j2)i , (j2, j3)i , . . . , (jk−1, jk )i is realized. We shall
omit the subscript i in the rest of the proof for brevity. Denote this event as Fk and its probability
as fk .

Trivially, we have that f0 = f1 = 1. To prove that the recurrence in Equation (16) gov-
erns fk , further divide event Fk into two subevents. Let Ak be the event that none of the arcs
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(j1, j2), (j2, j3), . . . , (jk−1, jk ) is realized, and node jk picks arc (jk , jk+1) in realizing the ex-post de-
pendence graph. Let Bk be the event that none of the arcs is realized and node jk does not pick
arc (jk , jk+1). Let ak and bk be the probability of Ak and Bk , respectively. We have that Ak and Bk

form a partition of Fk and. thus,

fk = ak + bk .

If node jk picks arc (jk , jk+1), which happens with probability 1/4, arc (jk−1, jk ) is not realized
by definition regardless of the remaining randomness. Therefore, conditioned on the choice of jk ,
subevent Ak happens if and only if the choices made by steps j1, j2, . . . , jk−1 is such that none of
(j1, j2), . . . , (jk−2, jk−1) is realized, ithat is, when Fk−1 happens. That is,

ak =
1

4
fk−1.

On the other hand, if pair jk does not pick (jk , jk+1), there are two possibilities. The first case
is when jk picks (jk−1, jk ), which happens with probability 1/4. In this case, the choices made by
j1, . . . , jk−1 must be such that none of (j1, j2), . . . , (jk−2, jk−1) is realized, and jk−1 does not pick
(jk−1, jk ), that is, Bk−1 happens. The second case is when jk picks neither (jk−1, jk ) nor (jk , jk+1),
which happens with probability 1/2. In this case, the choices made by j1, . . . , jk−1 must be such that
none of (j1, j2), . . . , (jk−2, jk−1) is realized, that is, Fk−1 happens. Putting this together, we have that

bk =
1

4
bk−1 +

1

2
fk−1.

Eliminating ak s andbk s with the above three equations, we get the recurrence in Equation (16). �

The same analysis generalizes to prove a stronger result, which implies a 1/16-OCS.

Lemma 5.2. For any fixed sequence of pairs of elements, any fixed element i , and any disjoint

collections of k1,k2, . . . ,km consecutive pairs involving i , Algorithm 2 ensures that i is selected in at

least one of these pairs with probability at least

1 −
m∏
�=1

2−k� · fk�
.

Proof. Let j�1 < j�2 < · · · < j�
k�

be the �-th subsequence of consecutive pairs involving element i

for any 1 ≤ � ≤ m. The probability that i is never selected is equal to (1) the probability that none
of the arcs among the steps in these collections is realized, times (2) the probability that all

∑m
�=1 k�

random bits are against i . The latter is
∏m

�=1 2−k� . We upper bound the former with the probability

that for any 1 ≤ � ≤ m, none of the arcs (j�1 , j
�
2 ), . . . , (j�

k�−1
j�
k�

) is realized. Finally, observe that the

events are independent for different collections � because the event concerning each collection
only relies on the randomness of the nodes in the collection. Hence, it is at most

∏m
�=1 fk�

. �

5.2 Optimizing the OCS: Proof of Theorem 3.3

Similar to the warmup algorithm, we will realize the ex-post dependence graph by letting each
node be either a sender or a receiver independently and randomly. The probability of letting a
node be a sender, denoted as p, will be optimized later.

A sender uses a fresh random bit to select an element from the corresponding pair. Further, it
randomly picks an out-arc in the ex-post graph and sends its selection along the out-arc. Although
the out-neighbors and out-arcs have yet to arrive, we can refer to them as the one due to the first
and second element in the current pair, respectively. This is identical to the warmup case.

A receiver, on the other hand, adapts to the information it receives and makes the opposite
selection. The improved OCS proactively checks both in-arcs of a receiver; in contrast, the warmup

Journal of the ACM, Vol. 69, No. 6, Article 45. Publication date: November 2022.



Edge-Weighted Online Bipartite Matching 45:21

ALGORITHM 3: Improved Online Correlated Selection

Parameter:

• p: probability that a node is a sender.
State variables:

• Gex-ante = (V ,Eex-ante): ex-ante dependence graph; initially, V = Eex-ante = ∅.
• Gex-post = (V ,Eex-post): ex-post dependence graph; initially, V = Eex-post = ∅.
• τj ∈

{
sender, receiver

}
for any j ∈ V .

On receiving a pair j of elements i1 and i2:

(1) Add j to V .
(2) For k ∈ {1, 2}, let jk be the last pair which involves ik ; add an arc (jk , j )ik

to Eex-ante.
(3) With probability p: (sender)

(a) Let i∗ = i1 or i2, each with probability 1/2.
(b) Pick an out-arc randomly.

(4) Otherwise, that is, with probability 1 − p: (receiver)

(a) Pick a jm ,m ∈ {1, 2}, that is a sender who picks arc (jm , j )im
(break ties randomly):

(i) Add arc (jm , j )im
to Eex-post.

(ii) Let i∗ = im if im is not selected in round jm ; let i∗ = i−m otherwise.
(b) Otherwise, let i∗ = i1 or i2, each with probability 1/2.

(5) Select i∗.

algorithm checks only one randomly chosen in-arc. Concretely, check both in-arcs in the ex-ante

graph to see whether any in-neighbor is a sender who picks the arc between them. If both in-
neighbors are senders and both pick the corresponding arcs, choose one randomly. Add the arc
to the ex-post dependence graph. Supposethat a receiver j receives the selection by a sender j ′

sent along arc (j ′, j )i . Then, select i in round j if it is not selected in round j ′, and vice versa. See
Algorithm 3 for a formal definition of the improved OCS.

Lemma 5.3. For any fixed sequence of pairs of elements, any fixed element i , and any disjoint

subsequences of k1,k2, . . . ,km consecutive pairs involving i , Algorithm 3 ensures that i is selected in

at least one of these pairs with probability at least

1 −
m∏
�=1

2−k� · дk�
,

where дk is defined recursively as follows:

дk =
⎧⎪⎨⎪⎩

1 if k = 0, 1;

дk−1 − 1
8p (1 − p) (4 − p) · дk−2 if k ≥ 2.

(17)

Corollary 5.4. Algorithm 3 is a 1
8p (1 − p) (4 − p)-OCS.

To prove Theorem 3.3, let p = 5−
√

13
3 to maximize 1

8p
(
1 − p

) (
4 − p

)
= 13

√
13−35

108 > 0.1099.

Proof of Lemma 5.3. Let j�1 < j�2 < · · · < j�
k�

, 1 ≤ � ≤ m, be the subsequences of consecutive

pairs that involve element i . The algorithm uses two kinds of independent random bits. The first
kind is used to realize the ex-post dependence graph, that is, the random type of each pair, the
random out-arc chosen by each sender, and the random in-neighbor of each receiver in the tie-
breaking case. The second kind is the random selections by senders, and by receivers that fail to
receive the selection of any sender. Importantly, the two kinds of randomness are independent.
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Similar to the warmup case, we are interested in the event that there is no arc among these pairs
in the ex-post dependence graph:

F = {nodes j�s , for 1 ≤ � ≤ m and 1 ≤ s ≤ k� , are disjoint in Gex-post}.

If there is an arc between two pairs in the collections in the ex-post dependence graph, i is
selected in exactly one of the two pairs. Otherwise, the selections in these pairs are independent.
Hence, the probability that i is never selected is equal to the product of (1) the probability that
the

∑m
�=1 k� nodes in the collections are disjoint in the ex-post dependence graph, and (2) none of

the
∑m

�=1 k� independent random selections picks i . This follows from the law of total probability.

The former quantity is Pr(F ), and the latter is equal to 2−
∑m

�=1 k� . Putting this together, it equals

2−
∑

1≤�≤m k� · Pr(F ).

Therefore, it remains to show that

Pr(F ) ≤
m∏
�=1

дk�
. (18)

Which arcs are we concerned about in the event F? Since these are subsequences of consecutive
pairs involving element i , the arcs of the form (j�s , j

�
s+1)i always exist in the ex-ante dependence

graph. To characterize whether some of these arcs are realized in the ex-post graphs, we need to
further consider another set of arcs as follows.

For any 1 ≤ � ≤ m, consider the in-arcs of nodes j�1 < · · · < j�
k�

in the ex-ante dependence graph

due to the element other than i . Let them be (ĵ�s , j
�
s ) for 1 ≤ s ≤ k� . We omit the subscript that

denotes the common element in the two nodes, with the understanding that they are due to the
element other than i in the round of j�s . Then, an arc (j�s , j

�
s+1)i is realized in the ex-post graph if:

(1) Node j�s is a sender that picks arc (j�s , j
�
s+1)i ;

(2) Node j�s+1 is a receiver;

(3) Either node ĵ�s+1 is a receiver, or it is a sender but does not choose arc (ĵ�s+1, j
�
s+1), or the

tie-breaking by node j�s+1 is in favor of j�s .

Binding Case. First, suppose that all ĵ�s ’s exist, and the j�s ’s and ĵ�s ’s are all distinct. It is rela-
tively easy to analyze because, in this case, it suffices to consider arcs of the form (j�s , j

�
s+1)i and

different subsequences of consecutive pairs depend on disjoint sets of random bits and, therefore,
may be analyzed separately. This turns out to be the binding case of the analysis. We will analyze
the binding case in Lemma 5.5 and show in Lemma 5.6 that this is the worst-case scenario that
maximizes Pr(F ).

Lemma 5.5. In the binding case, the probability of event F is:

Pr(F ) =
m∏
�=1

дk�
.

Proof. We start by formalizing the aforementioned implications of the assumption that all j�s s

and ĵ�s s are distinct. First, two pairs in the collections are connected if and only if they are consec-
utive pairs in the same collection, for example, j�s−1 and j�s , and arc (j�s−1, j

�
s )i is realized. A pair j�s

with s > 1 cannot be the receiver of a sender other than j�s−1 in the collections because ĵ�s s are not
in the collections by the assumption. Second, the realization of these arcs in different collections
are independent. The realization of arcs of the form (j�s−1, j

�
s )i , for any fixed collection �, depends
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only on the realization of first kind of randomness related to nodes with superscript �, that is, j�s s

and ĵ�s s.
Next, we focus on a fixed subsequence � and analyze the probability that no arc of the form

(j�s , j
�
s+1)i , for 1 ≤ s < k� , is realized. To simplify notation, we omit the superscripts and sub-

scripts � and write j1 < j2 < · · · < jk and ĵ2, ĵ3, . . . , ĵk . Let Gk denote this event and дk be its
probability. Trivially, we have that д0 = д1 = 1. It remains to show that дk follows the recurrence
in Equation (17).

We will do so by further considering an auxiliary subevent Ak , which requires not only Gk to
happen but also jk to be a sender who picks the out-arc due to i . Let ak denote its probability.

Auxiliary Event. If jk is a sender who picks the out-arc due to i , which happens with probabil-
ity p/2, arc (jk−1, jk )i would not be realized regardless of the randomness of the other nodes in the
collection. Therefore, under this condition, event Ak reduces to event Gk−1.

ak =
p

2
· дk−1.

Main Event. If jk is a sender, which happens with probability p, arc (jk−1, jk )i would not be
realized regardless of the randomness of the other nodes in the collection. Therefore, under this
condition, eventGk reduces to eventGk−1. The contribution of this part to the probability ofGk is

p · дk−1.

If jk is a receiver (probability 1 − p) but ĵk is a sender who picks arc (ĵk , jk ) (probability p/2),
and the tie-breaking at jk is in favor of ĵk (probability 1/2), we still have that arc (jk−1, jk )i cannot
be realized regardless of the randomness of the other nodes. The contribution of this part to the
probability of Gk is

p (1 − p)

4
дk−1.

Otherwise, jk−1 must not be a sender who picks arc (jk−1, jk )i or else arc (jk−1, jk )i would be
realized. Therefore, conditioned on being in this case, eventsGk reduces to eventGk−1 \Ak−1. The
contribution of this part to the probability of Gk is

(1 − p)
(
1 − p

4

)
(дk−1 − ak−1) .

Putting everything together, we have that

дk = дk−1 − (1 − p)
(
1 − p

4

)
ak−1.

Eliminating ak s by combining the two equations, we get the recurrence in Equation (17). �

Lemma 5.6. The probability of event F is maximized in the binding case.

Proof. Here are the possible violations of the conditions of the regular case:

(1) Some arc (ĵ�s , j
�
s ) may not exist, that is, the element other than i in pair j�s has its first appear-

ance in pair j�s .

(2) There may be �, �′, s, s ′ such that ĵ�s = j�
′

s ′ , that is, the element other than i in pair j�s is also

an element in pair j�
′

s ′ , and in no other pairs in between.

(3) There may be �, �′, s, s ′ such that ĵ�s = ĵ�
′

s ′ .

We use a coupling argument to compare the probability of event F in a general case, potentially
with some of these violations, with the probability in the binding case.
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Type 1 Violation. Consider an instance almost identical to the one at hand except that we in-
troduce a new node ĵ�s for such a violation. For example, let pair ĵ�s be at the beginning of the
sequence, and let it contain the element other than i in pair j�s and a new dummy element that
does not appear elsewhere. Further, couple the two instances by letting the common nodes realize
identical random bits and by letting the new node draw fresh random bits. We claim that whenever
event F happens in the original instance, it also happens in the new instance. If arc (ĵ�s , j

�
s ) is not

realized, the rest of the arcs are realized identically in the two cases. Otherwise, having arc (ĵ�s , j
�
s )

may preclude arc (j�s−1, j
�
s )i from being realized, making event F more likely to happen in the new

instance.

Type 2 Violation. Consider an instance almost identical to the one at hand except that we intro-

duce a new node ĵ�s � j�
′

s ′ for such a violation. For example, let ĵ�s be a pair arriving after j�
′

s ′ and

before j�s that involves the element other than i in these two pairs and a new dummy element that
does not appear elsewhere. Further, couple the two instances by letting the common nodes realize
identical random bits and by letting the new nodes draw fresh random bits. We claim that when-
ever event F happens in the original instance, it also happens in the new instance. Since F happens

in the original instance, arc (j�
′

s ′ , j
�
s ) is not realized. If further arc (ĵ�s , j

�
s ) is not realized, the rest of

the arcs are realized identically in the two cases. Otherwise, having arc (ĵ�s , j
�
s ) may preclude arc

(j�s−1, j
�
s )i from being realized, making event F more likely to happen in the new instance.

Type 3 Violation. Consider an instance almost identical to the one at hand except that we intro-

duce a new node ĵ�s � ĵ�
′

s ′ for such a violation. For example, let ĵ�s be a pair arriving right before j�s
that involves the element other than i in pair j�s and a new dummy element that does not appear

elsewhere. To avoid confusion in the following discussion, let ĵ be the node in the type 3 violation

in the original instance, and let ĵ�s � ĵ�
′

s ′ be the nodes in the new instance. Further, couple the two

instances by letting nodes other than ĵ, ĵ�s , and ĵ�
′

s ′ realize identical random bits. To define the cou-

pling for these three nodes, we need some notations. We say that node j�s needs help if node j�s−1

is a sender who picks arc (j�s−1, j
�
s )i and if node j�s is a receiver who breaks the tie against j�s−1. For

F to happen in this case, ĵ�s must be a sender who picks arc (ĵ�s , j
�
s ). Define similarly for node j�

′

s ′ .

If j�s needs help but j�
′

s ′ does not, let j∗ and j�s realize identical random bits and let ĵ�
′

s ′ draw fresh
random bits, and vice versa. Otherwise, that is, if none or both need help, let them have indepen-
dent random bits. Then, when at most one needs help, event F happens in the original instance if
and only if it happens in the new instance since the realization of the relevant arcs is identical. If
both need help, on the other hand, F cannot happen in the original instance because at least one

of (j�s−1, j
�
s )i or (j�

′

s ′−1, j
�′

s ′ )i would be realized. �

6 CONCLUSION

This article presents an online primal-dual algorithm for the edge-weighted bipartite matching
problem that is 0.5086-competitive, resolving a long-standing open problem in the study of online
algorithms. In particular, this work merges and refines the results of Fahrbach and Zadimoghaddam
[12] and Huang and Tao [23, 30] to give a simpler algorithm under the online primal-dual frame-
work. Our work initiates the study of online correlated selection (OCS), a key algorithmic ingre-
dient for quantifying the level of negative correlation in online assignment problems. This new
technique has already found applications in related online matching problems. Subsequent to our
article, Huang et al. [31] generalized our OCS to obtain the first online algorithm that breaks the
1/2 barrier in the general AdWords problem, and Huang et al. [27] and Tang et al. [48] applied OCS
to online stochastic matching.
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Using independent random bits to make each selection is a 0-OCS (no negative correlation),
and using an imaginary 1-OCS with perfect negative correlation results in infeasible assignments.
Therefore, we aim to design an online matching algorithm using partial negative correlation. We
first construct a 1/16-OCS, and then we optimize this subroutine to obtain a 0.1099-OCS. Designing
a γ -OCS with the largest possible γ is an interesting open problem, as it directly improves the
competitive ratio of the edge-weighted online bipartite matching algorithm in this article. Subse-
quent to our work, Gao et al. [19] improved the lower and upper bounds of γ to 0.167 and 0.25,
respectively.

Even if a 1-OCS did exist, the best competitive ratio that can be achieved using this approach
(without any deviations) is at most 5/9, as shown by Huang and Tao [30]. Hence, we need fun-
damentally new ideas to come closer to the optimal 1 − 1/e ratio in the unweighted and vertex-
weighted cases. One idea is to consider an OCS that allows for more than two candidates in each
round, which we call multiway OCS. Subsequent to our work, Gao et al. [19] gave a multiway
semi-OCS, and Blanc and Charikar [3] and Shin and An [47] made progress on multiway OCS.
Blanc and Charikar [3] used their 6-way OCS to get the current best 0.536-competitive ratio for
edge-weighted online bipartite matching. Designing optimal multiway OCS is another interesting
open problem for future works.

APPENDICES

A UNWEIGHTED ONLINE MATCHING

This section considers the unweighted case and shows that the two-choice greedy algorithm is
strictly better than the 1/2-competitive algorithm when it uses OCS for the randomized rounds. We
write дk for (1 − γ )max{k−1,0} in the following discussion.

Theorem A.1. The two-choice greedy algorithm with the randomized rounds that use a 0.1099-

OCS is at least 0.508-competitive for unweighted online bipartite matching.

Proof. In the unweighted case, it suffices to consider a single weight-level w = 1. Thus, for
each offline vertex i , we write ki = ki (1) for brevity. We will maintain x i = 1 − 2−ki · дki

for each
offline vertex i , which, according to Lemma 5.3, lower bounds the probability that i is matched.
Correspondingly, we maintain the following lower bound on the primal objective:

P =
∑
i ∈L

x i .

To prove the stated competitive ratio, it suffices to explain how to maintain a dual assignment

such that (1) the dual objective equals the lower bound of the primal objective, that is, D = P, and
(2) it is approximately feasible up to a Γ factor, that is, αi + βj ≥ Γ for every edge (i, j ) ∈ E.

Dual Updates. The dual updates are based on a solution to a finite version of the following LP. All
of the solution values are presented in Table 2 at the end of this section. The constraints that follow
are simpler than in the more general edge-weighted case, but the competitive ratio we achieve is
almost the same.

Lemma A.2. The optimal value of the LP that follows is at least 0.508:

maximize Γ

subject to a(k ) + b (k ) ≤ 2−k · дk − 2−(k+1) · дk+1 ∀ k ≥ 0 (19)

k−1∑
�=0

a(�) + 2 · b (k ) ≥ Γ ∀ k ≥ 0 (20)
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b (k ) ≥ b (k + 1) ∀ k ≥ 0 (21)

a(k ),b (k ) ≥ 0 ∀ k ≥ 0

Consider an online vertex j ∈ R, and let kmin = mini ∈N (j ) ki denote the minimum value of ki

among offline neighbors i of vertex j. First, suppose that it is a randomized round. Recall that i1
and i2 denote the two candidate offline vertices shortlisted in round j. Then, we have that ki = kmin

for both i ∈ {i1, i2}. In the primal, x i increases by 2−kmin ·дkmin
−2−(kmin+1) ·дkmin+1 for both i ∈ {i1, i2}.

In the dual, increase αi by a(kmin) for both i ∈ {i1, i2} and let βj = 2 ·b (kmin),where each i ∈ {i1, i2}
contributes b (kmin).

Next, suppose that it is a deterministic round. Recall that i∗ denotes the offline vertex to which
vertex j is matched deterministically. Then, x i∗ increases by 2−kmin ·дkmin

in the primal. In the dual,
increase αi∗ by

∑
�≥kmin

a(�) and let βj = 2 · b (kmin + 1). No update is needed in an unmatched

round, as P remains the same.

Objective Comparisons. Next, we show that the increment in the dual objective D is at most that

in the lower bound of the primal objective, that is, P. In a randomized round, it is followed by
Equation (19). In a deterministic round, it is followed by the sequence of inequalities here:∑

�≥k

a(�) + 2 · b (k + 1) ≤
∑
�≥k

a(�) + b (k ) + b (k + 1) (by Equation (21))

≤
∑
�≥k

(a(�) + b (�))

≤
∑
�≥k

(
2−� · д� − 2−(�+1) · д�+1

)
(by Equation (19))

= 2−k · дk .

Approximate Dual Feasibility. We first summarize the following invariants, which follow from
the definitions of the dual updates.

• For any offline vertex i ∈ L, αi =
∑ki−1

�=0
a(�).

• For any online vertex j, βj = 2 · b (k ) if it is matched in a randomized round to neighbors
with ki = k or in a deterministic round to a neighbor with ki = k − 1.

For any edge (i, j ) ∈ E, consider the value of ki at the time when j arrives. If ki = ∞, the value
of αi alone ensures approximate dual feasibility because

αi =
∑
�≥0

a(�)

= lim
k→∞

k−1∑
�=0

a(�)

≥ Γ − 2 lim
k→∞

b (k ) (by Equation (20))

= Γ . (by Equation (19), whose RHS tends to 0)

Otherwise, by the definition of the two-choice greedy algorithm, j is either matched in a ran-
domized round to two vertices with ki′ ≤ ki or in a deterministic round to a vertex with ki′ < ki . In

both cases, we have that βj ≥ 2·b (ki ).Approximate dual feasibility now follows by αi =
∑ki−1

�=0
a(�)

and Equation (20). �
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Table 2. An Approximately Optimal Solution

to the FactorRevealing Linear Program with

kmax = 8 in the Unweighted Case

k дk a(k ) b (k )

0 1.00000000 0.24550678 0.25449322
1 1.00000000 0.14574204 0.13173982
2 0.89007253 0.06613120 0.05886880
3 0.78014506 0.02907108 0.02580320
4 0.68230164 0.01273424 0.01126766
5 0.59654227 0.00559236 0.00490054
6 0.52153858 0.00248228 0.00210436
7 0.45596220 0.00114193 0.00086312
8 0.39863078 0.00058431 0.00029216

The competitive ratio obtained is Γ ≈ 0.508986. Recall

that дk = (1 − γ )max{k−1,0} .

Proof of Lemma A.2. Consider a restricted version of the LP that is finite. For some positive
kmax, let a(k ) = b (k ) = 0 for all k > kmax. Then, the linear program becomes

maximize Γ

subject to a(k ) + b (k ) ≤ 2−k · дk − 2−(k+1) · дk+1 0 ≤ k ≤ kmax (revised 20)

k−1∑
�=0

a(�) + 2 · b (k ) ≥ Γ 0 ≤ k ≤ kmax (revised 20)

kmax∑
�=0

a(�) ≥ Γ (revised 20, boundary case)

b (k ) ≥ b (k + 1) 0 ≤ k < kmax (revised 21)

a(k ),b (k ) ≥ 0 0 ≤ k ≤ kmax

See Table 2 for an approximately optimal solution for the restricted LP with kmax = 8, which
gives a competitive ratio of Γ ≈ 0.508986. �

B HARD INSTANCES

This section presents two families of unweighted graphs that demonstrate some hardness results
for the online matching algorithms considered in this article. We also give an example showing
that the two-choice greedy with perfect negative correlation is infeasible in the online setting.

B.1 Upper Triangular Graphs

Consider a bipartite graph with n vertices on each side. Let each online vertex 1 ≤ j ≤ n be
incident to the offline vertices j ≤ i ≤ n. Thus, the adjacency matrix (with online vertices as
rows and offline vertices as columns) is an upper triangular matrix. This is a standard instance for
showing hardness that dates back to Karp et al. [38].

Theorem B.1. The two-choice greedy algorithm using independent random bits in different ran-

domized rounds is only (1/2 + o(1))-competitive.
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Proof. For ease of presentation, suppose that the algorithm chooses candidates in reverse lexi-
cographical order. Consider an upper triangular graph with n = 3k for some large positive integer
k . First, observe that there is a perfect matching where the i-th online vertex is matched to the i-th
offline vertex. Hence, the optimal value is n.

Next, consider the performance of the online algorithm. The first n/3 = 3k−1 vertices are matched
to the last 2/3 fraction of the offline vertices in randomized rounds. That is, their correct neighbors
in the perfect matching are left unmatched, while the other offline vertices are only half matched.
Then, the first one-third of the remaining online vertices (i.e., 1/3 · 2n/3 = 2 · 3k−2 in total) are
matched to the last (2/3)2 fraction of the offline vertices in randomized rounds. That is, their correct
neighbors in the perfect matching are left matched by only half, while the correct neighbors of
subsequent online vertices are now matched by three-quarters. The argument goes on recursively.

Therefore, omitting a lower-order term due to the last 2k = nlog3 2 vertices on both sides, the
expected size of the matching is(

1 · 1

3
+

1

2
· 2

9
+ · · · +

(
1

2

)k

· 2k

3k+1
+ · · ·

)
n =

(
1

3
+

1

9
+ · · · + 1

3k+1
+ · · ·

)
n

=
n

2
.

Hence, the two-choice greedy algorithm is at best (1/2 + o(1))-competitive. �

Theorem B.2. The imaginary two-choice greedy algorithm with perfect negative correlation across

different randomized rounds is only 5/9-competitive.

Proof. For ease of presentation, suppose that the algorithm chooses candidates in reverse lex-
icographical order. Consider an upper triangular graph with n = 9. There are nine vertices on
each side, denoted as i1, i2, . . . , i9 and j1, j2, . . . , j9, and a perfect matching with ik matched to jk
for k = 1, 2, . . . , 9. The first three online vertices, j1, j2, and j3, are connected to all offline vertices.
After their arrivals, i1, i2, and i3 are unmatched while the remaining six offline vertices are matched
by half. Then, the next two online vertices, j4 and j5, are connected to the last six offline vertices,
that is, i4 to i9. After their arrival, i4 and i5 remain matched by half, while i6 to i9 are fully matched.
Therefore, the algorithm finds a matching of size 1/2 · 2 + 1 · 4 = 5 in expectation, but the optimal
matching has size 9. The competitive ratio is 5/9, which matches the lower bound that we want to
show. �

While these hardness results crucially rely on the fact that the two-choice greedy algorithm
breaks ties in a deterministic way, we note that the analysis can be extended to random tie-breaking
algorithms by permuting the offline vertices.

B.2 Erdös–Rényi Upper Triangular Graphs

Consider the following random bipartite graph that has n vertices on each side. Each online vertex
1 ≤ j ≤ n is incident to the offline vertex i = j with certainty. Each offline vertex j < i ≤ n is
adjacent to j independently with probability p, where 0 < p < 1 is a parameter to be determined.

By considering the Erdös–Rényi variant of upper triangular graphs instead of the original ones,
we ensure that with high probability any fixed online vertex is paired with different offline ver-
tices in its randomized round. This is effectively the worst-case scenario in the analysis of the
OCS algorithm in Section 5. Letting n = 213 and p = 2−6, an empirical evaluation shows that
our analysis for the combination of a two-choice greedy algorithm and with an OCS is nearly
optimal.
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Observation 1. The competitive ratio of the two-choice greedy algorithm with the OCS in

Algorithm 2 is at most 0.5057-competitive.

Observation 2. The competitive ratio of the two-choice greedy algorithm with the OCS in

Algorithm 3 is at most 0.51-competitive.

B.3 Infeasibility

Now, we show that two-choice greedy with perfect negative correlation is infeasible in the online
setting. Here, perfect negative correlation means that if an offline vertex is a candidate in two
randomized rounds (i.e., it is fed as input to the OCS), then it must be selected by the OCS at least
once and, hence, is matched. Consider a graph with 4 offline vertices, denoted as 1 to 4. The first
online vertex, denoted as 5, is connected to 1 and 2. The second online vertex, denoted as 6, is
connected to 3 and 4. The third online vertex, denoted as 7, has two possibilities: it is connected
with either 1 and 3 or 1 and 4. In the former case, the following pairs of edges have perfect negative
correlations: (1, 5) and (2, 5), (1, 7) and (3, 7), (1, 5) and (1, 7), and (3, 6) and (3, 7). The first two
pairs are due to having the same online vertex; the last two pairs are due to having the same offline
vertex. Hence, we can deduce that (2, 5) and (3, 6) have perfect positive correlation. In the latter
case, however, a similar argument gives that (2, 5) and (3, 6) have perfect negative correlation. An
online algorithm cannot handle both cases simultaneously since the correlation between (2, 5) and
(3, 6) are determined before the arrival of vertex 7 in the online setting.

C CONNECTIONS TO THE ORIGINAL ALGORITHM

This section explains the connections between the online primal-dual algorithm in this article
and the original algorithm by Fahrbach and Zadimoghaddam [12]. We start by briefly describing
the algorithm in Algorithm 4, with minor modifications to make it consistent with the notations
in this article. Then, we simplify the algorithm by considering the special case of unweighted
online matching and present the result as Algorithm 5. Finally, we explain how Algorithm 5 in
the unweighted case is effectively a two-choice greedy algorithm that implicitly uses the warmup
1/16-OCS from Section 5.

C.1 Original Algorithm

The algorithm uses two parameters ε,δ > 0 that are later optimized in the analysis in [12]. These
parameters are not necessary for explaining the connections between the two algorithms; thus,
we omit their values. For each offline vertex i ∈ L, the algorithm maintains the following state
variables that express the behavior of the last randomized round involving i . First, it maintains a
Boolean variable active(i ) that indicates whether the realization of the last randomized selection
involving vertex i can be adaptively used in the next randomized round in which i is involved.
The goal here is to introduce negative correlation in the same way that the 1/16-OCS does. Each
offline vertex also maintains two state variables about the last randomized selection involving i: the
corresponding online vertex index(i ) and the other offline vertex partner(i ) in the last randomized
round. Finally, the realization of the last randomized selection is stored as priority(i ). Informally
in the notation of this article, priority(i ) = 0 corresponds to the case in which the last randomized
round involving i is a receiver; otherwise (i.e., the sender case) priority(i ) is 1 if i is selected the
last time and is 2 if i is not selected.

For each online vertex j ∈ R, the matching decision is made using two different quality measures
for the offline vertices. For each offline vertex i , gaini j denotes how much i’s heaviest edge weight
would increase should j be matched to i . The first measure is the expectation of gaini j , which

equals
∫ wi j

0
(1 − yi (w )) dw in the CCDF viewpoint of this article. It also defines adaptive_gaini j ,
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ALGORITHM 4: Original 0.501-Competitive Algorithm for Edge-Weighted Bipartite Matching
in [12].

parameters: ε , δ
state variables: ∀i ∈ L, active(i ) ← false, index(i ) ← 0, partner(i ) ← 0, priority(i ) ← 0, S (i ) ← 0

for all online vertex j do

Mj ← maxi ∈L E[gaini j ] =
∫ wi j

0

(
1 − yi (w )

)
dw

for all offline vertices j do

if active(i ) = true and wi j ≥ wi, index(i ) − δMj then

adaptive_gaini j ← (E[gaini, index(i )]/3 − (wi, index(i ) −wi j )+/3 − S (i ))+/12

else

adaptive_gaini j ← 0

end if

end for

B ← {i ∈ L : wi j ≥ wi, index(i ) − δMj and E[gaini j ] +
2/3 · adaptive_gaini j ≥ (1 − ε )Mj }

if |B | ≥ 2 then (case 1: there are enough candidates to exploit adaptivity)

pick i1, i2 ∈ B with the largest E[gaini j ] + 2/3 · adaptive_gaini j

set active(partner(i )) ← false for i = i1, i2
set active(i ) ← true, S (i ) ← 0, index(i ) ← j for i = i1, i2
set partner(i1) ← i2 and partner(i2) ← i1
pick � ∈ {1, 2} with the larger adaptive_gaini� j and let −� denote 3 − �
draw R ∈ [0, 1) uniformly at random

if R ∈ [0, 1/3) or adaptive_gaini� j = 0 then

if priorityi�
= 2 and adaptive_gaini� j > 0 then match j to i�

if priorityi�
= 1 and adaptive_gaini� j > 0 then match j to i−�

if priorityi�
= 0 or adaptive_gaini� j = 0 then match j to i1 or i2 with equal probability

set priorityi1
← 0 and priorityi2

← 0

else

if R ∈ [1/3, 2/3) then assign i to i1 and set priorityi1
← 1, priorityi2

← 2

if R ∈ [2/3, 1) then assign i to i2 and set priorityi1
← 2, priorityi2

← 1

end if

else (case 2: there is no adaptivity)

B′ ← {i ∈ L : (wi j ≥ wi, index(i ) − δMj ) and (E[gaini j ] ≥ (1 − ε )Mj )}
C ← {i ∈ L : (wi j < wi, index(i ) − δMj ) and (E[gaini j ] ≥ (1 − ε )Mj )}
if |B′ ∪C | = 1 then

match j to i1 ← arg maxi ∈L E[gaini j ]

set S (i1) ← S (i1) +Mj

else

if B′ � ∅ then

i1 ← the only advertiser in B′

else

i1 ← arg maxi ∈C E[gaini j ]

end if

i2 ← arg maxi ∈C\{i1 } E[gaini j ]

match j to i1 or i2 with equal probability

set S (i1) ← S (i1) +Mj/2 and S (i2) ← S (i2) +Mj/2

end if

end if

end for
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which captures the extra value of matching j to i due to the ability to make adaptive decisions
based on the realization of the last randomized round involving i . Informally, this corresponds to
the benefit of using the OCS for negative correlation in our primal-dual algorithm. The formula
of adaptive_gaini j is derived from the analysis in [12] and its interpretation is not necessary for
understanding the connections between the two algorithms. We refer the reader to [12] for a more
detailed explanation of Algorithm 4 in the general edge-weighted online matching problem.

C.2 Simplified and Symmetrized Algorithm for Unweighted Online Matching

We now focus on a simplified algorithm in the special case of unweighted online matching in
order to better explain the connections to our primal-dual algorithm in this article. In this setting,
wi j ∈ {0, 1} for any i ∈ L and any j ∈ R.

Simplifying Case 2. The case in which |B | ≤ 1 in Algorithm 4 is significantly simpler in the
unweighted case. Observe that for any offline vertex i ∈ L, either wi j = 0, in which case we have
E[gaini j ] = 0, orwi j = 1, in which case we havewi j > wi, index(i )−δMj . In other words,C is always

an empty set. On the other hand, |B′ | is nonempty because the offline neighbor with the maximum
value of E[gaini j ] is always in the set. Further observe that B′ must be a singleton because B′ is a
subset of B, which has at most one element since we are in the second case of the algorithm. Putting
this all together, the algorithm always matches i to the unique element in B′. This corresponds to
a deterministic round in the primal-dual algorithm in this article.

Simplifying Gains and Adaptive Gains. Recall that xi denotes the probability that an offline ver-
tex i is matched. Thus, the expected gain E[gaini j ] in the unweighted case equals 1 − xi . Observe

that the expected gain is 0 if an offline vertex i is involved in case 2 (i.e., a deterministic round).
Next, we consider the adaptive gain values. In the unweighted case, the second term in the for-

mula for computing adaptive gains is always 0 for any offline neighbor i of the online vertex j,
because both wi, index(i ) and wi j are 1. The third term, on the other hand, equals 0 if i has never
been in case 2, and otherwise equals E[gaini, index(i )] due to the earlier discussion on the simpli-
fication of case 2 in the unweighted case. In other words, the adaptive gain can be simplified as
E[gaini, index(i )]/36 for any i that has not yet been matched deterministically and is 0 otherwise.

Simplifying the Candidate Set. Since both the gain and the adaptive gain values are 0 for any
offline vertex that has been deterministically matched, they cannot appear in the candidate set B.
Therefore, it suffices to consider j’s offline neighbors that have not yet been matched determinis-
tically. For such vertices, the first condition of the candidate set B holds trivially because wi j = 1
and wi, index(i ) − δMj = 1 − δMj < 1. In conclusion, it suffices to keep only the second condition.

Symmetrizing the Choice of �. We observe that choosing � to maximize the adaptive gain has
no significance in the analysis by the authors of [12]. The analysis therein distributes the benefit
of making adaptive decisions with regard to to i� equally between i1 and i2, and for i−� it merely
needs its share to be at least half the benefit of making adaptive decisions with regard to i−� . To
this end, we symmetrize the choice of � ∈ {1, 2} to be uniformly at random. Doing so makes the
connection to the algorithm in this article more apparent.

Optimizing the Efficiency of Adaptivity. Finally, we remove the condition on the value of adaptive
gain being 0 in the if statement in the first case of the algorithm. This is driven by the observation
that the online vertex j is matched randomly to i1 and i2 with equal probability whenever it holds,
which is identical to the else case of the if statement. Moreover, the latter case allows us to store the
realization of the random selection to be exploited adaptively later, whereas the former does not.
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ALGORITHM 5: Simplified and Symmetrized Version of the Original Algorithm in the
Unweighted Case

parameters: ε , δ
state variables: ∀i ∈ L, active(i ) ← false, index(i ) ← 0, partner(i ) ← 0, priority(i ) ← 0,
S (i ) ← 0
for all online vertices j do

let Uj be the set of neighbors of j that have not been matched deterministically
Mj ← maxi ∈Uj

E[gaini j ] = 1 − xi

for all i ∈ Uj do

if active(i ) = true then

adaptive_gaini j ← E[gaini, index(i )]/36

else

adaptive_gaini j ← 0

end if

end for

B ← {i ∈ Uj : E[gaini j ] +
2/3 · adaptive_gaini j ≥ (1 − ε )Mj }

if |B | ≥ 2 then (randomized round)

pick i1, i2 ∈ B with the largest E[gaini j ] +
2/3 · adaptive_gaini j

set active(partner(i )) ← false for i = i1, i2
set active(i ) ← true, S (i ) ← 0, index(i ) ← j for i = i1, i2
set partner(i1) ← i2 and partner(i2) ← i1
draw � ∈ {1, 2} uniformly at random and let −� denote 3 − �
draw R ∈ [0, 1) uniformly at random
if R ∈ [0, 1/3) then

if priorityi�
= 2 and adaptive_gaini� j > 0 then match j to i�

if priorityi�
= 1 and adaptive_gaini� j > 0 then match j to i−�

if priorityi�
= 0 or adaptive_gaini� j = 0 then match j to i1 or i2 with equal probability

set priorityi1
← 0 and priorityi2

← 0
else

if R ∈ [1/3, 2/3) then assign i to i1 and set priorityi1
← 1, priorityi2

← 2
if R ∈ [2/3, 1) then assign i to i2 and set priorityi1

← 2, priorityi2
← 1

end if

else (deterministic round)

match j to the i with the largest E[gaini j ]

end if

end for

Hence, other than making the algorithm closer to the OCS introduced in this article, this technical
change also improves the efficiency of adaptivity in the original algorithm.

This simplified and symmetrized version of the original algorithm in the unweighted case is
summarized as Algorithm 5.

C.3 Connections Between the Unweighted Algorithms

We focus on the randomized rounds to explain the connections to the warmup 1/16-OCS in Section 5.
If R ∈ [1/3, 2/3), it corresponds to a sender round in the OCS where i1 is selected. If R ∈ [2/3, 1), it
corresponds to a sender round where i2 is selected. If R ∈ [0, 1/3), it corresponds to a receiver round.
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The choice of � corresponds to the choice of a random in-arc by a receiver in the OCS. The state
variable active(i ) ensures that each sender’s selection is adaptively used by at most one receiver. In
the OCS, the sender randomly picks an out-arc as the potential receiver. In contrast, Algorithm 5
deterministically picks the out-neighbor that arrives earlier. The authors of [12] effectively use an
amortization in the analysis to distribute the benefit between the two out-arcs.

In conclusion, aside from the different choices of constants and the use of an amortization in
the analysis instead of a symmetrized algorithm, the 0.501-competitive algorithm in [12] implicitly
contains the ideas behind the warmup 1/16-OCS presented as Algorithm 2 in this article.
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