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5Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 80–233 Gdańsk, Poland
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7VOICELAB.AI, Al. Grunwaldzka 135A; 80-264 Gdańsk, Poland,
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Deriving quantum mechanics from information-theoretic postulates is a recent research
direction taken, in part, with the view of finding a beyond-quantum theory; once the
postulates are clear, we can consider modifications to them. A key postulate is the
purification postulate, which we propose to replace by a more generally applicable postulate
that we call the complete extension postulate (CEP), i.e., the existence of an extension of a
physical system from which one can generate any other extension. This new concept leads
to a plethora of open questions and research directions in the study of general theories
satisfying the CEP (which may include a theory that hyper-decoheres to quantum theory).
For example, we show that the CEP implies the impossibility of bit-commitment. This
is exemplified by a case study of the theory of non-signalling behaviors which we show
satisfies the CEP. We moreover show that in certain cases the complete extension will not
be pure, highlighting the key divergence from the purification postulate.
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1 Introduction
Quantum mechanics appears to be one of the best validated physical theories and, at the same time,
lacking a single agreed-on interpretation [1]. It can be expressed via several mathematical axioms [2–4]
and leads to numerous phenomena, which have been confirmed experimentally, and now form the basis
for many of our everyday technologies. However, it cannot explain some of the visible (or detectable)
parts of the universe – the key example being the realm of the theory of gravity. For this reason,
an important scientific effort is underway to find a beyond-quantum theory which would explain
phenomena beyond quantum theory [5–10]. However, it is not clear which axiom of quantum mechanics
should be replaced or modified in order to keep the theory as expressive as quantum mechanics whilst
explaining phenomena, such as gravity, which seem to be beyond quantum theory.

It is known that the standard axioms of quantum mechanics are not independent from one
another [11–13], i.e., they can be used to derive one another. It is therefore difficult to modify
the standard postulates of quantum theory as they cannot be independently modified. In order to
examine modifications of quantum theory, it is therefore useful to first re-express quantum mechanics
in the form of a new set of postulates which can be independently modified. Recently, there has
been a great deal of interest in such reformulations, particularly, via information theoretic postulates
within the framework of so-called Generalised Probabilistic Theories (GPTs). This idea led to quite
a number of reformulations of quantum theory [8, 14–27] in which sets of axioms are proposed which
single out quantum mechanics from the space of all GPTs.

One of the key insights in the reconstruction programme came from [28] which introduced the
purification postulate. This was an essential postulate, in that it was the sole postulate that distinguished
quantum from classical theory. Since it’s introduction the purification postulate has been used
extensively in the literature to prove many results, for example, pertaining to computation [29–31],
cryptography [32, 33], thermodynamics [34, 35], and interference [36]. Essentially the purification
postulate is a generalisation of the notion of purification within quantum theory to arbitrary GPTs:

Quantum Purifications In quantum theory, for any state ρA there exists a system B and a
bipartite pure state |ψ⟩AB, which satisfies trB(|ψ⟩⟨ψ|) = ρA. The bipartite state |ψ⟩AB is known
as a purification of ρA, and these are essentially unique, in that there is always an isometry
mapping between any pair of purifications.
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We formally introduce purifications in Sec. 2 and the formalism of GPTs necessary to talk about it
in Sec. 1.1. At this point, however, let us observe that there are various issues with the purification
postulate that may lead one to believe that it will have to be modified in order to find a more
fundamental theory of nature.

1. There is a no-go theorem proven in Ref. [37] which shows that if one believes that a more
fundamental theory should be causal, and should reduce to quantum theory by a decoherence-
like mechanism, then one must give up on the purification postulate.

2. We prove a theorem in Sec. 2.1 which shows that the purification postulate must fail in any
discrete theory, whilst in Refs. [38–40] ideas coming from quantum gravity are used to argue
that on a fundamental level the quantum state space will become discrete.

3. The purification postulate also fails to hold in super-selected quantum systems [24, 27, 41], and
so if we believe in any fundamental superselection rules then the postulate must be modified in
some way.

4. There are also questions about whether the purification postulate is suitable in a theory which
permits indefinite causal structure [42–45], as it is shown in Ref. [46] that a purification-like
postulate fails to hold for all quantum process matrices. That a theory should permit indefinite
causal structure can again be motivated by ideas coming from quantum gravity.

For all of these reasons one can then ask if the purification postulate can be weakened or replaced by
another postulate, resulting in a physical theory with more explanatory power. In this manuscript,
we propose such a replacement for the purification postulate called the Complete Extension Postulate
(CEP) and study its consequences in various contexts.

In order to understand the complete extension postulate we begin by observing that, within
quantum mechanics, purifications are examples of complete extensions [47, Exercise 2.8.2].

Quantum Complete Extensions A complete extension for a state ρA in quantum theory,
is an extension σ∗

AB of ρA, that is is satisfies trB(σ∗
AB) = ρA, where, moreover, any other

extension σ can be reached via local operations on B, and any ensemble for ρA can be reached
via a measurement on B.

It can be straightforwardly seen that, within quantum theory, all quantum purifications are quantum
complete extensions but not vice versa. It is precisely these complete extensions which we generalise
to GPTs in order to define the complete extension postulate in Sec. 3. As this is a weaker notion
within quantum theory it is therefore plausible that the associated postulate will apply more broadly
and avoid some of the aforementioned issues with the purification postulate. Indeed, we show that
this is the case for the first three issues raised above:

1. In Sec. 3.2 we show the proof of the no-go theorem for hyperdecoherence provided in [37] no
longer holds if we use the complete extension postulate.

2. We show that the complete extension postulate can hold in discrete theories, in particular, in
Sec. 4 we demonstrate this for the widely studied theory of non-signalling behaviours [5, 48, 49]
colloquially known as boxworld.

3. In Sec. 3 we show that the complete extension postulate holds in super-selected quantum systems
and within classical systems.

This may therefore lead one to wonder whether perhaps the complete extension postulate is too
weak and does not have any meaningful consequences. We show that this is not the case. In particular,
we show that there are theories which have been studied in the literature, such as those found in [50],
which fail to satisfy the CEP. This means that it is not a trivial postulate and does offer explanatory
power. Indeed, there are two key reasons that a given GPT may fail to satisfy the CEP. On the one
hand, it may not have sufficient bipartite states, in which case it would not admit of an extension that
enables access to all ensembles. On the other hand, it may not have sufficient dynamics, as would be
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the case for highly asymmetric state spaces. Namely, in the latter case, even if an extension enables
access to all ensembles, it may not give a possibility for the generation of any other extension from it by
this dynamics. Moreover, in Sec. 3.1 We show that any theory which satisfies the CEP cannot allow
for the crytographic primitive of bit-commitment, and, moreover, following the techniques of [33],
we find a non-trivial lower bound on the success probability for any protocol. As an added benefit,
this unifies the proof of impossibility of bit-commitment for the quantum and classical cases which
previously were treated separately.

We also study the complete extensions within the theory of non-signalling behaviours in some
depth in Sec. 4 and in App. B. In particular, we show how a complete extension can be constructed
within this theory, and that the dimensions of these complete extensions are always finite. In this
way, we show that CEP is not an empty postulate in general theories, as the complete extensions can
actually be constructed. Furthermore, we characterise the minimal ensembles of the non-local isotropic
behaviours, which was already proved useful in the context of the non-signalling device independent
secure key agreement [51].

The introduction of a new postulate opens up many doors for future exploration. We touch on
just a few of them in this paper and point out many others as future research directions as we go. In
particular, we collect together many of these in Sec. 5.

1.1 Generalised probabilistic theories
The purification postulate and complete extension postulate that we introduce are expressed in the
language of generalised probabilistic theories (GPTs), hence, in order to understand these we first
provide a brief introduction to this formalism. For a more in-depth introduction see, for example,
Refs. [52–54]

The formalism of GPTs [8,48] is a formalism for describing the operational predictions of essentially
arbitrary conceivable theories of physics. In the case of quantum theory, this operational description
is isomorphic to the standard quantum informatic approach to quantum theory (that is, of completely
positive trace preserving maps, density matrices, and positive operator value measures).

The primitive building blocks of any GPT, G are the systems, denoted A,B, ... ∈ Syst[G], these
come equipped with an associative binary composition rule ⊗ : Syst[G]×Syst[G] → Syst[G] which allow
us to build composite systems out of simpler system. In quantum theory these systems can be labeled
by natural numbers, i.e., by their dimension, and then these labels compose simply by multiplication,
as the dimension of a tensor product of two Hilbert spaces is the product of the individual dimensions.

Each system A corresponds to a finite dimensional real vector space VA. The fact that it is finite
can either be viewed as simply a choice for technical convenience, or can be motivated operationally as
the idea that in practice we can only ever perform a finite number of measurements to do tomography
on a system (even if in principle there are an infinite number of degrees of freedom). In quantum theory
these real vector spaces are the spaces of Hermitian operators on some finite dimensional Hilbert space,
whilst in classical theory these real vector spaces are the function spaces RΛ for some finite sample
space Λ. It is important to note at this point that VA⊗B is not necessarily equal to VA ⊗ VB. These
are equal only under the assumption of tomographic locality [8] – that every multipartite state can
be characterised by means of local measurements on its parts. Note that both quantum and classical
theory are tomographically local theories.

Within these vector spaces VA there is a specified convex set ΩA ⊂ VA which describes the state
space for the system. This convex set must be compact and closed, and, moreover, must have an
affine dimension one less than the linear dimension of the vector space such that the affine span of
ΩA does not intersect the origin. We can also define the convex state cone KA which includes also
subnormalised and supernormalised states as KA := {rs|r ∈ R+, s ∈ ΩA}. In quantum theory this
state space corresponds to the space of density matrices and the state cone to positive semidefinite
operators.

Within the dual vector space V ∗
A – that is, the vector space of linear functionals on VA – there is

also a specified convex set EA ⊂ V ∗
A which describes the effect space for the system. This convex set

must also be compact and closed, however, it will be full dimensional and contain the origin. The
effects e ∈ EA assign probabilities to measurement outcomes when the measurement is performed on
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an arbitrary state in ΩA, they therefore must satisfy e(ΩA) ⊆ [0, 1]. The effect space EA must also
contain the unique unit effect uA ∈ EA which is defined as uA(ΩA) = {1}. The uniqueness of this
effect is built into the setup of our framework, however, there are modifications to the framework in
which this is instead an additional principle which captures the notion of causality [15]. In quantum
theory this effect space corresponds to tr(σ·) where σ is a POVM element and the unit corresponds
to σ = 1.

Like the systems themselves, these state and effect spaces have an associative composition rule,
ΩA ⊗ ΩB := ΩA⊗B, EA ⊗ EB := EA⊗B and uA ⊗ uB := uA⊗B. Note that in general ⊗ is not related to
the tensor product of vector spaces, the symbol is used in analogy to the role of the tensor product in
composing quantum systems. This composition must be bilinear, and satisfy e ⊗ f(s ⊗ t) = e(s)f(t)
for all e ∈ EA, f ∈ EB, s ∈ ΩA and t ∈ ΩB. These conditions, in particular, ensure that the unit effect
uB gives a way to uniquely define a kind of “partial trace” and hence marginal states – this in turn
ensures that the theory does not permit signalling without sending a physical system [15,55,56].

Next we consider transformations between systems. For a pair of systems A and B there is a space
of transformations T B

A from system A to system B. These again form a closed compact and convex
set. In this case, there are two relevant associative composition rules. The first, parallel composition,
T B

A ⊗ T D
C := T B⊗D

A⊗C and the second, sequential composition, T C
B ◦ T B

A := T C
A . These are both bilinear

and must satisfy the condition that (T1 ⊗ T2) ◦ (T3 ⊗ T4) = (T1 ◦ T3) ⊗ (T2 ◦ T4). Note that states
(and effects) can be viewed as particular kinds of transformations, namely those that have a trivial
input (resp. output) system. Denoting this trivial system by ⋆ and noting that ⋆ is a unit of system
composition (A ⊗ ⋆ = A = ⋆ ⊗ A) we can therefore write that ΩA = T A

⋆ and EA = T ⋆
A . Note that

for every system, A, there is an identity transformation 1A which for every T : A → B must satisfy
1B ◦T = T = T ◦1A. One can then observe that what we are defining here is nothing but a monoidal
category where the objects are the GPT systems and the morphisms are the GPT transformations.

It is convenient to work with the convention whereby every GPT contains classical systems, denoted
∆I , in which measurement outcomes can be encoded, and which can act as control variables in
descriptions of experiments. See, for example, [24, 57]. In particular, a demolition measurement of
system A with outcome set I can then be viewed as a transformation in the set T ∆I

A
1. In order to see

the connection between this and the description of measurements in terms of effects, we first set up
some notation for describing classical systems.

Consider a classical system ∆I which is a system corresponding to, for example, some outcome
degree of freedom on some measurement device where I labels the set of possible outcomes. The
vector space V∆I

will correspond to the real vector space of real functions from I → R, denoted RI .
The state space Ω∆I

is the space of probability distributions over I, that is, real functions p : I → R

such that p(i) ∈ [0, 1] and
∑

i p(i) = 1 for all i ∈ I. Note that geometrically this is a simplex with
vertices labelled by the elements of I. These vertices correspond to delta function distributions which
we denote as δi. The effect space E∆I

lives in the dual vector space, however, here we make use of
the Riesz representation theorem via the inner product

∑
i∈I f(i)g(i) in order to view the effects as

living in RI . Using this representation then the effects correspond to functions e : I → R such that
e(i) ∈ [0, 1]. Geometrically these form a hypercube which contains the simplex of states. The vertices
of the simplex, when interpreted as effects via the Riesz representation will be denoted as ϵi such
that ϵi(δj) =

∑
k∈I δi(k)δj(k) = δij . These systems compose via ∆I ⊗ ∆J := ∆I×J . Transformations

between classical systems correspond to stochastic linear maps.
Now, note an important property of classical theory, that identity transformations 1∆I

can be
decomposed as

∑
i∈I δi ◦ ϵi. Hence, any measurement M : A → ∆I satisfies M = 1∆I

◦ M =∑
i∈I δi ◦ ϵi ◦ M then, noting that ei := ϵi ◦ M ∈ T ⋆

A = EA we can rewrite this as
∑

i∈I δi ◦ ei. One
can then, recalling that ϵi(δj) = δij , see that it is possible to construct an isomorphism between
measurements as transformations to a classical system and measurements as a collection of effects.

1Nondemolition measurements would live in the space T A⊗∆I
A
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2 The purification postulate
The purification postulate [15] has been widely studied within the literature on generalised probabilistic
theories, from the study of thermodynamics [34, 35], cryptography [32, 33], and computation [29–31]
through to higher-order interference [36] and reconstructions of quantum theory [28]. One of the
reasons for the wide use of this principle is the fact that it is mathematically very powerful. For
instance, one immediate corollary is that the state space is transitive [15] and there is a continuum of
pure states (see Theorem 7 below).

Despite the utility of the purification postulate, as we discussed in Sec. 1, there are several
criticisms which can be made of it. This motivates the search for alternative postulates such as
the complete extension postulate that we propose here. Nonetheless, the purification postulate served
as the inspiration behind the complete extension so it is useful to introduce it in some detail here.

The purification postulate takes the key ideas behind quantum purification and recasts them in
the language of GPTs such that it can be taken as a postulate. We will slowly build up the relevant
GPT concepts here before presenting the postulate itself.

Definition 1 (Pure states). A state s of a system A is said to be pure if and only if it is extremal in
ΩA.

In the case of quantum theory this coincides with the usual notion of purity, namely that of rank-1
density matrices. More generally, pure states are thought of as states of maximal knowledge whilst
mixed states can be thought of as describing classical uncertainty of knowledge about which pure state
has been prepared.

We can then define the notion of a purification of a given state:

Definition 2 (Purifications of a state). A purification of a state ωA of system A is a non-signalling
extension to system B. That is, a state εAB of the composite system A⊗B, satisfying

(a) [1A ⊗ uB](εAB) = ωA.

(b) εAB is a pure state.

If s is pure by itself, we assume that it is one of its own purifications, by taking B system to be trivial.
We denote the set of purifications of a given state ωA as Purif [ωA].

According to Definition 2, a state may possess more than one state that purifies it. That is,
Purif [s] typically is not a singleton set. In quantum mechanics, for example |ψAB⟩ and |ψAB⟩ ⊗ |ϕB′⟩
purify the same state, i.e., trB(|ψAB⟩⟨ψAB|). In quantum mechanics, however, purifications are unique
up to isometries on the purifying system. This motivates the following:

Definition 3 (Essential uniqueness of purifications). The purifications of a given state s are said to
be essentially unique, if and only if the elements in Purif [ωA] with the same purifying system can be
related by reversible transformations on the purifying systems.

With these ideas in place we are then in the position that we can succinctly define the purification
postulate:

Definition 4 (Purification Postulate). A GPT G satisfies the Purification Postulate if and only if
for all systems A and all states ωA ∈ ΩA, there exists purifications (Def. 2) which are essentially
unique (Def. 3).

2.1 No-go theorem for purification in discrete theories
In this subsection, we will prove that there cannot exist purifications of arbitrary states in any discrete
theory. Later on, we will see that this implies that in such theories the complete extensions that we
have introduced will generically not be pure. This fact has been proven in case of classical theory and
for the theory of non-signalling behaviours in [15, 28]. We show below a different, direct argument,
which holds in general for all non-signalling, convex discrete theories. In fact, the result developed
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here is valid in any convex, non-signalling theory, provided that in each dimension number of different
systems’ types (state spaces with distinct shapes) is countable. We show that there is no single finite
dimensional discrete theory [58–60], which vertices can purify all the states from a theory of a smaller
dimension. We recall below the formal definition of a discrete theory:

Definition 5 (Discrete theory). A GPT G is said to be discrete, if and only if, for each system
T ∈ Syst[G] there is a discrete number of pure states, that is, where each state space, ΩT , is a polytope.

The demand for the theory to be convex presumes that the state space lives inside a vector space,
the dimension of which is also the dimension of a theory. These assumptions together with the
non-signalling condition allow for the well-definiteness of the partial trace as a linear map TrB (·) :
ΩA ⊗ ΩB ≡ ΩA⊗B 7→ ΩA

2, which for normalized states (in a sense of probabilistic outcomes) ρA, σB

satisfies TrB (ρA ⊗ σB) = (1A ⊗ uB)(ρA ⊗ σB) = ρA, where uB is the unit effect on the system B.

Lemma 6. In any convex (nontrivial) theory, the cardinality of the set of states is at least of power
of the continuum c.

Proof. Let us take ωA ̸= ω′
A in ΩA. Since the theory is convex, any state of the form pωA + (1 − p)ω′

A,
for p ∈ [0, 1] is still a state in ΩA. The set of states {pωA + (1 − p)ω′

A}p=1
p=0, forms an interval in ΩA.

Since there is a bijection between any interval and the set of real numbers that has cardinality of
continuum, the state space has at least cardinality of continuum.

We are ready to state the main theorem of this section now.

Theorem 7. In any discrete theory (Def. 5) there are no (non-trivial) systems that have purifications
for all states. Hence, theories with purifications (Def. 4) cannot be discrete.

Proof. As the theory is a discrete theory, any system, T within the theory contains only finite number
of v, vertices, and so the vertices can only purify a finite number of states f (as each pure state purifies
a single mixed state). On the other hand according to Lemma 6, for all (nontrivial) systems, T ′, in
the theory, the cardinality of the set of states is at least c. So according to set-theoretic fact [63]
f < ℵ0 < c, in the system T there are not enough vertices to purify all states from the system T ′. As
it is true for all systems T in the theory, there exist no discrete theory, that can purify all states.

Note that the proof of theorem 7 does not strictly rely on convexity, but just that the cardinality
of the state space is greater than ℵ0. One could therefore replace the assumption of convexity simply
with the assumption that the number of mixed states in a considered discrete theory is greater than
ℵ0.

As a consequence of Theorem 7, we have the following Proposition. Note that this result does not
rely on the essential uniqueness of purifications, only their existence.

Proposition 8. For any theory (with a countable number of system types) where purifications exist
for all mixed states, there must be at least one system with a continuum of pure states.

Proof. In any non-trivial theory there are state spaces which correspond to convex sets other than the
singleton set. Such convex sets necessarily contain a continuum of mixed states, i.e., a continuum of
non-extremal states. If purifications exist then each of these mixed states must purify to a distinct
pure state in the theory (as marginalisation is described by a mapping from the bipartite states to the
local states).

Now suppose, for the sake of contradiction, that there is a countable number of system types, that
the state spaces of these systems live in finite dimensional vector spaces (as per the definition of a
GPT) , and, that these state spaces all have a discrete number of vertices (i.e., pure states). Then,
the theory as a whole has a countable number of pure states, and hence there are not enough pure
states to purify the continuum of mixed states – in contradiction to our initial assumption.

If we want to hold on to the countable number of system types, the finite dimensional vector
spaces, and the existence of purifications, it must therefore be the case that there exists a system with
a continuum of pure states.

2The theory of composition in GPTs was developed in various places, for example, Refs. [15, 61,62].
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3 The complete extension postulate
The idea of the complete extension is that it should be taken as a competitor to the purification
postulate and is, prima facie, a mathematically weaker postulate. Indeed, one cannot derive either
transitivity of the state space or the necessity for a continuum of pure states from this postulate
whereas these are consequences of the purification postulate. Consequently, the complete extension
postulate has the potential to be much more broadly applicable in scope and, hence, any results which
can be derived using this postulate will hold in a broader class of theories than those derived using
the purification postulate.

In this section we will formalise the definition of the complete extension postulate in the language
of GPTs introduced in Sec. 2. We will work towards this by first defining ensembles, extensions and
the principles of access and generation within this language.

To begin, suppose we have some state, s, a vector in the convex set of states ΩA of a GPT system
A. An ensemble for s, is some set of pairs {(pi, si)}i∈I such that si ∈ ΩA and {pi} define a probability
distribution (pi ∈ R, pi ≥ 0, and

∑
i pi = 1), satisfying:

s =
∑
i∈I

pisi (1)

in other words, it is some convex decomposition of s within the state space. We will denote the set of
all possible ensembles for a state s as Ens[s].

The set of states which appear in some ensemble in Ens[s] is, will be, a face of the state space ΩA,
we denote this as Face[s]. A state is pure if and only if Face[s] = {s} and is said to be an interior
state if and only if Face[s] = ΩA.

We can then define a pure ensemble for s as an ensemble {(pi, si)}i∈I ∈ Ens[s] in which all of
the si are pure, that is, Face[si] = {si} ∀i ∈ I. Let us denote the set of such pure ensembles as
EnsP [s] ⊆ Ens[s], this is necessarily non-empty as we can always decompose a point inside a compact
and closed convex set in terms of the vertices of the convex set.

An extension of a state s ∈ ΩA of system A is a state σ ∈ ΩA⊗E of a bipartite system A ⊗ E for
which we have:

s = [1A ⊗ uE ](σ) (2)

we will denote the set of extensions, σ, of a state s as Ext[s], note that, in general, there will be
extensions with many different extending systems E. A purification, should it exist, is simply some
σ ∈ Ext[s] which is pure, that is, Purif [s] ⊆ Ext[s].

Now we can define what we mean for an extension to satisfy generation. An extension σ∗ ∈
Ext[s] with extending system E∗ is said to be generating if and only if for every σ ∈ Ext[s] with
arbitrary extending system E there is some transformation Tσ : E∗ → E such that:

1A ⊗ Tσ(σ∗) = σ (3)

Next we show an equivalence between the notion of an ensemble and a particular class of extensions.
This particular class of extensions are extensions in which the extending system, E, is taken to be a
classical system, ∆d for some d ∈ N. We will denote this class of extensions for a state s as Extclass[s]
and show that there is an isomorphism between Extclass[s] and Ens[s].

Proposition 9. The space of extensions with classical extending system is isomorphic to the space of
ensembles, i.e., Extclass[s] ∼= Ens[s]

Proof. Starting with an ensemble:
{(pi, si)}i∈I (4)

we can construct an extension: ∑
i∈I

pisi ⊗ δi ∈ ΩA ⊗ ∆I (5)

where δi ∈ Vert[∆I ].
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Whilst, on the other hand, if we start with an extension

σ ∈ ΩA ⊗ ∆J (6)

we can construct an ensemble:{(
uA ⊗ ϵj(σ) ,

1
uA ⊗ ϵj(σ)1A ⊗ ϵj(σ)

)}
j∈J

(7)

It is then simple to verify that these two constructions are the inverse of one another and hence
establishes an isomorphism between the two sets.

Using this isomorphism we can easily express the property of access in a way which makes it
manifestly a special case of generation. That is, an extension σ∗ ∈ Ext[s] with extending system
E∗ is an extension with access if and only if, for any ensemble σ ∈ Extclass[s] with extending system
∆I we can find a measurement Mσ : E∗ → ∆I such that:

1A ⊗Mσ(σ∗) = σ (8)

Then it is clear that:

Proposition 10. If an extension σ has the property of generation then it necessarily has the property
of access.

Proof. This immediately follows from inspection of the two definitions, and noting that Ens[s] ∼=
Extclass[s] ⊆ Ext[s].

The converse however will not always be true, that is, from access we cannot generally derive
generation.

Proposition 11. If an extension σ has the property of access then it does not necessarily have the
property of generation.

Proof. We prove this by providing an example of a GPT which has extensions which allow for access
but do not allow for generation.

Specifically, consider the GPT which has the same states and measurements as quantum theory.
Then, the static part of the purification postulate, namely the existence of purifications, is satisfied.
Hence, we have that any purification of a state allows us to access the ensembles of that state – that
is they have the property access.

On the other hand, let us assume that the set of possible dynamics is restricted relative to quantum
theory, such that transformations between non-trivial systems are necessarily noisy, that is, mixed with
some non-zero parameter ϵ of the totally depolarising channel. Then we fail the dynamical, “essential
uniqueness” part of the purification postulate and so these extensions will not have the property of
generation.

We are now in a position such that we can formally define the complete extension postulate within
the language of GPTs.

Definition 12 (Complete Extension Postulate). A GPT G satisfies the Complete Extension Postulate
(CEP) iff: for all systems A and all states s ∈ ΩA, there exists an extension σ∗ ∈ Ext[s] which is
generating, that is, which has the generation property.

With this definition in place, we can now compare this to the Purification Postulate [15], Def. 4.
The essential uniqueness property in the purification postulate is intuitively very closely related to the
generation property of the complete extension postulate. However, note an important subtlety –
essential uniqueness is a property for extensions on the same extending system, whilst generation is a
property for extensions on arbitrary extending systems. In order to derive generation from essential
uniqueness we must therefore invoke one additional, relatively innocuous looking, assumption about
the GPT. Specifically, that the parallel composition of pure states is necessarily pure.
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Proposition 13. For the set of GPTs in which the product of pure states is pure, the purification
postulate implies the complete extension postulate.

Proof. See App. A.1.

An immediate corollary of this is that quantum theory satisfies the CEP, as it is a GPT satisfying
the purification postulate and in which the product of pure states is pure. More specifically, in the
case of quantum theory, a purification |ψ⟩ of a state ρ is a complete extension. In particular, it allows
for generation of arbitrary extensions and access of arbitrary ensembles.

It can also easily be shown that classical probability theory satisfies the CEP. That is, the complete
extension of a probability distribution with finite support over some set X has a complete extension
given by simply copying the variable X. See, for example, Ex. 3.4 in [64] for details. Specifically, a
general extension of a probability distribution p(x) is a simply a distribution q(x, y) which marginalises
to p(x), that is, such that

∑
y q(x, y) = p(x). It is then straightforward to verify that the bipartite

probability distribution pce(x, x′) := p(x)δ(x, x′) (obtained by copying x) is a complete extension, as
any other extension can be generated by applying a stochastic map to x′. This is in stark contrast to
the purification postulate, which does not hold in the case of classical theory. In this sense, CEP is a
far more natural postulate to consider; indeed, it can be thought of as salvaging the most intuitive part
of the purification postulate, which is common to both quantum and classical theory (even though the
full purification postulate does not hold in classical theory). We also show in Sec. 4, that the complete
extension postulate holds in the GPT of non-signalling boxes (colloquially known as Boxworld) which
is also known to fail the purification postulate.

Another proposal to modify the purification postulate was put forward in Ref. [24] which provides
a time-symmetric version of the purification postulate. It can be shown that this time-symmetric
purification postulate, together with another postulate from Ref. [24], namely, the existence of cups
& caps, suffices to derive the CEP. More specifically, if we take a time-symmetric purification of some
state and then turn the input via a cup, this defines a complete extension of the state. Since both
quantum and classical theory satisfy all of the postulates of Ref. [24], it therefore immediately follows
that they both have complete extensions. Moreover, superselected quantum systems also satsify the
time-symmetric purification postulate and have cups & caps, hence they also satisfy CEP.

We now consider two results which have been proven using the purification postulate, and consider
whether or not they can be reproven using the complete extension postulate instead.

3.1 Impossibility of bit-commitment
The task of bit-commitment is a two-party cryptographic task that can be used as a primitive in
building up other important cryptographic protocols such as coin-flipping [65] and zero-knowledge
proofs [66]. It is well known that bit-commitment and its generalisation to integer-commitment is
impossible in both quantum and classical theory [67,68]. However, this is not true in all GPTs, indeed
in [50] they show that any GPT which is non-classical but does not have entanglement allows for
bit-commitment. It is therefore interesting to study what are the features of quantum theory which
make this task impossible.

There have been various works on this subject including [15, Corollary 45] and [33]. The former
demonstrates the impossibility of bit-commitment under a set of physical postulates including the
purification postulate. The latter goes beyond a strict impossibility proof and provides an analytic
lower bound on the product of the two relevant cheating probabilities, again, however, relying on the
purification postulate in the process. In this section we will show that we can derive exactly the same
analytic lower bound but using the complete extension rather than the purification postulate.

Before getting to this result, however, let us first introduce the protocol. For honest parties this
task consists of two phases: i) the commit phase, in which Alice chooses an integer j ∈ {1, ..., n} via
a uniform random distribution and “commits” it to Bob by passing him a “token”. After doing so it
should be impossible for Alice to change the value j but it should also be impossible for Bob to learn
the value j. ii) the reveal phase, in which Alice communicates the integer j to Bob and sends him a
second token to verify the integer. Bob must be able to check that the integer that Alice revealed was
indeed the integer that she committed to in the first phase. Succinctly, for a protocol to be secure,
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it must be the case that Bob cannot learn anything about the integer j prior to the reveal phase and
that Alice cannot change j after the commit phase. The extent to which they can deviate from this
ideal is characterised by the cheating probabilities p∗

B and p∗
A, respectively.

More formally, the protocol can be described as follows: (i) In the commit phase, Alice chooses an
integer j ∈ {1, ..., n} via a uniform random distribution and creates a corresponding bipartite state
sj ∈ ΩA⊗B of the bipartite system A⊗B. This is her “commitment” to the integer j. She then sends
the system B to Bob to complete this phase. The idea behind this being that is now having access to
only one part of the state will prevent Alice from being able to change her commitment, whilst at the
same time, the fact that Bob only has access to one part of the state will prevent him from being able
to learn the integer value. (ii) In the reveal phase, Alice communicates the integer j to Bob and sends
him the system A, Bob applies a two-outcome measurement (ej

accept, e
j
reject) to the bipartite system

AB to check that it is in fact in state sj to verify that the integer that Alice reveals is indeed the
integer that she originally committed to.

The cheating probabilities can then be described as follows. p∗
B is the maximum probability with

which Bob can learn the value j prior to the reveal phase, that is, by performing some measurement
on the reduced states on system B alone. In the case of quantum theory, this can be computed as a
semi-definite program, whilst, as shown in [33], in the case of generic GPTs, they are computed via
cone programs (a natural generalisation of SDPs). p∗

A is the maximum probability with which Alice
can reveal an integer other than the value j that she committed to in the commit phase. There are
many ways in which Alice can attempt to cheat but in order to find a lower bound on p∗

A we focus on
the following particular cheating strategy: she applies some transformation to her part of the shared
state between the two phases of the task thereby transforming sj into some other state s′

j′ . Alice’s
success probability with this strategy is then the probability which Bob’s measurement (ej′

accept, e
j′

reject)
will give the accept outcome on state s′

j′ . A perfect protocol would be one such that p∗
B = p∗

A = 0, that
is, in which there is no probability that Bob can learn anything about j prior to the reveal phase, and
there is no probability that Alice can influence the value after the commit phase. In the case that the
GPT satisfies the complete extension postulate and an additional assumption called the no-restriction
hypothesis [15], then it can be shown that such a perfect protocol is impossible. The following theorem
encapsulates the result:

Theorem 14. In any GPT satisfying the complete extension postulate and the no-restriction hypothesis
[15], and in any integer-commitment protocol within that GPT, Alice and Bob’s cheating probabilities
satisfy

p∗
A · p∗

B ≥ α

n
>

1
2n (9)

Proof. (Adapted from [33]). The proof is identical up to the paragraph containing eq. 14. At which
point we must rewrite the proof as follows:

Since ρj is the marginal of sj , we call sj a extension let tj be an extension of rj . Then

χj := 1
uB[x] · n

(sj + tj) ∈ KA⊗B (10)

is an extension of x′ for each j.
Now, consider a complete extension of x′, denoted χ̃ ∈ KB⊗E∗ . Then, the generation property

implies that, for each j there exists Tj : E∗ → A such that 1A ⊗ Tj(χ̃) = χj .
We now have the following cheating strategy for Alice: Alice prepares the state χ̃ and passes

system B to Bob keeping hold of the system E∗. Then to reveal j, she ‘steers’ the state χ̃ to χj using
Tj before sending j and the system A to Bob.

The remainder of the proof is identical relying on the use of the tool from convex-optimisation
known as cone programming [69]. This is the natural generalisation of the notion of semi-definite
programs, which are ubiquitous in quantum information theory, to the setting of GPTs. To date there
have only been a handful of papers which utilise this tool either in quantum theory [70–74] or in
GPTs [33,75–80].
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Figure 1: Schematic depiction of the relationship between the set of all theories, those are satisfying the complete
extension postulate and those are satisfying the purification postulate. Also shown is the hyperdecoherence mechanism
(purple arrows) relating hypothetical beyond quantum theories and quantum theory in analogy to the relationship
between quantum and classical theory by a decoherence mechanism (blue arrow).

In the above, the no-restriction hypothesis [15] means that any logically possible measurement
compatible with the state space of theory is physically realisable within the GPT. This is satisfied by
both quantum and classical theory and is well motivated in adversarial scenarios when one does not
want to make assumptions on the capabilities of the adversaries. Formally this means that, for every
system A in the GPT, that the effect space EA is the dual of the state space Ω. That is:

EA = Ω∗
A := {e ∈ V ∗

A|e(s) ∈ [0, 1]∀s ∈ ΩA ⊂ VA} (11)

That is, any convex-linear functional which gives valid probabilities for all states corresponds to a
physically realisable effect.

3.2 No no-go for hyperdecoherence
The question that any beyond-quantum theory must answer is the following: why do we not observe
beyond-quantum phenomena in all of our current experimental tests of quantum theory? That is,
within the beyond-quantum theory there must be some mechanism which explains the emergence of
the quantum world. We can gain intuition for this by considering the beyond-classical theory that
is quantum theory. Within quantum theory, the mechanism that best explains the emergence of the
classical world is decoherence.

It has recently been understood [81, 82] how decoherence is not simply a way in which quantum
states can be made effectively classical (as diagonal density matrices are isomorphic to classical
probability distributions) but that this can be lifted to a mechanism which shows how the entirety
of quantum theory (i.e., including states, measurements, transformations, and so on) can be made
effectively classical (i.e., the theory of classical stochastic dynamics). In [37] this idea was generalised
to define the notion of hyperdecoherence (a term coined in [9]) which similarly describes how the
entirety of a beyond-quantum theory can be made effectively quantum.

The basic idea, is that for every beyond-quantum system, A, there exists some hyperdecoherence
process,

HA : A → A, (12)
which will cause the system A to behave essentially as quantum systems. These hyperdecoherence
processes must satisfy three basic properties:

1. they must be unit-effect preserving,

uA ◦ HA = uA, (13)

which is analogous to the trace-preservation condition for quantum decoherence processes; and
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2. that they must be idempotent,
HA ◦ HA = HA, (14)

which means that once the beyond-quantum features have been lost, that hyperdecohering again
does nothing.

3. Moreover, they must be chosen compositionally, that is, such that

HA⊗B = HA ⊗ HB, (15)

such that if two systems hyperdecohere independently then the global system will behave as a
quantum system.

We then can model the hyperdecoherence of a beyond-quantum theory by replacing the identity
processes 1A with hyperdecoherence processes HA, the intuition being that we are trying to describe
a situation in which the hyperdecoherence happens on a time scale which is much shorter than any we
can currently experimentally probe such that when we “do nothing” we are actually letting the system
hyperdecohere. The conditions that we have imposed on the hyperdecoherence processes ensure that
this can be described in consistent manner and that the result of this is a valid physical theory.

In order for such a procedure to describe the emergence of the quantum world from some beyond-
quantum theory, it must be the case that the physical theory that we obtain by replacing the identities
by hyperdecoherence processes in the beyond-quantum theory, is (isomorphic to) quantum theory.
In [37], they demonstrate that any beyond-quantum theory which can hyperdecohere to quantum
theory in this way, must violate either the causality principle – that information can only flow forwards
in time, or the purification postulate. Letting go of purification seems like the more palatable option,
and so this motivates the question of whether or not the complete extension postulate could be satisfied
by a beyond-quantum theory which hyperdecoheres to quantum theory.

By examination of the proof of [37], however, it becomes clear that one cannot obtain the same
result using the complete extension postulate – at least, not with the same proof technique. One may
have suspected that the proof would still go through as it is clear that at no point does it crucially
rely on the fact that a purification is actually pure. Instead, what is needed is the fact, which can
be derived from the purification postulate, that pure extensions are generating. Or, in other words,
that the purification postulate tells us that pure extensions are necessarily complete extensions. This
fact, however, does not follow from the complete extension postulate alone, and so the proof does not
go through. It therefore remains a possibility that there is a beyond-quantum theory satisfying the
CEP, which moreover satisfies the causality principle and can hyperdecohere to quantum theory. An
important direction for future research is therefore to try to formulate such a beyond-quantum theory.

4 Case study - theory of non-signalling behaviours
As a case study, in this section, we focus on the theory of non-signalling behaviours [5]. It exhibits
stronger correlations between its subsystem than quantum theory, for example, it violates the Information
Causality principle [83] and reaches the algebraic maximum for the CHSH inequality. It is also proved
that, such behaviours can not be used for teleportation, and it does not allow for swapping of non-
separable correlations [84,85] between two parties which were initially completely uncorrelated. This is
not surprising as we already know that the theory of non-signalling behaviours violates the purification
postulate (as it is a discrete theory), whilst in case of quantum theory, the ability to teleport an
unknown state or entanglement swapping directly related to the existence of purifications [86,87].

In this section, we consider the lack of existence of purifications for the theory of non-signalling
behaviours and try to bypass it with other entity fitted for the theory of non-signalling behaviours,
namely, the complete extension that we introduced in Sec. 3. For a given behaviour PA, we want to
construct a non-signalling extension PAE , which, whilst not being a purification, still satisfies the two
key properties of purifications that we identified, namely:

access: The extension gives access to all ensembles of the extended system.
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That is one can generate an arbitrary ensemble {(pi, P
i
A)} of PA, (such that

∑
i piP

i
A = PA and∑

i pi = 1) from the extension PAE .
generation: The extension can be transformed to any other extension of PA.
That is, upon applying pre(post)-processing of inputs(outputs) (a classical channel) PE on system E
of PAE , it should be transformed to an arbitrary extension P ′

AE = PE(PAE), e.g., trE(P ′
AE) = PA.

In the following, we show that this is indeed possible, and, hence, the theory of non-signalling
behaviours satisfies the Complete Extension Postulate. In this way we show that CEP is not an
empty postulate and complete extensions can be actually constructed in certain theories. Moreover,
we explore the properties of such extensions. In particular, we show that there are infinitely many
ensembles of each behaviour, therefore each behaviour can be extended to infinite number of different
extensions. Each ensemble corresponds then to certain choice of input in the extending system. As a
consequence, these extensions might possess an arbitrarily large number of inputs. But in the theory
of non-signalling behaviours, one can have behaviours lying only in a finite-dimensional polytope.
This shows that some of the ensembles (inputs) are redundant, in the sense that they can be obtained
from others via adequate operations of pre(post)-processing of inputs(outputs), and others can be
equivalent under reversible operations, e.g., relabelling of inputs and outputs (see Fig. 2). In this
section, we will show that corresponding to each behaviour, there exist many finite-dimensional non-
signalling extensions with the property of access and generation. In fact, what we show, the above
properties are equivalent, access to all possible ensembles is equivalent to generation of arbitrary
extensions.

ACCESS

a) GENERATION EA
𝑃′(𝑎𝑒|𝑥𝑧)
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Figure 2: Schematic diagram. In any discrete convex theory, generic states do not have an extension which is a
vertex (aka purification). This is different to the quantum theory that is not discrete. However, in non-signalling
theory, the Complete Extension postulate is satisfied. a) From the Non-Signalling Complete Extension (NSCE) of a
system, A one can generate any other extension by means of the input randomizer and output post-processing. b)
The extending system E of the NSCE provides access to any ensemble {pk(i), P ik(a|x)} of the system A, which can
be generated upon measurement z = k performed on the system E.

We also show that there is always a finite-dimensional complete extension, usually of a large
dimension. We give an upper bound on this dimension as a function of the dimension of an extended
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Figure 3: Schematic diagram of purifications of system A to an extended system E. a) Purification of any quantum
state ρA, to |ψAE⟩ in the extended state space. If the quantum state is a single qubit maximally mixed state I

2 , then
its purification is maximally entangled Bell state. b) Complete extension of a maximally mixed behaviour Pm

A , (given
in Eq. (50)) is a pure behaviour - the well known PR box, which is however generically not the case.

system and the number of inputs and outputs. Among these possible complete extensions, we give
a prescription of how to construct (up to relabeling) the minimal one, which we call the non-
signalling extension with access (NSEA). This lies in the lowest dimensional polytope among all
possible extensions with the above properties. The fact that access to all possible ensembles of a
non-signalling system, has been considered operationally for the worst case extension someone might
have, in context of device independent cryptography [88, 89] against non-signalling adversary by the
Authors of Ref. [89–92], and more recently in private randomness [93–98] . The NSEA which we define
is the structure responsible for this fact: access to this special extension, gives the non-signalling
eavesdropper an ultimate operational power. That is, the extending system of NSEA naturally
represents the minimal memory of a non-signalling adversary with maximal power in cryptography
based on no-faster than light communication [51].

Interestingly, whilst we know that not all NSEAs can be pure, we show that some of them are.
In particular, the aforementioned NSEA of a maximally mixed binary input binary output behaviour,
i.e., the PR box [5] is a pure non-signalling behaviour. Observing that a PR box is an extension with
access for a maximally mixed system can be viewed as a derivation of the PR box without referring
to the notion of a Bell inequality – this is in stark contrast to the original approach of Popescu and
Rohrlich [5]. The sense in which we derive the PR box is the following. We assume only a) the
structure of single-partite systems, and b) that NSCE of any single-partite system is a valid state of
the theory. In particular, we do not presuppose a) that all non-signalling behaviours belong to the
given theory, or b) a particular composition rule, or c) the no-restriction hypothesis. This means that
if the PR box was not the NSCE of any single-partite behaviour, then it would be “excluded” from
the state space built with the above prescription – i.e., apriori, we do not know that the PR box is an
allowed physical behaviour. What we the show is that the PR box is the complete extension of the
maximally mixed single-partite behaviour, and hence, by our assumptions, it is a valid bipartite state.

Since an NSEA PAE is generically not extreme in the set of behaviours, it can be non-trivially
extended to a new system E′ giving a new NSEA PAEE′ . Note that an interesting corollary of
Theorem 7 is that for particular behaviours this process can be iterated indefinitely. Thus, identifying
or constructing such behaviours and understanding their properties is an important direction for future
research.

From our proof technique (heavily based on convex geometry) we expect that the complete
extensions exemplified using the theory of non-signalling behaviours can also be defined in a similar
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way in any discrete convex theory. Proving this, however, needs further work.
In Sec. 4.1, we provide the basic definition of the Non-signalling extension with access (NSEA)

and prove that it is a complete extension as it satisfies access and generation, and moreover, in
Sec. 4.2 that it is a minimal complete extension. In App. B we construct many explicit examples
and study their properties. In particular in App. B.1, we prove that the NSEA of the maximally
mixed single party binary input and binary output behaviour is the Popescu-Rohrlich behaviour (See.
Fig. 3). We also give an explicit example showing that the non-signalling complete extension has the
property of access and generation. In App. B.4, we find the NSCE for two party binary input
and binary output behaviour in the isotropic line, which enclose the Bell-Tsirelsen box and the NSCE
for Specker’s triangle has been found in Sec. B.3.

4.1 The complete extension in the theory of non-signalling behavious
In this section, we provide a definition of the non-signalling extension with access (NSEA) in the
theory of non-signalling behaviours (NS), and show that NSEA satisfies the property access. We
then show that NSEA also satisfies the generation property, and, moreover, that in this theory these
two properties are actually equivalent. This will allow us to refer to NSEA as a non-signalling complete
extension (NSCE), and demonstrates that NS satisfies the complete extension postulate (CEP). What
is interesting here is that it provides a constructive proof that NS satisfies the CEP, which proves
useful for introducing explicitly the state of the system of the eavesdropper in the non-signalling
device independent secure key agreement protocol [51] .

Let us first fix the notation. We call a conditional probability distribution, PA = pA|X (a|x) a
box or behaviour , representing the state of system A, where X stands for all possible measurement
choices (inputs) and the index x ∈ X is a particular choice. Ax is the set of measurement outcomes
(outputs), corresponding to input x and the index a ≡ ax ∈ Ax represents one particular instance.
Note that if all of the outputs have the same outcome set then we will drop the subscript x and write
A instead. As PA is a conditional probability distribution it must satisfy the positivity conditions,
0 ≤ pA|X (a|x) ≤ 1, ∀a ∈ Ax, x ∈ X , and the normalization condition

∑
a∈Ax

pA|X (a|x) = 1, ∀x ∈ X 3.
Let PAE = pAE|X Z(ae|xz) be a bipartite conditional probability distribution, where the system E has
associated input and output sets Z and E respectively. We say that it is a non-signalling extension of
the behaviour PA if PA is its marginal distribution∑

e∈Ez

pAE|X Z(ae|xz) = pA|X (a|x), ∀a ∈ Ax, x ∈ X , z ∈ Z, (16)

and it satisfies non-signalling conditions∑
e∈Ez

pAE|X Z(ae|xz) =
∑

e∈Ez′

pAE|X Z(ae|xz′), ∀a ∈ Ax, x ∈ X , z, z′ ∈ Z, (17)

∑
a∈Ax

pAE|X Z(ae|xz) =
∑

a∈Ax′

pAE|X Z(ae|x′z), ∀e ∈ Ez, z ∈ Z, x, x′ ∈ X , (18)

For the sake of simplicity we omit the subscript, and we assign pA|X (a|x) ≡ PA(a|x). The set of all
non-signalling behaviours of system A is denoted by ΩA, mutatis mutandis for multipartite systems.
The PA can have inner non-signalling structure [5], i.e., system A can be compound (e.g., A = A1A2)
itself, where the system A1 can not signal to system A2 and vice versa. We will encounter this later
when we consider the extension of the binary two input two output behaviour.

All n-partite non-signalling behaviours, with the same cardinalities of inputs and outputs satisfy
a set of linear equations and inequalities (constraints). These constraints define a convex, bounded
polyhedron (a polytope) that is a subset of RN for some N ∈ N, with a finite number D of vertices.
Each point within this polytope represents a different non-signalling behaviour. In such a polytope
of behaviours, we will distinguish those which are extremal (vertices), i.e., the behaviours which can
not be expressed as a convex combination of other non-signalling behaviours, distinguishing them by
subscript E: PE.

3The summation over the output here is an analogue of partial trace.
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An ensemble {(pi, P
i)}i, of a behaviour P , where P =

∑
i piP

i, we will denote by E (P ). In this
paper, we will consider only those ensembles which consists of finite number of elements. We will
also need the notion of the set of members of an ensemble E (P ) = {(pi, P

i)}i, this is defined by
V (E (P )) = V ({(pi, P

i)}i) := {P i : pi > 0}, and its distribution, which is {pi}. If all the members,
P i ∈ V (E ), are extremal (pure), P i

E, then we call the ensemble a pure members ensemble (PME) and
denoted as Epure(P ). We say that an ensemble Epure(P ) is generated on system A by measurement
M on system E, if upon this measurement on the extending system, the outcome e = i is obtained on
E with probability pi and conditionally upon it, the state of the system A is described by behaviour
P i

E. By SP we will denote the set of all PME of a behaviour P .
Our aim is to obtain the minimal extension with properties access and generation. To begin

with, however, as an intermediate step used to simplify further proofs, we will define an extension,
satisfying properties access and generation yet of a larger dimension hence called overcomplete
non-signalling extension with access (ONSEA), defined as:

Definition 15 (Overcomplete non-signalling extension with access - ONSEA). Given a behaviour
PA : PA(a|x), we say that a behaviour PAE : PAE(ae|xz) is its overcomplete non-signalling extension
with access (extension to system E with access to system A), if for any input choice z = k and outcome
e = i obtained in the extending part, there holds

PAE(a, e = i|x, z = k) = P i,k
E (a|x)p(e = i|z = k), (19)

such, that, for each k, the ensemble
{(
p(e = i|z = k), P i,k

E (a|x)
)}

i
is a pure members ensemble of the

behaviour PA, and corresponding to each pure members ensemble of PA, there is exactly one input
z = k, in the extending system which generates it.

It is simple to see that the overcomplete extension ONSEA of an arbitrary behaviour PA exists.
Indeed, PA belongs to a polytope. That is it belongs to a set with a finite number of pure behaviours.
Any pure member ensemble of PA is a subset of the set of pure behaviours. Hence, there is finite
number of the latter ensembles and we can construct extension where for each of such ensemble we
have k such that z = k generates it. This extension is precisely the ONSEA. We will denote it as
Ẽ(P )AE . Notice that when a particular input z = k is chosen in the extending part, an outcome
e = i occurs with the probability p(e = i|z = k), resulting in a pure behaviour P i,k

E (a|x) in part of A.
Eq. (19), expresses the partially measured behaviour with the probability times the conditional pure
behaviour. Moreover,

{(
p(e = i|z = k), P i,k

E (a|x)
)}

i
is a pure members ensemble of PA, for each k, as

∑
i

p(e = i|z = k)P i,k
E (a|x) =

∑
i

Ẽ(P )AE(a, e = i|x, z = k) = PA(a|x), (20)

and given an overcomplete extension (ONSEA) there are |Z| pure members ensembles, where Z = {z},
is the set of all input choices of the extending system.

The above definition of ONSEA satisfies the non-signalling condition for its both subsystems. For
system A, it is by construction, and for system E it holds due to the fact that for each input output
pair (z = k, e = i) of E, system A holds a behaviour P i,k

E (a|x) according to Eq. (19), which gives 1
when summed over a.

We will see later that the ONSEA is actually a complete extension as it allows for access and
generation. However, the dimension of the extending system is larger than necessary, we therefore
seek to construct a minimal complete extension4. To do so we will now introduce a representative
subset of all PMEs. An ensemble Epure(P ) = {pi, P

i
E}i, of a behaviour P =

∑
i piP

i
E , is called minimal

ensemble, if any proper subset V ′ ⊂ V (Epure), with another choices of probabilities {p′
j} is not an

ensemble of the behaviour P , i.e., P ̸=
∑

j:P j
E ∈V ′ p

′
jP

j
E . Any minimal ensemble will be denoted as

M (P ), to distinguish it from an arbitrary PME that is not necessarily minimal.
Next, we will eliminate the redundant ensembles from the ONSEA, to obtain the NSEA that

has the lowest number of inputs sufficient to satisfy access property. To achieve this we will show

4Minimality will be proven in Prop. 27 in the following subsection.
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Figure 4: Panel a), schematic diagram of a NSEA of an arbitrary behaviour PA to E(P )AE . Panel b), Corresponding
to each input z = k in part of the extending system, the composite behaviour partitioned to a minimal ensemble
{p(e|z = k), P ek

E (a|x)} in part of A.

that having access to all minimal ensembles {M (P )} of P , along with arbitrary randomness, one can
generate any PME, Epure(P ).

Theorem 16. access to PMEs is equivalent to access to minimal ensembles.

Proof. See App. A.2.

Remark 17. This theorem (Thm. 16) can be generalized to any GPT that is a discrete theory (see
Definition 5).

The above theorem motivates the following definition of non-signalling extension with access
(NSEA), which, like the extension defined in Definition 15, also satisfies the properties of access
and generation:

Definition 18 (Non-signalling Extension with Access). Given a behaviour PA : PA(a|x), we say that
a behaviour PAE : PAE(ae|xz) is its non-signalling extension with access extended to system E if for
any input choice z = k an outcome e = i occurred in the extending system, there holds

PAE(a, e = i|x, z = k) = P i,k
E (a|x)p(e = i|z = k) (21)

such, that, for each k, the ensemble
{(
p(e = i|z = k), P i,k

E (a|x)
)}

i
is a minimal ensemble of the

behaviour PA. Moreover, corresponding to each minimal ensemble of PA, there is exactly one input
z = k, in part of the extending system which generates it.

We will represent the NSEA of an arbitrary behaviour PA as E(P )AE . If there is more than
one subsystem in the system A satisfying non-signalling constraints, i.e., if A ≡ A1A2 . . . AN , and
none of the k systems {Ai1 , . . . , Aik

} with I = {i1, . . . , ik} can signal to the remaining N − k systems
{Aj1,...,jN−k

} with jl ∈ {1, . . . , N}\I, for all k ∈ {1, 2, . . . , N−1}, then also our method of constructing
NSEA holds, and it will be denoted by E(P )A1A2...AN E . A schematic diagram of NSEA has been
depicted in Fig. 4. For NSEA defined above, the inputs of the extending system correspond to the
minimal ensembles of the given behaviour PA. If there are N number of minimal ensembles, then the
total number of input choices in the extending part is |Z| = N .

Proposition 19. For each behavior PA of system A, its NSEA E(P )AE is unique up to the local
relabeling on the extending system E.
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Proof. Let PAE and P ′
AE be two different NSEA of a behaviour PA. First note, that PA determines

the number of inputs |E|. However the inputs of PAE can be labelled in different way than that of
P ′

AE . However, due to Definition 18, each input of PAE corresponds to a unique minimal ensemble
of PA. The same holds for P ′

AE . Thus for each input e of PAE there exists input e′ of P ′
AE which

corresponds to the same unique minimal ensemble. Hence for this pair of inputs the distribution of
outputs of PAE and P ′

AE are the same up to labeling of outputs. For this reason, the two extensions
differ only by relabelling of inputs and outputs of the extending system. Thus, relabellings establish
an equivalence class over different behaviors being NCEA of behavior PA.

Note that one can easily show that such an extension necessarily exists for any behaviour PA. For
example, one can check (see Section B.1 of the Appendix) that the NSEA of the behaviour PA, the
maximally mixed behaviour with a single binary input and single binary output, extended to system
E, has the following structure:

PAE (ae|xz) =

x 0 1
z e a 0 1 0 1

0 0 1/2 0 1/2 0
1 0 1/2 0 1/2

1 0 1/2 0 0 1/2
1 0 1/2 1/2 0

, (22)

which is nothing but the famous Popescu-Rohrlich (PR) behaviour satisfying conditions x.z = a ⊕ e
with ⊕ being addition modulo 2. We have thus arrived at this structure without referring to the
CHSH inequality [99] (in contrast to the way in which it was done in [5]).

We are in a position to show, that having access to NSEA we can generate any PME.

Corollary 20. The non-signalling extension with access (NSEA) of a behaviour P given in Definition
18, together with access to arbitrary local randomness, gives access to any pure members ensemble of
a behaviour P .

Proof. See App. A.3.

From the above corollary it is clear that an arbitrary PME can be accessed from the NSEA by
using a randomness generator {p(k)}, i.e., by using a dice(coin). To access all possible PME, one
needs an access to arbitrary randomness. This can be done by setting the output (k) of a dice with a
distribution, p(k|z′), where z′ is the tuning parameter, as the input of the extending party of NSEA.
Here |{k}| = |Z|, and |{z′}| will be equal to the possible number of PME one wants to generate. The
dice can be thought of as a local behaviour with z′ being the input and k as the output. Different
choices of the z′ can be considered as dices with different probabilities of outcome, actually led to
different PMEs. Accessing all possible PME has been pictorially depicted in Fig. 5.

An explicit example of constructing an arbitrary pure members ensembles has been given in Sec
B.1.2. Where we have chosen an arbitrary behaviour containing single binary input and single binary
output.

Theorem 21. access to PMEs is equivalent to access to all ensembles.

Proof. Let us consider the access of the mixed ensemble Emix(P ) = {(pm, P
m)}m, which is the most

general ensemble, from the set of all ensembles of a given behavior P . Now each Pm lies in the same
polytope as P , hence, all of them has a pure behaviour decomposition,

Pm =
∑

i

qm
i P

i
E, (23)

where
∑

i q
m
i = 1, ∀m and 0 ≤ qm

i ≤ 1, ∀i,m. Note that this decomposition is not unique, unless it
is a minimal decomposition. Now P =

∑
m pmP

m =
∑

m,i pmq
m
i P

i
E =

∑
i riP

i
E, where ri =

∑
m pmq

m
i ,

implies that {(ri, P
i
E)}i is also a PME of P . From Theorem 20, we know that by using an appropriate
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Figure 5: Schematic diagram visualizing the mixing the minimal ensembles {Mk} of A with arbitrary randomness
p(k) in part of the extending system on the NSEA of the behaviour, which is obtained from the output of a dice (a
local behaviour with unary input), results an arbitrary pure members ensemble

{
p(k), {(p(e|z = k), P ez=k

E (a|x))}
}

=
{q(e), P e

E (ab|xy)}, where q(e) =
∑

k p(k)p(e|z = k).

m

|z’|=1

k

z

e

A

a

x

ℰ 𝑃 𝐴𝐸(𝑎𝑒|𝑥𝑧)

E

𝑝(𝑘)

C. Channel

𝑝𝑐(𝑚|𝑒)

A

x

a
𝑃𝑚=0(𝑎|𝑥)

+ A

x

a
𝑃𝑚=1(𝑎|𝑥)

+ …p(m = 0) p(m = 1)=

{𝑝 𝑚 , 𝑃𝑚(𝑎|𝑥)}

𝑚

𝑝𝑐(𝑚|𝑒)

𝑘

𝑝(𝑘)ℰ 𝑃 𝐴𝐸(𝑎𝑒|𝑥𝑧 = 𝑘)

Figure 6: Explanation of Theorem 22 of accessing all possible ensembles even mixed in part of the extended system.
By passing the output e of the extending party’s (Eve) behaviour, through a post-processing channel PC, Eve is able to
interpret the behaviour shared by Alice and Bob as an ensemble of mixed bipartite behaviours {(p(m), Pm(ab|xy))},
where Pm(ab|xy), are mixed behaviours and can be expanded as Pm(ab|xy) =

∑
e q

m
e P

e
E(ab|xy). Now the

post-processing channel pc(m|e), helps Eve to interpret the mixed behaviours as
∑

e pc(m|e)r(e)P e
E(ab|xy) =

p(m)Pm(ab|xy).

randomness generator in the input of the extending system E (input randomizer), such PME can be
realized. To interpret the mixed ensembles, from {(ri, P

i
E)}i, the extending system send her output

(e = i, of the NSEA along with an appropriate input randomizer) through a post-processing channel
pc(m|e). The existence of this channel (24), pc(m|e) with

∑
m p(m|e) = 1, is guaranteed by the initial

decomposition of the members of the mixed ensemble into pure behaviours.

∑
i

pc(m|e = i)riP
i
E =

∑
i

pmq
m
i

ri
riP

i
E = pmP

m, (24)

where pc(m|e) take the form pmqm
e

re
.

Corollary 22. (NSEA satisfies access) The extending system of the NSEA gives access to any
possible (even mixed) ensemble of the extended behaviour.

Proof. Suppose the extending system wants to access an arbitrary mixed ensemble, once she obtained
the NSEA. From Corollary 20, NSEA gives access to any PME, and from Theorem 21, it is clear that
access to PMEs is equivalent to access to all ensembles. Hence, NSEA gives access to any possible
(even mixed) ensemble of the extended behaviour.

From the above theorem, we observe that, corresponding to each mixed ensemble of P , there
exists at least one PME of P , from which one can obtain the mixed ensemble by using an appropriate
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post-processing channel. In this construction the NSEA plays an important role due to the fact that
Theorem 20 certifies the existence of that particular PME. In Sec. B.1.3 of the Appendix, we exemplify
Theorem 22 for a single party binary input binary output behaviour, by providing the explicit form
of input randomizer and the post-processing channel. A visualization of Theorem 22, has been given
in Fig. 6. Note that the input randomizer p̃(k), which generates the required PME of P, is a dice with
a unary input (trivial input), p̃(k|z′ = fix). One can generate all possible ensembles by appropriately
tuning the dice with the help of the dice input z′ and a post-processing channel (also dependent on
z′) on part of the extending system.

We have now seen that we can construct the NSEA which is an extension with access. However,
in order for this to be a complete extension we need that it also satisfies generation. One can show
that this is indeed the case by demonstrating that access and generation are equivalent conditions
in the theory of non-signalling behaviours.

Theorem 23. In the theory of non-signalling behaviours access is equivalent to generation.

Proof. See App. A.4.

From the above theorem, Theorem 22, and the fact that NSEAs exist for all behavious, we obtain
the main result of this section:

Corollary 24. The Non-signalling Extension with Access (NSEA) has the properties of access and
generation, that is, it is a Non-signalling Complete Extension (NSCE). Hence, the theory of non-
signalling behavious satisfies the Complete Extension Postulate (CEP).

4.2 On the dimensionality of the complete extension
In this subsection we are going to discuss the size of the non-signalling complete extension NSEA,
and, what is most important, is that we are going to show that it is finite. The restriction on the
size of the non-signalling complete extension (NSEA) is particularly important from point of view of
non-signalling Device Independent cryptography [89, 90, 100], and interesting on its own. We finish
this section with another observation, namely we show that for any behaviour P , its NSEA E(P )
has the lowest dimension (is minimal) among all non-signalling extension of P having the property of
access.

The following Theorem holds.

Theorem 25. Let be B be a polytope of n-partite non-signalling behaviours, with mi inputs for parties
and vij outputs respectively. Then for each P ∈ B, there exists a non-signalling polytope B̃ ∋ E(P )
which the NSEA lives in, such that:

dim B̃ < (dim B + 1)

×
(((2t−⌊t/2⌋−dim B

⌊t/2⌋
)

+
(3t−⌊t/2⌋−(dim B+1)

t−⌊t/2⌋−1
)

dim B + 1

)
dim B + 1

)
, (25)

where:

dim B =
n∏

i=1

mi∑
j=1

(vij − 1) + 1

− 1, t =
n∏

i=1

mi∑
j=1

vij . (26)

Proof. The proof is the content of Section B.2 of the Appendix.

In Theorem 25 we were interested only in showing that the dimension of the complete extension
is always finite and therefore the upper bound is very loose. For instance, the expression in equation
(25) in the case of n = 1, mi = 2, vij = 2 yields the dimension of 339, for n = 2, mi = 2, vij = 2
we have c.a. 1.2 × 1054, and for n = 2, mi = 3, vij = 3 we obtain c.a. 1.14 × 101762. All exemplified
results are far above any numerical predictions. The discussion about the possible improvements in
the upper bound is left to the Appendix. Importantly for us, however, is the following simple corollary
of the existence of any upper bound, namely:
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Corollary 26. The dimension of the NSCE can always be finite.

A tempting question to ask about NSEA is whether it has the lowest dimension amongst all
NSCEs, and therefore whether it is the minimal one. Similarly to earlier in this section, we refer to
the dimension of the extension as the dimension of the behaviour polytope to which it belongs. The
answer to this query is positive and therefore we finish this section with the following proposition.

Proposition 27. Among all non-signalling extensions of a behaviour P , having the property of
access, NSEA E(P ) is a minimal one.

Proof. Let P be a non-signalling behaviour in B, and E(P ) ∈ B̃ be its NSEA. The dimensions of
non-signalling polytopes can be determined with equation (89) as before. Suppose now, there exists
another non-signalling extension Ê(P ) ∈ B̂, having a property of access, such that dim B̂ < dim B̃.
The fact that Ê(P ) has the property of access implies that upon processing (possibly trivial) of
inputs and outputs of the extending system with local randomness, Ê(P ) also has access also to all
minimal ensembles of P . However, the minimal ensembles of P are extremal points in the polytope of
all possible ensembles (see Theorem 30) of the behaviour P , and so cannot be created via probabilistic
processing of inputs and outputs in the extending system (class of operations considered in access).
Therefore, Ê(P ) having a property of access, must have for each minimal ensemble of P , an input
that generates it, like E(P ) does. This implies that dim B̂ ≥ dim B̃, and so proves by contradiction
that NSEA E(P ) is the minimal extension of P having the property of access.

5 Conclusions
To summarize, our main contribution is a new concept, which is the complete extension. We show that
complete extensions are present in classical theory, quantum theory, super-selected quantum theory,
the theory of non-signalling behaviours, and, moreover, any theory satisfying the purification postulate
in which the product of pure states is pure. We also postulate that it may exist hypothetical beyond-
quantum theories which could hyperdecohere to quantum theory. In the case of quantum and classical
theory, as well as the theory of non-signalling behaviours, we can explicitly construct these complete
extensions. This notion implies a number of paths for research, some of which we have exemplified in
our case study on the theory of non-signalling behaviors.

The idea of the CEP sets a demarcation line in the set of results obtained on the basis of the
purification postulate. It divides them into those that really require all of the purification postulate and
those for which the CEP suffices. We exemplify this by considering the possibility of bit commitment
showing that the no-go for it is not specific to theories with the purification postulate. This has the
added benefit of giving a unified proof for the quantum and classical cases.

The CEP may also be viewed as a razor for excluding theories that can not substitute quantum
theory in the future. Indeed, a theory not satisfying CEP may not be physical, as (see Theorem 24)
even the theory of non-signalling behaviours satisfies it. The easiest way to obtain theories that do not
satisfy CEP is to restrict state space or dynamics so that it is not possible to generate all extensions
of some state. An example of a theory that does not satisfy CEP for this reason is given in [50].

We also show that an interesting “mirror” property of quantum purifications no longer holds for
the case of non-signalling behaviours. That is, suppose that we have a purification |ψAB⟩ of a quantum
state ρA, and let us define σB := TrA(|ψAB⟩ ⟨ψAB|). Then, any purification of σB on system A, (which
necessarily exists as |ψAB⟩ is such a purification)) we denote as |ϕAB⟩ and call the “mirror” purification,
is equal to |ψAB⟩ up to a local unitary on A. That is |ψAB⟩ = UA ⊗ 1B |ϕAB⟩ for some unitary UA.
In general, beyond-quantum theory, it need not be the case, as we have exemplified in the theory
of non-signalling behaviours (see Sec. B.1.6 of the Appendix). A properly defined minimal distance
between the complete extension and its “mirror” one, overall systems whose complete extension is not
pure, can characterise to what extent a given theory departs from quantum mechanics.

Following the development of quantum cryptography, one can ask if a post-quantum theory should
lead to secure communication. As it is shown in [101], this need not always be the case. In the quantum
case, the system E of the purification ψAE describes the worst-case state of the knowledge of the
quantum adversary that may have about a given system A in many information processing protocols

Accepted in Quantum 2023-01-27, click title to verify. Published under CC-BY 4.0. 22



such as QKD. Similarly, in the theory of non-signalling behaviours, the system E of the NSCE τAE

represents the worst case knowledge of an adversary about system A. The minimal dimension of the
system E, therefore, represents the maximal memory needed by the adversary. We, therefore, enable
the study of the worst-case adversary’s capabilities in other post-quantum theories, see Ref. [51] for
an application of this idea.

Significantly, one can use CEP to define composed systems in a post-quantum theory. Namely
given a set of states of a single system A, one can define as valid states of a joint system AB only
those that are either (i) complete extensions of the states of A, or (ii) states obtained from such
complete extensions by some operations valid in this theory. We exemplify this approach by arriving
at the structure of the PR box, assuming (i) in the case that A is a local system from NS with two
binary inputs and two binary outputs. Together with (ii) the local transformations in NS (including
e.g. relabelings of intputs and outputs), we can reach all the non-local vertices of the non-signalling
polytope of behaviours with two binary inputs and two binary outputs. Given the fact, that the
complete extension of a local deterministic behavior of system A is a product of two deterministic
behaviors on systems A ⊗ B, via operation of mixing two or more behaviors we show that the state
space of non-signalling behaviours includes the whole non-signalling polytope of behaviours with two
binary inputs and two binary outputs.

Interestingly, a post-quantum theory that does not satisfy the purification postulate, but rather
the CEP, can have a property that there is an infinite sequence of complete extensions of complete
extensions as none of them is pure. This will always hold unless the number of pure states in the
theory is of cardinality continuum at least. This is indeed the case in both classical theory and the
theory of non-signalling behaviours.

Verifying if CEP holds in the case of other beyond-quantum theories and studying its consequences
is an important direction to follow. We formulate the hypothesis that there exists a generalised
probabilistic theory with complete extensions that may naturally hyper-decohere to quantum mechanics.
This is supported by demonstrating that the proof of an existing no-go result, which applies to
generalised probabilistic theories with purifications, no longer holds. The confirmation of this hypothesis
would open a new arena in which new physical laws and phenomena may be searched.

It is also interesting to study whether complementing CEP with a more dynamical axiom, e.g., the
one linked to the Neumark extension or Stinespring dilations, can lead to a more powerful postulate.
In the case of the purification postulate such a dynamical postulate can be derived, it is therefore
interesting to investigate whether this is also the case for a dynamical version of the CEP, or whether
this must be additionally postulated. Determining what form this dynamical postulate should take,
and demonstrating that it indeed holds in the theory of non-signalling behaviours, is perhaps the most
important direction for follow up research.
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[22] Philipp Höhn. “Quantum theory from rules on information acquisition”. Entropy 19, 98 (2017).
[23] Agung Budiyono and Daniel Rohrlich. “Quantum mechanics as classical statistical mechanics

with an ontic extension and an epistemic restriction”. Nature Communications8 (2017).
[24] John H. Selby, Carlo Maria Scandolo, and Bob Coecke. “Reconstructing quantum theory from

diagrammatic postulates”. Quantum 5, 445 (2021).
[25] Sean Tull. “A categorical reconstruction of quantum theory”. Logical Methods in Computer

Science ; Volume 16Pages Issue 1 ; 1860–5974 (2020).
[26] John van de Wetering. “An effect-theoretic reconstruction of quantum theory”. Compositionality

1, 1 (2019).
[27] Kenji Nakahira. “Derivation of quantum theory with superselection rules”. Physical Review

A101 (2020).
[28] G. Chiribella, G. M. D’Ariano, and P. Perinotti. “Informational derivation of quantum theory”.

Phys. Rev. A 84, 012311 (2011). arXiv:1011.6451.
[29] Ciarán M Lee and John H Selby. “Generalised phase kick-back: the structure of computational

algorithms from physical principles”. New J. Phys. 18, 033023 (2016). url: doi.org/10.1088/1367-
2630/18/3/033023.

[30] Ciarán M Lee and John H Selby. “Deriving grover’s lower bound from simple physical principles”.
New J. Phys. 18, 093047 (2016).

[31] Howard Barnum, Ciarán M Lee, and John H Selby. “Oracles and query lower bounds in
generalised probabilistic theories”. Found. Phys. 48, 954–981 (2018).

[32] Giulio Chiribella, Giacomo Mauro D’Ariano, and Paolo Perinotti. “Probabilistic theories with
purification”. Physical Review A 81, 062348 (2010).

[33] Jamie Sikora and John Selby. “Simple proof of the impossibility of bit commitment in generalized
probabilistic theories using cone programming”. Phys. Rev. A 97, 042302 (2018).

[34] Giulio Chiribella and Carlo Maria Scandolo. “Entanglement and thermodynamics in general
probabilistic theories”. New J. Phys. 17, 103027 (2015).

[35] Giulio Chiribella and Carlo Maria Scandolo. “Microcanonical thermodynamics in general
physical theories”. New J. Phys. 19, 123043 (2017).

[36] Howard Barnum, Ciarán M Lee, Carlo Maria Scandolo, and John H Selby. “Ruling out higher-
order interference from purity principles”. Entropy 19, 253 (2017).

[37] Ciarán M Lee and John H Selby. “A no-go theorem for theories that decohere to quantum
mechanics”. Proc. R. Soc. A: Math. Phys. Eng. Sci. 474, 20170732 (2018).

[38] Roman V. Buniy, Stephen D.H. Hsu, and A. Zee. “Is Hilbert space discrete?”. Physics Letters
B 630, 68–72 (2005).

[39] Markus Mueller. “Does probability become fuzzy in small regions of spacetime?”. Physics Letters
B 673, 166–167 (2009).

[40] T. N. Palmer. “Discretisation of the Bloch Sphere, Fractal Invariant Sets and Bell’s
Theorem” (2020). arXiv:1804.01734.

[41] Bas Westerbaan and John van de Wetering. “A computer scientist’s reconstruction of quantum
theory”. J. Phys. A: Math. Theor. 55, 384002 (2022).

[42] L. Hardy. “Probability theories with dynamic causal structure: a new framework for quantum
gravity” (2005). arXiv:gr-qc/0509120.

[43] L. Hardy. “Towards quantum gravity: a framework for probabilistic theories with non-fixed
causal structure”. J. Phys. A 40, 3081–3099 (2007). arXiv:gr-qc/0608043.

Accepted in Quantum 2023-01-27, click title to verify. Published under CC-BY 4.0. 25

http://arxiv.org/abs/1606.09306
https://dx.doi.org/10.3390/e19030098
https://dx.doi.org/10.1038/s41467-017-01375-w
https://dx.doi.org/10.22331/q-2021-04-28-445
https://dx.doi.org/10.23638/LMCS-16(1:4)2020
https://dx.doi.org/10.23638/LMCS-16(1:4)2020
https://dx.doi.org/10.32408/compositionality-1-1
https://dx.doi.org/10.32408/compositionality-1-1
https://dx.doi.org/10.1103/physreva.101.022104
https://dx.doi.org/10.1103/physreva.101.022104
https://dx.doi.org/10.1103/PhysRevA.84.012311
http://arxiv.org/abs/1011.6451
https://doi.org/10.1088/1367-2630/18/3/033023
https://doi.org/10.1088/1367-2630/18/3/033023
https://dx.doi.org/10.1088/1367-2630/18/9/093047
https://dx.doi.org/10.1007/s10701-018-0198-4
https://dx.doi.org/10.1103/PhysRevA.81.062348
https://dx.doi.org/10.1103/PhysRevA.97.042302
https://dx.doi.org/https://doi.org/10.1088/1367-2630/17/10/103027
https://dx.doi.org/10.1088/1367-2630/aa91c7
https://dx.doi.org/10.3390/e19060253
https://dx.doi.org/10.1098/rspa.2017.0732
https://dx.doi.org/10.1016/j.physletb.2005.09.084
https://dx.doi.org/10.1016/j.physletb.2005.09.084
https://dx.doi.org/10.1016/j.physletb.2009.02.017
https://dx.doi.org/10.1016/j.physletb.2009.02.017
http://arxiv.org/abs/1804.01734
https://dx.doi.org/10.1088/1751-8121/ac8459
http://arxiv.org/abs/.gr-qc/05
http://arxiv.org/abs/gr-qc/060
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[112] M. Araújo, M. Túlio Quintino, C. Budroni, M. Terra Cunha, and A. Cabello. “All
noncontextuality inequalities for the n-cycle scenario”. Phys. Rev. A 88, 022118 (2013).
url: doi.org/10.1103/PhysRevA.88.022118.

[113] Ernst Specker. “Die logik nicht gleichzeitig entscheidbarer aussagen”. In Ernst Specker Selecta.
Pages 175–182. Springer (1990).

[114] Yeong-Cherng Liang, Robert W Spekkens, and Howard M Wiseman. “Specker’s parable of the
overprotective seer: A road to contextuality, nonlocality and complementarity”. Phys. Rep. 506,
1–39 (2011). url: doi.org/10.1016/j.physrep.2011.05.001.

[115] Ravi Kunjwal, Chris Heunen, and Tobias Fritz. “Quantum realization of
arbitrary joint measurability structures”. Phys. Rev. A 89, 052126 (2014).
url: doi.org/10.1103/PhysRevA.88.022118.

[116] B. Tsirelson. “Quantum generalizations of Bell’s inequality”. Lett. Math. Phys. 4, 93–100 (1980).
url: doi.org/10.1007/BF00417500.

[117] A. Grudka, K. Horodecki, M. Horodecki, P. Horodecki, R. Horodecki, P. Joshi, W. K lobus,
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A Proofs
A.1 Proof of Proposition 13
For simplicity in this proof we adopt the diagrammatic notation of [15] using the conventions of [24].

Consider some state s and some purification σp ∈ ExtP [s] and an arbitrary extension Σ ∈ Ext[s].
We want to demonstrate that we can achieve generation, which we will do by showing that there exists
a transformation mapping σp to Σ, as Σ is an arbitrary extension we will therefore have demonstrated
that σp is generating.

To start, let us consider another purification, Σp ∈ ExtP [σ] this time of the state Σ. It is clear
that, as this is pure and an extension of s then it is also a purification of s. We therefore have two
purifications of s and so one may be tempted to connect them via the essential uniqueness property.
However, this will not always be the case, to see this let us examine the systems more carefully. σp is
a state on some purifying system B:

σp

A B

(27)

whilst, σ could have been an extension on some other system X and the purification of this, Σp could
involve a third system Y :

Σp

A X Y

(28)

Unless we are in a highly contrived scenario whereby B = X⊗Y then we are not able to directly employ
the essential uniqueness property. We therefore have to further extend our systems by composing with
some extra pure states, ϕ and χ, as follows:

σp

A X YB

χ and Σp

A X Y

ϕ

B

(29)

Then, thanks to our additional assumption that the parallel composite of pure states is pure, then
these composite states define further purifications of the original states s. Now however, they have
the same systems and hence we can use essential uniqueness to conclude that there is a reversible
transformation T mapping between them, that is:

σp

A

X YB

χ

T

B X Y

= Σp

A X Y

ϕ

B

(30)

Now, we can simply discard the B and Y systems on both sides of this equation to see that we can
achieve generation:

σp

A

B

T̃

X

:= σp

A

B
χ

T

X

= σp

A

X YB

χ

T
B

X
Y

(31)

= Σp

A X
Y

ϕ

B

= Σp

A X
Y

= Σ

A X

(32)

That is, there is a transformation T̃ which maps σp to Σ which completes the proof.
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A.2 Proof of Theorem 16
To see this, first note that the set of all PMEs, Sp is a convex set as any two PMEs of P , E 1

pure(P ), E 2
pure(P ) ∈

SP , their convex combination5 λ E 1
pure(P )+(1−λ) E 2

pure(P ) ∈ SP , ∀λ ∈ (0, 1). Such a mixture of PMEs
is defined as follows: Suppose {(pi, P

i
E)}i = E 1

pure(P ) and {(qi, P
i
E)}i = E 2

pure(P ) are two PMEs of the
behaviour P , where V (E 1

pure) and V (E 2
pure) are the set of pure behaviours corresponds to the ensembles.

Now define Vint = V (E 1
pure) ∩ V (E 2

pure), V1 = V (E 1
pure) \ V (E 2

pure) and V2 = V (E 2
pure) \ V (E 1

pure). Then
the convex combination of E 1

pure(P ) and E 2
pure(P ) is defined as

λ E 1
pure(P ) + (1 − λ) E 2

pure(P ) := {(ri, P
i
E)}P i

E ∈V (E 1
pure)∪V (E 2

pure), (33)

where ri = λpi + (1 − λ)qi, ∀ P i
E ∈ Vint, ri = λpi, ∀ P i

E ∈ V1 and ri = (1 − λ)qi, ∀ P i
E ∈ V2. Clearly∑

i: P i
E ∈V (E 1

pure)∪V (E 2
pure)

riP
i
E =

∑
i: P i

E ∈Vint

(λpi + (1 − λ)qi)P i
E +

∑
i: P i

E ∈V1

λpiP
i
E +

∑
i: P i

E ∈V2

(1 − λ)qiP
i
E (34)

=
∑

i: P i
E ∈Vint∪V1

λpiP
i
E +

∑
i: P i

E ∈Vint∪V2

(1 − λ)qiP
i
E (35)

= λP + (1 − λ)P = P. (36)

Here we use the fact that Vint ∪ V1 = V (E 1
pure), Vint ∪ V2 = V (E 2

pure) and
∑

i: P i
E ∈V (E 1

pure) piP
i
E = P and∑

i: P i
E ∈V (E 2

pure) qiP
i
E = P . The above equation proves that the convex combination of two PMEs of a

behaviour P is also an ensemble of P , and its members are all pure. Hence, SP forms a convex set (as
we have shown) with only finite number of vertices (as we show below), and all of them are minimal
ensembles, as the following lemma proves.

Lemma 28 (Extremal =⇒ Minimal). In the set of all pure members ensembles of the behaviour P ,
denoted by SP , the ensembles that are extremal of SP , are minimal.

Proof. Suppose by contradiction, this is not true, i.e. there exists a PME, Epure(P ) = {(pi, P
i
E)}n

i=1,
with pi > 0, ∀i, which is extremal in SP , but is not minimal. Then, there must exists a proper subset
I ⊂ V (Epure) such that for all P j

E ∈ I, there is some other choices of probabilities {qj}, which forms
an ensemble M (P ) = {(qj , P

j
E )}

P j
E ∈I , and it is minimal. Let us now embed the distribution {qj}∈I

which has less than n elements, to obtain new but equivalent distribution with n elements, by letting
p′

i := qi, ∀P i
E ∈ I and p′

i := 0, ∀P i
E ∈ V (Epure) \ I. Let us note that the minimal ensemble M (P ), is

now equivalent to the PME, {(p′
i, P

i
E)}n

i=1.
Consider now an ensemble defined as:

N =
{
pi − pp′

i

(1 − p) , P
i
E

}n

i=1
≡ {(ri, P

i
E)}n

i=1, (37)

where we define p = pmin
p′

max
with pmin = mini{pi : pi > 0} and p′

max = maxi{p′
i}. Let us first note, that

N is an ensemble of P . indeed, note that

P =
∑

i

piP
i
E =

∑
i

(pi − pp′
i)P i

E + p
∑

i

p′
iP

i
E,

= (1 − p)
∑

i

riP
i
E + p

∑
i

p′
iP

i
E, (38)

now by assumption
∑

i p
′
iP

i
E = P , as {(p′

i, P
i
E)}n

i=1 = M (P ). Thus:

P = (1 − p)
∑

i

riP
i
E + pP (39)

which implies that
∑

i riP
i
E = P , i.e. N is an ensemble of P , if 0 < p < 1.

5Abstractly we can view PMEs as probability distributions over the set of pure behaviours and hence is a convex
set (in particular a simplex) the set SP is then a subset of this simplex which we will show is closed under convex
combinations.
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We will argue now that the latter fact holds. Indeed, by definition, p is nonzero, resulting pmin > 0.
To see p < 1 we will prove that pmin < p′

max. If pmin ≥ p′
max, then 1 =

∑
i pi ≥ npmin ≥ np′

max ≥
n/|I| ⇒ |I| ≥ n, which is a contradiction as I is a proper subset of V (Epure). Here we use the fact
that p′

max ≥ 1/|I|. Hence, p = pmin
p′

max
< 1 and N is an ensemble of P, and can be denoted as N (P ).

Now, we observe that by construction the PME

E (P ) = pM (P ) + (1 − p)N (P ), (40)

i.e., E (P ) is a mixture of two ensembles, that are not equal to each other. This is a contradiction with
assumed extremality of the ensemble E (P ), since the mixture, as shown above, is non-trivial, and the
assertion follows.

The above theorem proves that all the extremal points in SP , are minimal ensembles, i.e., there
is no extremal points in SP other than the M (P ). Now we will prove the converse, that no interior
point from SP is a minimal ensemble, i.e., all minimal ensembles are also extremal. To prove it, we
will need the following lemma, interesting in its own right, as it characterizes minimal ensembles as
those with a unique distribution:

Lemma 29. The pure members ensemble Epure(P ) = {(pi, P
i
E)}i of a behaviour P is minimal, M , iff

the decomposition of this behaviour into the elements {pi : pi > 0} is unique, given by corresponding
probabilities pi.

Proof. The “if” direction is trivial: if the elements {pi : pi > 0}, of the decomposition of Epure(P )
are unique, then it is not possible to set any probability to zero. Hence, there is no proper subset
I ⊂ V (Epure), which forms an ensemble of P , with another choice of probabilities.

For the “only if” part, suppose M (P ) = {(pi, P
i
E)}m

i=1, is a minimal ensemble of P , we have to
prove that the decomposition {pi, pi > 0}, is unique. Assume that the {pi} is not unique, but being
a minimal ensemble it should follow

∑m
i=1 piP

i
E = P , or in other words the set of following linear

equations
m∑

i=1
akiyi = ck, (41)

for some k = 1, . . . , l′, has solution in form yi = pi. Here ck are the entries of the behaviour P ,
for the pair (a, x), or in other words the probability of getting a, when the input is x, P (a|x) = ck.
Similarly the coefficients {aki} are the same entries for the pair (a, x) of the pure behaviours {P i

E(a|x) =
aki}. As the behaviour P should follow some equality constraint, and due to some internal symmetry
of it, not all l′ equations in Eq. (41), are linearly independent. Here, by linear independence we mean∑

k ̸=k′ λk(
∑m

i=1 akiyi − ck) ̸=
∑m

i=1 ak′iyi − c′
k, for some k, k′ and λk. Suppose, there are only l linearly

independent equations. (There is also a constraint on the {yi}, that
∑m

i=1 yi = 1 as they represent
the probability of the ensemble, but we don’t need to consider it separately, as the behaviour P is
normalized, so Eq. (41), will take care of it.) Now the number of linearly independent equations and
the number of variables can be in one of the three orders which we consider separately: 1) l > m, 2)
l < m 3) l = m. Notice first, that it can not be l > m, i.e., for l number of linear equation pertaining
m number of variables. Otherwise there would be no solution of the set of equation:{

m∑
i

akiyi = ck

}l

k=1
, (42)

with variables yi but we already have a solution, the initial one: yi = pi > 0, ∀i. On the other hand,
if l < m, then one can always write down any set of l, {yi}l

i=1, as a linear functions of the remaining
(m − l) {yj}m

j=l+1. And in that case one can always set any one (or more) yi = 0 for some i, which
violates the condition of minimal ensembles. Hence we are left with l = m.

In this case, we have the same number of linearly independent equation as the number of variables,
and in that case the matrix A = [aki] is non-singular and invertible, which gives a unique solution of
yi = pi > 0 for all i.
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We can pass now to prove the extremality of minimal ensembles:

Lemma 30 (Minimal =⇒ Extremal). For a behaviour P, all of its minimal ensembles M (P ) are
extremal in the set SP of all ensembles of a behaviour P .

Proof. Suppose by contradiction, that M (P ) is not extremal. Then, there exist pure members
ensembles E1(P ) and E2(P ) such that:

M (P ) = λE1(P ) + (1 − λ)E2(P ) (43)

for some 0 < λ < 1. By the above equality, V (E1) ⊆ V (M ) and V (E2) ⊆ V (M ). But by minimality of
M , V (E1) can not be proper subset of V (M ), as there are no weights that together with any proper
subset of V (M ) form an ensemble of P . Thus V (E1) = V (M ) and for similar reason V (E2) = V (M ).
It would mean, that there is an ensemble (let us focus on E1) which has different distribution, but the
same set of members. It would mean that the distribution of M is not unique: there is another one
which together with the same set of members yields an ensemble of P . This however is not possible,
since by Lemma 29, any minimal ensemble has unique distribution. This proves desired contradiction,
hence the assertion follows.

From these two Lemmas 28 and 30, we obtain, that the set SP of all pure member ensembles
(PMEs) of P is a convex hull of the set of minimal ensembles M (P ). And for any behaviour P , the
set of minimal ensembles is finite, as there are finite number of pure behaviours6 and corresponding
to Lemma 29 the decomposition of the pi in minimal ensembles are unique, implies SP forms a convex
polytope.

A.3 Proof of Corollary 20
Proof. Note that according to the Definition 18, if E(P )AE(ae|xz) is the NSEA of the given behaviour
PA(a|x), then the only ensembles realized for different choices of input z of the extending party E
are the minimal ensembles M (P ). If there are {Mi(P )}N

i=1, N numbers of such minimal ensembles
of PA, then there should be |Z| = N , number of distinct inputs in part of the extending system. Due
to Lemma 28 all the extremal points in SP are minimal ensembles. From the latter, one can generate
any pure members ensemble E (P ) by properly mixing the minimal ensembles by using appropriate
distribution {p̃(k)}N

k=1, with
∑N

k=1 p̃(k) = 1. For an arbitrary E (P ) ∈ SP , the Lemma 28, certifies the
existence of at least one such {p̃(k)}N

k=1, which will generate it, hence, E (P ) =
∑N

k=1 p̃(k)Mk(P ). Each
Mk(P ) = {(p(e = i|z = k), P ik

E (a|x))}i, has been obtained from E(P )AE , by setting the input z = k
of the extending party. If the inputs are now chosen probabilistically according to the distribution
{p̃(k)}N

k=1, and registering the output e = i, then

E (P ) =
N∑

k=1
p̃(k)

{(
p(e = i|z = k), P ik

E (a|x)
)}

(44)

=
{(
q(i), P i

E(a|x)
)}

P i
E ∈∪N

k=1V (Mk)
, (45)

where q(i) is the probability of getting the pure behaviour P i
E, as given in Lemma 28.

A.4 Proof of Theorem 23
Lemma 31. (access =⇒ generation) Access to all ensembles implies access to arbitrary extensions
of the extended system.

6The cardinality of the set of minimal ensembles is bounded by the cardinality of the set of all subsets of pure
behaviours which is finite if the set of pure behaviours is finite. See section 4.2 for an explicit tighter upper bound.
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Figure 7: Pictorial depiction of Theorem 24. E holds the additional interfaces of the NSEA of behaviour PA. She use
an input randomizer (a dice) p̃(k|z′), which can be tuned by the parameter z′, and a classical post-processing channel
pc(m|ez′), which is also z′ dependent. The dice, the extending system and the posy-processing channel together
form the new system in part of E. The input of the dice z′ and the output of the channel m, can be considered as
the input and output of the new system. E only choose some value of input z′, generates required randomness and
also appropriate conditional probability distribution, resulting different set of mixed ensembles.

Proof. We first follow [102] (See Eq. (35) there) and observe that for any extension P ≡ P (am|xz′)
of P (a|x) there is

P (am|xz′) = P (a|xz′m)P (m|xz′) (46)
= P (a|xz′m)P (m|z′) (47)
≡ {P ij(a|x)P (m = i|z′ = j)}i,j (48)

In the first of the above equalities we use Bayes rule, and in the second the non-signalling from A to
E. Such obtained equality implies that every bipartite behaviour can be viewed from perspective of
the system E as having access to |z′| ensembles of the form Ej(P ) = {(P (m = i|z′ = j), P ij(a|x))}i.
We argue now, that from NSEA one can generate any of these ensembles. Thanks to Theorem 22,
for |z′| inputs z′ = j there exists a dice Dj with probability distribution p̃(k|z′ = j) and a classical
post-processing channel Cj , described with a conditional distribution pc(m|e, z′ = j), such that when
applied on system E of the NSEA E(P )(ae|xz) they generate the ensemble Ej . Hence from a collection
of {Dj}|z′|

j=1 and {Cj}|z′|
j=1 one can build via appropriate “wiring” a behaviour P ′ which upon input z′ = j

performs according to a dice Dj and further post-process the output e (and that of Dj) through Cj

to give the final output m (see Fig. 7). In this way one assures that a new behaviour P ′ has access to
all the ensembles Ej (and no other), forming (thanks to Eq. (48) above) an extension equivalent to P
up to relabelling of inputs in the extending system E.

From the above theorem it is clear that the NSEA E(P )AE , of PA together with access of arbitrary
randomness (input randomizer followed by a classical post-processing channel) can generate any
collection of ensembles (Theorem 22) even mixed. If we consider the whole setup as a single behaviour,
as depicted in Fig. 7 (with the blue rectangular part is in possession of E), then it becomes a proper
arbitrary extension generating a particular collection of ensembles. Note that it can be easily verified
that it fulfills all properties of non-signalling behaviour.

Lemma 32. generation =⇒ access

Proof. The proof for any GPT is given in Proposition 10. For the sake of completeness, we show it now
using solely arguments from the non-signalling theory. Namely NSEA is a particular extension, hence
access to arbitrary extension implies access to NSEA. This further via Theorem 22 implies access to
any (possibly mixed) ensemble.
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B Explicit examples in the theory of no-signaling behavious
B.1 Complete extensions of binary input-output behaviours
In section 2.1, we proved that the theory of non-signaling behaviours (NS) does not possess the
property of purification as there is not a pure extension of every behaviour. However, there do exist
some behaviours for which the NSEA is an extremal, i.e., pure, behaviour. In other words, whilst
the purification postulate fails as not every behaviour has a purification, there nonetheless do exist
purifications of certain behaviours.

Here we are going to show an example of this. Namely, that if one considers a maximally mixed
behaviour with a single binary input and a single binary output, then it can be extended to an extremal
(pure) behaviour in a higher dimensional state space7 This pure behaviour is the maximally non-local
behaviour equivalent to the Popescu-Rohrlich box [5] (up to proper labeling on the extending system)
defined as

PPR(a, e|x, z) =
{

1
2 for a⊕ e = x · z,
0 otherwise. (49)

where a, e, x, z ∈ {0, 1}. This is a close analogue to the fact that in quantum theory: a purification of
the maximally mixed state Id

d is the maximally entangled Bell state (up to local isometry) [103].
We will now prove this result. Note that the maximally mixed behaviour with a single binary

input and single binary output is given by

Pm
A(a|x) =

a
x 0 1

0 1/2 1/2
1 1/2 1/2

(50)

here x being the input and a being the output of the behaviour on system A. This maximally mixed
behaviour lies in the “center” of the polytope (of the set of behaviours with a single binary input and
a single binary output), the extremal points (vertices) of the polytope are

P0
E =

ax 0 1
0 1 1
1 0 0

, P1
E =

ax 0 1
0 0 0
1 1 1

, P2
E =

ax 0 1
0 1 0
1 0 1

, P3
E =

ax 0 1
0 0 1
1 1 0

. (51)

These pure behaviours are are deterministic behaviours as Pi
E(a|x) = δa,gi(x), for some function gi :

{0, 1} → {0, 1}. The polytope has been depicted in Fig. 8, with a blue square, the corners of the
square are the extremal (pure) behaviours {P i

E}, represented by the black solid circles. The center
point of the polytope is the maximally mixed behaviour, Pm

A , which is depicted by a white solid circle.
Any point inside the polytope can be expanded as a convex combination of the vertices. It is easy
to see that, as Pm

A lies at the intersection of the two diagonals of the square (behaviour polytope), it
can be expanded in terms of vertex pairs {P0

E,P1
E} and {P2

E,P3
E} with equal probabilities. In particular

these form the two minimal ensembles of Pm
A namely

M0(Pm
A ) = {(1/2,P0

E); (1/2,P1
E)} = {p(i|0),Pi0

E }, (52)
M1(Pm

A ) = {(1/2,P2
E); (1/2,P3

E)} = {p(i|1),Pi1
E }, (53)

and there are no other minimal ensembles. Now from the Definition 18, of NSEA to the system E, the
above two minimal ensembles are obtained in part of system A, for two different measurement choices
on E. We choose that the first ensemble is obtained by setting the input z = 0, and the second one

7Throughout the paper we use the following notation for behaviours,
• P – italic represent any generic behaviour.
• P – normal font represent a particular example of a behaviour.
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Figure 8: Polytope of the set of single party binary input output behaviours. Here the behaviour of consideration
given in Eq. (56) is the yellow bullet. The white bullet is the maximally mixed behaviour. The black bullets are
the deterministic, pure or extremal behaviours as given in Eq. (51). The required behaviour can be decomposed as
linear combination of the deterministic behaviours as given in Eqs. (57) and (58). It can also be expanded as convex
combination of mixed behaviours which are the red and blue bullets, these form the mixed ensemble of PA.

is obtained by z = 1. Labeling the member behaviours of each ensemble with the output e, i.e.,

z e behaviour on A Probability

0 0 P0
E 1/2

1 P1
E 1/2

1 0 P2
E 1/2

1 P3
E 1/2

(54)

we finally obtain the non-signaling complete extension (NSCE) of the maximally mixed behaviour
that presents the same behaviour as the PR box in equation (49):

PPR
AE (ae|xz) =

x 0 1
z e

a 0 1 0 1

0 0 1/2 0 1/2 0
1 0 1/2 0 1/2

1 0 1/2 0 0 1/2
1 0 1/2 1/2 0

(55)

It is easy to check that if x · z = 0, the resulting probability distribution on a and e is perfectly
correlated, while for x · z = 1 it is perfectly anti-correlated (i.e., e = 0 implies a = 1 and e = 1 implies
a = 0). Thus in a sense we have derived a PR box solely from the principle of the complete extension
(CEP). It is easy to see, that by negating z and e, one can instead obtain another maximally non-
local bipartite behaviour. Similarly, all of the other maximally non-local behaviours (i.e., all non-local
vertices of the polytope of two party binary input and binary output behaviours) can be obtained by
proper relabeling of the z and e.

Note that the PR box is a vertex in the polytope of two party binary input and binary output
behaviours [102]. Hence, we have the following conclusion:

Corollary 33. The PR box is a purification of a maximally mixed behaviour with a single binary
input and a single binary output.

We have therefore constructed the PR box without any reference to CHSH inequality [99] (in
contrast to how it was originally in [5]), as the non-signaling complete extension (NSCE) of a maximally
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mixed behaviour (50). One could argue that the PR box is present in the theory of non-signaling
behaviours from the very beginning. Whilst this is true, our derivation is based solely on the Definition
18, rather than relying on the structure of the polytope of non-signaling behaviours.

Remark 34. It is tempting to say that the non-signaling complete extension (NSCE) of two party
maximally mixed binary input and binary output behaviours is a tensor product of the PR boxes. It is
however not the case. This is due to the fact, that one of the valid ensembles of a maximally mixed
state IAB

4 = 1
2PRAB + 1

2PRAB, where PRAB(ab|xy) = 1
2δa⊕b,xy⊕1 is a non-local behaviour supported on

the orthogonal subspace to that of the support of PR. Since this ensemble is clearly minimal, having 2
members, in definition of NSCE there should be the input z which allows the owner of extending system
to collapse the system AB into one of these maximally non-local behaviours (each with probability half).
Suppose now, by contradiction that the NSCE is of the form PRAXA

⊗PRBXB
. It is then clear to see,

that in such a behaviour none of direct measurements (choosing the inputs) has outcome behaviour on
AB of the form expected by measurement of demanded input z. However one should consider some
other possible ways of measuring system XAXB e.g. via wiring. Yet there is no such action on systems
XAXB, simulating joint outcomes of z, since that would lead to the so called non-locality swapping,
which is proven to be impossible in Refs. [84,85].

By virtue of Theorem 7, getting a pure behaviour in the higher dimensional state space through
the construction of non-signaling complete extension (NSCE) is not always possible for any generic
behaviour. Indeed, if we choose any other behaviour in the polytope of single binary input and single
binary output, except for the maximally mixed and the four vertices behaviours, then its NSCE is not
a vertex. For example, let us consider the following behaviour

PA =
ax 0 1
0 1/3 2/3
1 2/3 1/3

(56)

which lies in the polytope of single party binary input and binary output behaviours, and it is
represented by the yellow point in Fig. 8. Each behaviour can be expanded in terms of the pure
behaviours of the polytope, hence

PA = x0P0
E + x1P1

E + x2P2
E + x3P3

E, (57)

where xi ≥ 0, ∀i, and
∑3

i=0 xi = 1. The general solutions of Eq. (57) is:
x0 = 1

3 (2 − 3x3) ,
x1 = 1

3 (2 − 3x3) ,
x2 = 1

3 (3x3 − 1) ,
x3 = x3

1
3 ≤ x3 ≤ 2

3 (58)

To construct the minimal ensembles of behaviour PA, we have to find out the set of decomposition
over the pure points {P i

E}, such that any proper subset of each choice can not be the ensemble of PA

with another set of probabilities. This implies that we have to find those solutions of Eq. (58), where
the minimal number of xi’s are nonzero. There are two of such choices, given by

x0 = 1
3 ,

x1 = 1
3 ,

x2 = 0,
x3 = 1

3

,


x0 = 0,
x1 = 0,
x2 = 1

3 ,

x3 = 2
3

, (59)

which, hence, form the two minimal ensembles of PA:

M0(PA) = {(1/3,P0
E); (1/3,P1

E); (1/3,P3
E)} = {p(i|0),Pi0

E }, (60)
M1(PA) = {(1/3,P2

E); (2/3,P3
E)} = {p(i|1),Pi1

E }. (61)
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Here we label the ensembles by {0, 1}, according to the inputs z and the members as P00 = P0
E,

P10 = P1
E, P20 = P3

E and P01 = P2
E, P11 = P3

E. Finally then, the NSCE of PA to system E is given by

PAE (ae|xz) =

x 0 1
z e

a 0 1 0 1

0
0 1/3 0 1/3 0
1 0 1/3 0 1/3
2 0 1/3 1/3 0

1 0 1/3 0 0 1/3
1 0 2/3 2/3 0

(62)

which lies in the polytope of two party behaviours, in which one party has a binary input and output,
whereas the other party has a binary input but a ternary output. Moreover, as we will prove in
the following section (Sec. B.1.1), this extended behaviour is not pure in the respective behaviour
polytope.

An example of Theorem 20 has been given in Sec. B.1.2, where we have shown that any pure
members ensemble of PA, given in Eq. (56), can be constructed by taking the convex combination
of its two minimal ensembles. This convex combination has been simulated by using an additional
randomness (a dice) at the input of the extending party. An arbitrary ensemble of PA, can be
constructed by passing the output of the extending party through a classical post-processing channel
(Theorem 22) has also been exemplified in Sec. B.1.3. The members of the mixed ensembles have
been depicted by the blue dots (for mixed ensemble 1) and by red dots (for mixed ensemble 2). By
enumerating the mixed ensembles with the input and the member behaviours with the output of
an additional system, an extension of PA has been generated. As the mixed ensembles of PA are
arbitrarily chosen, the extension made out of it is also an arbitrary extension of PA – given in Eq.
(79) of Sec. B.1.4. Moreover, for a generic behaviour, the non-signaling complete extension (NSCE)
introduces correlations (possibly non-local) between the extending and the extended system. It is
quite clear that, for a pure behaviour (a vertex of a polytope), there will be no correlation due to
NSCE, whereas it can inject a maximal amount of correlation when the given behaviour is maximally
mixed. For PA, we calculate the non-local correlation in Sec. B.1.5.

Another important aspect of non-signaling complete extensions (NSCE) is that, unlike quantum
purifications, the NSCE of an arbitrary behaviour and its conjugate behaviour are not the same. If
E(P )AE(ae|xz) is the NSCE of the behaviour PA(a|x), then the behaviour PE(e|z) =

∑
a PAE(ae|xz), is

the conjugate behaviour of PA. The NSCE of PE(e|z), according to the Definition 18, E(P )A′E(a′e|x′z)
is not equal to the E(P )AE(ae|xz). In section B.1.6, we provide an explicit example in favour of this
argument, for the behaviour PA, given in Eq. (56).

B.1.1 Example: the non-signaling complete extension that is not a vertex

In this section we will prove that the NSCE of PA (given in equation (56)) , is not a vertex in the higher
dimensional behaviour polytope. Consider an arbitrary behaviour PA1A2...An(a1a2 . . . an|x1x2 . . . xn),
with n parties A1A2 . . . An where the xi and ai are respectively the input and output of the ith party Ai.
Suppose there are mi possible measurement choices of Ai, i.e., xi ∈ {1, 2, . . .mi}, and corresponding
to each measurement xi = j the number of possible outcomes is dij , such that ai ∈ {1, 2, . . . , dij}. The
total number of parameters involved in defining the behaviour is given by Ref. [104] as

t =
n∏

i=1

mi∑
j=1

dij

 . (63)

Among these t parameters not all of them are independent as the behaviour should obey normalization
and non-signaling conditions. These conditions together imply that the behaviour must lie within a
particular polytope of Rt. If we construct a vector v ∈ Rt, whose entries are those t probabilities, then
the polytope can be defined as

P = {v | Av ≤ w} (64)
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for some w ∈ Rs, and A an t × s matrix. Here the condition Av ≤ w captures all of the constraints
that the probabilities need to satisfy.

Let us take an arbitrary element u ∈ P, and suppose Auu ≤ wu are those inequality constraints
among all possible constraints that are satisfied by u with equality [105], i.e., Auu = wu. Here, Au

and wu are sub-matrices of A and w respectively. Then from Theorem 5.7 of Ref. [105], u will be a
pure point of P if and only if rank (Au) = t.

The behaviour PAE, given in Eq. (62), belongs to a polytope which lies in a space of t = 20.
We now compute the rank of Au to demonstrate that this is not a vertex of the polytope. First we
count how many independent equality constraints are acting on PAE. The t = 20 probabilities are
PAE(00|00), PAE(01|00), . . . , PAE(12|11), i.e., PAE(ae|xz) for a, x ∈ {0, 1} and e ∈ {0, 1, 2} for z = 0
and e ∈ {0, 1} for z = 1. The equality constraints they need to satisfy are the non-signaling constraint
and normalization conditions, namely∑

a

PAE(ae|xz) =
∑

a

PAE(ae|x′z), ∀e, x, x′, z, (65)∑
e

PAE(ae|xz) =
∑

e

PAE(ae|xz′), ∀a, x, z, z′, (66)

and ∑
ae

PAE(ae|xz) = 1, ∀x, z. (67)

There are 5 from Eq. (65)8, 4 from Eq. (66)9, and another 4 from Eq. (67), totalling 13 equality
constraints. Moreover, among the 40 inequality constraints of the form 0 ≤ PAE(ae|xz) ≤ 1, ∀a, e, x, z,
(2 inequalities for each of the 20 probabilities PAE(ae|xz)), only 10 of them find equality with zeroes.
Note that there is no probability which finds equality with 1, as there is no entry of 1, in Eq. (62).
Hence, the total number of equality constraint are 23, and the matrix Au for which Auu = wu, is of
the dimension 23 × 20. To obtain rank (Au), we need to find out the number of linearly independent
equality constraint out of the 23. The 10 equality constraint with zero, on the probabilities are all
linearly independent, but among those 13 (non-signaling constraint and normalization conditions)
only 9 of them are linearly independent – by choosing any 1 normalization condition, and any 8
non-signaling condition one can generate the remaining 4 conditions. Hence, the total number of the
linearly independent constraints, on the behaviour PAE is 9 + 10 = 19, and rank(Au) = 19 < 20.
Which allows us to state that behaviour PAE is not a vertex (extreme point) of the given polytope.

On the other hand the NSCE of the maximally mixed behaviour, the PR box given in Eq. (55) is
a pure behaviour in the polytope of two binary input output behaviours. This can be shown in the
following way: the space where the PR box lives is of t = 16 [102]. Amongst the 16 parameters there
are 8 equality constraints with zeroes and 4 + 4 = 8 linearly independent equality comes from the 8
non-signaling conditions and 4 normalization condition, hence rank(Au) = 16, which exactly matches
with the dimension of the space.

In the following lines we study particular properties of NSEA in a low dimensional case.

Observation 35. All non-deterministic behaviours in single party, binary input, binary output scenario
have two minimal ensembles. All minimal ensembles of those have either two or three members.

Proof. The polytope of single party binary input binary output behaviour belongs to set of reals of
dimension d = 2 and it has been given in Fig. 8. Suppose, P is any arbitrary behaviour in the
polytope, then from the theorem of Carathéodory [106,107], the maximal number of pure behaviours
in each minimal ensembles of P is 3. It is also clear from the figure that any 3 pure behaviours of
the polytope form a triangle, and any arbitrary point inside the polytope can be inside at most two
overlapping triangles. Hence, it has at most two minimal ensembles.

8∑
a

PAE(ae|xz) = PE(e|z), e ∈ {0, 1, 2} for z = 0 and e ∈ {0, 1} for z = 1.
9∑

e
PAE(ae|xz) = PA(a|x), a, x ∈ {0, 1}
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For any arbitrary behaviour inside that polytope, the minimal ensembles consists of any combination
of the following number of members.

Corollary 36. Among single party, binary input, binary output behaviours, only five of them have
NSCE that is a purification (NSCE which is a vertex).

Proof. Due to the Observation 35 we know that the non-signaling complete extensions of behaviours
in considered scenario are bipartite states in one of the following polytopes. Polytope of

(i) one binary input and one unary input with binary outputs: behaviours lying on the edges of the
polytope has single minimal ensembles with only two members.

(ii) two binary inputs, two binary outputs behaviours: when the initial behaviour has two minimal
ensembles and each of the ensembles has two members.

(iii) two binary inputs, one binary output, one binary/ternary output (depending on the corresponding
input setting) behaviours: behaviours lying on any one diagonal of the polytope.

(iv) two binary inputs, and two ternary outputs behaviours: for any arbitrary behaviour, not belongs
to the above sets.

For each local vertex (deterministic box) of the listed polytopes, if we trace out the second party by
summation over all of its outcomes, the result is one of the deterministic behaviours of the initial
polytope. Due to Theorem 1 of [102], we know the form of all non-local vertices in (i,ii,iii) polytopes.
In each case after tracing out the extending system (summation over outcomes), the result is the
maximally mixed behaviour of the initial system.
As we have investigated all the vertices which were suspected of being a purifications of behaviours from
single party, one binary input, one binary output scenario and in each case we obtained one of the five
states we conclude there are no other behaviours (in the initial polytope) that have purification.

B.1.2 Example: NSCE of PA gives access to any PME of PA

In Theorem 20, we state that, the extended system of the NSCE, can access any PMEs of the behaviour
PA, if it is equipped with arbitrary randomness. Any pure ensemble of PA, E (PA) = {xi,Pi}i, where
the {xi} satisfy Eq. (58), can be written down as convex combination of the minimal ensembles, which
is given below

E (PA) = λM0(PA) + (1 − λ)M1(PA), (68)

with λ = 2 − 3x3 ∈ [0, 1], as x3 ∈ [1
3 ,

2
3 ]. If the extending party X chooses to toss a coin pt, (binary

output) and feed it to the input z of her part of the completely extended behaviour with pt(0) = λ,
and pt(1) = 1 − λ, then the extending system has access to any pure ensemble of PA.

B.1.3 Example: NSCE of PA gives access to any mixed ensemble of PA

In this section, we will explicitly exemplify that the extending system E can access all possible mixed
ensemble Emix(PA) = {pm,Pm

M}m, of an arbitrary behaviour PA, (given in Theorem 22). Here the
behaviours Pm

M are any arbitrary behaviours.
Example 1: Suppose X wants to access the following ensemble of mixed behaviours

Emix(PA) =
{(33

81 ,P
0
M

)
;
(32

81 ,P
1
M

)
;
(16

81 ,P
2
M

)}
, (69)

in part of system A10, where the mixed behaviours (the blue points in Fig. 8), are given by

P0
M =

ax 0 1
0 1/5 2/5
1 4/5 3/5

, P1
M =

ax 0 1
0 1/5 9/10
1 4/5 1/10

, P2
M =

ax 0 1
0 7/8 3/4
1 1/8 1/4

.

(70)

10Here we use tilde, on the symbol of ensemble to denote a particular ensemble among the set of ensembles.
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Each of these mixed behaviours has some decompositions over the pure behaviours, which are certainly
not unique, consider the following minimal one, which are

M (P0
M) =

{(2
5 ,P

1
E

)
;
(1

5 ,P
2
E

)
;
(2

5 ,P
3
E

)}
, (71)

M (P1
M) =

{( 1
10 ,P

0
E

)
;
( 1

10 ,P
2
E

)
;
(4

5 ,P
3
E

)}
, (72)

and

M (P2
M) =

{(3
4 ,P

0
E

)
;
(1

8 ,P
1
E

)
;
(1

8 ,P
2
E

)}
, (73)

Put them into Eq. (69), the mixed ensemble then turn out to be the pure one, given by

Epure(PA) =
{( 76

405 ,P
0
E

)
;
( 76

405 ,P
1
E

)
;
( 59

405 ,P
2
E

)
;
(194

405 ,P
3
E

)}
= {r(e),Pe

E} (74)

One can check that Epure(PA) = 76
135M0(PA) + 59

135M1(PA), and E can access Epure(PA) by choosing
the input according to the probability distribution, {pt(0) = 76

135 , pt(1) = 59
135}. This can be done by

feeding the output of a flipped coin to the input z of her part of the NSCE, E(P)AE(ae|xz).
Once the PME in part of A has been prepared, the prefixed mixed ensembles has been constructed

by passing the output e through a classical channel (post-processing channel) Pc(m|e), which is

Pc(m|e) =

m
e 0 1 2 3

0 0 33/38 33/59 33/97
1 4/19 0 16/59 64/97
2 15/19 5/38 10/59 0

(75)

the index m is the flag in part of E, different m give the access to different mixed behaviour Pm
M with

probability pm. One can check that pm =
∑

e Pc(m|e)r(e), and Pm
M = 1

pm

∑
e Pc(m|e)r(e)P e

E . Thus we
can see that the extending system can be able to access any ensemble of behaviour PA, by NSCE with
arbitrary randomness which will mix the minimal ensembles by mixing the input z, and then gluing
the output e by a conditional classical channel.

Example 2: PA can also be expanded as another mixed ensemble E ′
mix(PA) =

{(
2
5 ,P

′0
M

)
;
(

3
5 ,P

′1
M

)}
,

(the red points in Fig. 8) where

P′0
M = 5/6 1

1/6 0 =
{(5

6 ,P
0
E

)
;
(1

6 ,P
3
E

)}
, (76)

P′1
M = 0 4/9

1 5/9 =
{(5

9 ,P
1
E

)
;
(4

9 ,P
3
E

)}
. (77)

Now the pure ensemble turn out to E ′(PA) = M0(PA) = {(1/3,P0
E); (1/3,P1

E); (1/3,P3
E)} = {r′(e),Pe

E}.
For this, E will chose a completely biased coin, pt(0) = 1, pt(1) = 0, and feed its output to the input
of the NSCE, and the post-processing channel Pc is

Pc(m|e) =
m
e 0 1 2 3

0 1 0 − 1/5
1 0 1 − 4/5

(78)

which will be used to post-process the output of the extending part. Here we keep the column
for e = 2 “blank” as there is no such incidence that the pure behaviour P 2

E occur. Clearly p0 =∑
e r

′(e)Pc(m|e) = 1
3 + 1

3 × 1
5 = 2

5 and P′0
M = 1

p0

∑
e r

′(e)Pc(m = 0|e)Pe
E = 5

6P0
E + 1

6P3
E.
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B.1.4 NSCE can generate any extension

(Example of Theorem 24). Numbering these two examples of mixed ensembles with z′ = 0 and
z′ = 1, we obtain an arbitrary extension of PA to the behaviour PAE(am|xz′). Such that {p(m|z′ =
0),Pm0(a|x)} = Emix(PA) and {p(m|z′ = 1),Pm1(a|x)} = E ′

mix(PA). And the arbitrary extended
behaviour is

Pmix
AE

(
am|xz′) =

x 0 1
z′

m
a 0 1 0 1

0

0 11
135

44
135

22
135

11
45

1 32
405

128
405

16
45

16
405

2 14
81

2
81

4
27

4
81

1 0 1
3

1
15

2
5 0

1 0 3
5

4
15

1
3

(79)

We can consider all possible extension of PA → PAE, which will take care of all possible ensembles of
PA.

B.1.5 Quantifying non-locality introduced in NSCE

Here we quantify the amount of non-locality introduced among the extending and the extended system
in the process of the construction of the NSCE, following Definition 18.

We have observed the fact that the completely extended behaviour of the maximally mixed single
input output box, has turned out to be the Popescu-Rohrlich box [5], which (under suitable pre
and post processing) can violate any kind of bipartite Bell expression maximally. In that case, the
maximal amount of non-locality was introduced in the process of the construction of the NSCE. On
the other hand, to quantify the non-locality of the NSCE of the non-maximally mixed single input
output behaviour given in Eq. (56), the NSCE is shown in Eq. (62), to have different cardinalities of
outputs. To get rid of this asymmetry in the extending system of X, we can do two possible surgeries.
Case 1: One can add one more outputs in the purified system and calculate the Bell like inequality
defined by Collins et. al. (CGLMP) [108] (the acronym is after it finders D. Collins, N. Gissin, N.
Linden, S. Massar and S. Popescu). The behaviour which maximizes the CGLMP bound has the
following form after a local relabeling of the inputs and outputs

PAE (ae|xz) =

x 0 1
z e

a 0 1 2 0 1 2

0
0 1/3 0 0 0 1/3 0
1 0 2/3 0 2/3 0 0
2 0 0 0 0 0 0

1
0 1/3 0 0 1/3 0 0
1 0 1/3 0 0 1/3 0
2 0 1/3 0 1/3 0 0

(80)

For this bipartite two inputs and three-output box, the CGLMP bound turns out to be 3, which is
beyond the quantum limit quoted to be 2.87 in Ref. [108].
Case 2: Another way to calculate the non-locality of this asymmetric behaviour by following the
prescription giving in Ref. [104]. It proposes to merge the extra outcomes in the following way

P′
AE (ae = 1|xz) = PAE (ae = 1|xz) + PAE (ae = 2|xz)

(81)
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Hence the behaviour in Eq. (62) can be transformed to a bipartite binary input output box,

P′
AE (ae|xz) =

x 0 1
z e

a 0 1 0 1

0 0 1/3 0 1/3 0
1 0 2/3 1/3 1/3

1 0 1/3 0 0 1/3
1 0 2/3 2/3 0

(82)

For this behaviour we have the well known CHSH inequality to quantify the non-locality, and it is
3.33, which is also beyond the quantum limit. However, the amount of non-locality for this NSCE is
substantially less than the amount of non-locality present in a PR box. It therefore seems that it may
be possible to quantify the non-locality between subsystem and its extending system as a measure of
how close a behaviour is to being a vertex for NSCE in the theory of non-signaling behaviours.

Until now, we have given examples in favor of the various properties of NSCE we have discovered so
far. Now we want to shed some light on another aspects of NSCE which shows a sharp disparity with
the purification principle of the QT. If |ψAE⟩, is the purification of a quantum state ρA, to system E,
then the same pure state is also the purification of quantum state ρX = trA|ψAE⟩⟨ψAE |. In the latter
section we give an example to show that this is not the case for the NSCE. If we have a behaviour PA,
and PAE is its NSCE, then we say the behaviour PE = trAPAE is the conjugate box. We are going
now to construct the NSCE of the conjugate box.

B.1.6 Complete extension of the conjugate box

In this section, we will find the NSCE of the conjugate behaviour of the behaviour given in Eq. (56).
The conjugate box, PE can be obtained from Eq. (62), by PE(e|z) =

∑
a PAE(ae|xz), and it is given

by

PE(e|z) =

ez 0 1
0 1/3 1/3
1 1/3 2/3
2 1/3 0

(83)

This behaviour lies in a 4 dimensional behaviour polytope whose vertices are given by

P0
E =

ez 0 1
0 1 1
1 0 0
2 0 0

, P1
E =

ez 0 1
0 0 0
1 1 1
2 0 0

, P2
E =

ez 0 1
0 0 0
1 0 0
2 1 1

,

P3
E =

ez 0 1
0 1 0
1 0 1
2 0 0

, P4
E =

ez 0 1
0 1 0
1 0 0
2 0 1

, P5
E =

ez 0 1
0 0 1
1 1 0
2 0 0

,

P6
E =

ez 0 1
0 0 1
1 0 0
2 1 0

, P7
E =

ez 0 1
0 0 0
1 0 1
2 1 0

, P8
E =

ez 0 1
0 0 0
1 1 0
2 0 1

. (84)
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To obtain the NSCE of this box, we need to find the minimal ensembles of PE, which are

M0(PE) = {(1/3,P0
E); (1/3,P1

E); (1/3,P7
E)}, (85)

M1(PE) = {(1/3,P1
E); (1/3,P3

E); (1/3,P6
E)}, (86)

M2(PE) = {(1/3,P3
E); (1/3,P5

E); (1/3,P7
E)}. (87)

Consider the NSCE of PE to a system A′, as PA′E(a′e|x′z), where {p(a′ = i|x′ = k),PE
ik(e|z)} = Mk,

the NSCE of PE is

PA′E
(
a′e|x′z

)
=

x′ 0 1 2
z e

a′ 0 1 2 0 1 2 0 1 2

0
0 1

3 0 0 0 1
3 0 1

3 0 0
1 0 1

3 0 1
3 0 0 0 1

3 0
2 0 0 1

3 0 0 1
3 0 0 1

3

1 0 1
3 0 0 0 0 1

3 0 1
3 0

1 0 1
3

1
3

1
3

1
3 0 1

3 0 1
3

(88)

One can clearly see that PAE ̸= PA′E, for example, by noticing the mismatch of the cardinality of
the inputs of the extended party of the conjugate system.

B.2 Dimensionality of the No-signaling complete extension
In this subsection we provide a proof for Theorem 25 of the main text.

Proof. Let us recall, that in quantum theory (due to the Schmidt decomposition) purifications can
always be found with an extending system with the same dimension as the extended system. We are
interested in similarly quantifying the size of the minimal NSCE. However, there are many possible
quantifiers that we could use here, for example, we can measure the size of the NSCE using the total
number of its outputs, inputs and outputs, or, the dimension of its state space (vector space). The
theory of non-signalling behaviours is a discrete convex theory, hence we call its state space a convex
polytope, a multidimensional generalization of a convex polyhedron. In this section, we strive to upper
bound the dimension of the polytope that contains NSEA of some fixed but arbitrary behaviour P.
We identify the dimension of behaviour with the dimension of a polytope it belongs. Although we
chose the dimension of NSEA, as a quantifier of its size, other aspects of it, like the number of its
inputs and outputs, will also be discussed in the following.

From Theorem 1 of [104] we know that the dimension of a certain behaviour polytope B is:

dim B =
n∏

i=1

mi∑
j=1

(vij − 1) + 1

− 1, (89)

where n is the total number of non-signalling parties, mi is the total number of the inputs of the ith
party, with vij being the number of outputs for the jth input. This polytope of dim B is contained in
the vector space of Rt, where t =

∏n
i=1

∑mi
j=1 vij is the total number of outputs.

Suppose now that P ∈ B, then there exists a polytope B̃, such that the NSEA E(P ) ∈ B̃. The
dimension of B̃ can be determined by:

dim B̃ =
n+1∏
i=1

mi∑
j=1

(vij − 1) + 1

− 1 (90)

=

mn+1∑
j=1

(vn+1,j − 1) + 1

 (dim B + 1) − 1, (91)

where n+ 1 is the index of the extending party, and the last equality is due to expansion of product
with respect to n+ 1-th term.
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To obtain the upper bound on dim B̃ it is enough now to find upper bounds on the number of inputs
and outputs of the extending system. The following considerations have a qualitative character, we are
much more interested in the fact that an upper bound on dim B̃ exists than in its tightness. The upper
bound on the number of outputs can be found via Carathéodory theorem [107], i.e., vn+1,j ≤ dim B+1,
we obtain:

dim B̃ ≤ (mn+1 dim B + 1) (dim B + 1) − 1. (92)

It is instructive to notice that the above inequality can be saturated for some generic behaviours. The
number of inputs of the extending system is equal to the number of minimal ensembles of the behaviour
P. Suppose now that V is the number of vertices of the polytope B. Then, using Carathéodory theorem
again, each choice of dim B + 1 vertices (out of V ) leads to a minimal ensemble via elimination of the
vertices, therefore mn+1 ≤

( V
dim B+1

)
, and hence:

dim B̃ <

((
V

dim B + 1

)
dim B + 1

)
(dim B + 1) , (93)

where the last term (−1) was neglected.
The characterisation of the vertices of polytopes of behaviours with two binary inputs and two

binary outputs in bipartite and tripartite scenarios was provided in [102]. In general, however, finding
vertices of a polytope is a hard problem known as the “vertex enumeration problem”. Using McMullen’s
Upper Bound Theorem [107,109,110], we can, however, still obtain an upper bound for the number of
vertices in terms of dim B and t. Here we use a fact that a polytope can be defined as an intersection
of a set of halfspaces. Then following [110] (up to notation) we have the subsequent statement.

Let A be an m× t matrix of reals and let b ∈ Rm be a real vector. Consider a polytope

P =
{
x ∈ Rt : Ax ≤ b

}
, (94)

and VP be the number of vertices of P then:

VP ≤
(
m− t− s

s

)
+
(
m− s− 1
t− s− 1

)
, (95)

where s = ⌊t/2⌋.
To achieve our goal it is enough to determine the number of rows m of matrix A. We divide

now all the constraints on the non-signalling polytope into three classes, written in terms of marginal
probabilities pijk:

1. Probabilistic constraints: 0 ≤ pijk ≤ 1.

2. Normalization constraints, i.e,
∑vij

k pijk = 1.

3. non-signalling constraints (see Section 4.1).

It is easy to see that constraints of type 1 contribute to 2t rows of matrix A. In the next step we
observe that constraints of type 2 and 3 are linear and together reduce the dimension of the space
of correlations from t to dim B, and hence can be encoded in t − dim B linearly independent rows of
matrix A (irrespectively on the actual number of constraints). The total number of rows is therefore
upper bound with m ≤ 3t − dim B (there still is some redundancy because of the relation between
constraints of types 1 and 2), hence:

V ≤
(

2t− ⌊t/2⌋ − dim B
⌊t/2⌋

)
+
(

3t− ⌊t/2⌋ − (dim B + 1)
t− ⌊t/2⌋ − 1

)
. (96)

Finally, we obtain

dim B̃ < (dim B + 1)

×
(((2t−⌊t/2⌋−dim B

⌊t/2⌋
)

+
(3t−⌊t/2⌋−(dim B+1)

t−⌊t/2⌋−1
)

dim B + 1

)
dim B + 1

)
, (97)
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where:

dim B =
n∏

i=1

mi∑
j=1

(vij − 1) + 1

− 1, t =
n∏

i=1

mi∑
j=1

vij . (98)

In Theorem 25 we were interested only in showing that the dimension of the complete extension
is bounded from above, and hence our result is very loose. In particular the number of candidates for
a minimal ensemble is very inefficient upper bound on the number of minimal ensembles, although
obtained with simple combinatorics. Therefore, the first place for improvement is to find tighter
upper bound on the number of minimal ensembles. A more rigorous treatment can show that
many candidates lead to the same minimal ensemble and moreover that some of them are not valid.
Furthermore, the upper bound on the number of vertices that we used is very general and does not
incorporate, for example, symmetries of the non-signalling polytope.

B.3 Complete extensions of three-cycle contextual behaviour
In the previous sections, we have considered the NSCE of an arbitrary behavior which is inherently of
the form PA(a|x), i.e., a conditional probability distribution consist of only single set of input x and
output a. The polytope of those behaviors are completely determined by the constraints probability
distributions satisfy, like non-signaling and normalization condition. Here, within the theory of
non-signalling behaviours (NS) we will study contextuality scenarios, and, hence, investigate NSCE
of contextual behaviours. The polytope of contextual behaviors are not simply the non-signalling
polytopes but rather they are termed as no-disturbance polytopes. And while considering the minimal
ensembles of a contextual behavior we will focus on the pure members of the no-disturbance polytopes.
In particular we are going to focus on the three-cycle contextuality scenario [111,112] (aka Specker’s

triangle [113,114]).
First we will introduce this contextuality scenario in standard notation before showing how to

recast it within NS. The three-cycle scenario consists of a triple of binary observables {X0, X1, X2} with
outcomes {a, b, c} valued in {−1, 1}, together with the constraint that these are pairwise compatible –
that is, any pair {Xi, Xj} can be jointly measured without disturbance, but are globally incompatible
– that is, there is no way to measure all three without disturbance. Such a setup can be realised
in quantum theory [115] provided that the observables are not taken to correspond to projective
measurements. This compatibility structure can be captured by the set of maximal contexts [111,112]

C3 = {{X0, X1}, {X1, X2}, {X2, X0}}. (99)

The behaviour of a particular realisation of this scenario is captured by the joint distributions over
the outcomes of the compatible observables, i.e., p(a, b); p(b, c); and p(c, a), which can be represented
in the following table:

a
b +1 -1 b

c +1 -1 c
a +1 -1

+1 +1 +1
-1 -1 -1

(100)

Any such behaviour must satisfy certain no-disturbance constraints11 [111,112], which together define

11As it should follow the no-disturbance condition like the non-signaling one in non-locality, which is

p(a) =
1∑

b=−1

p(a, b) =
1∑

c=−1

p(c, a) (101)

p(b) =
1∑

a=−1

p(a, b) =
1∑

c=−1

p(b, c) (102)

p(c) =
1∑

b=−1

p(b, c) =
1∑

a=−1

p(c, a) (103)
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the no-disturbance polytope. Formally defining contextuality is beyond the scope of this paper, but,
for our purposes it suffices to note that a behaviour is non-contextual if it is a convex combination of
the eight deterministic vertices of the no-disturbance polytope

N C
0 = 1 0 1 0 1 0

0 0 0 0 0 0 N C
1 = 1 0 0 1 0 0

0 0 0 0 1 0

N C
2 = 0 1 0 0 1 0

0 0 1 0 0 0 N C
3 = 0 0 1 0 0 1

1 0 0 0 0 0 N C
4 = 0 1 0 0 0 0

0 0 0 1 1 0

N C
5 = 0 0 0 1 0 0

1 0 0 0 0 1 N C
6 = 0 0 0 0 0 1

0 1 1 0 0 0 N C
7 = 0 0 0 0 0 0

0 1 0 1 0 1

otherwise, it is a contextual behaviour. Any other vertex of the no-disturbance polytope is therefore
contextual, indeed, there are four of these which are

C0 = 1/2 0 1/2 0 0 1/2
0 1/2 0 1/2 1/2 0 C1 = 1/2 0 0 1/2 1/2 0

0 1/2 1/2 0 0 1/2

C2 = 0 1/2 1/2 0 1/2 0
1/2 0 0 1/2 0 1/2 C3 = 0 1/2 0 1/2 0 1/2

1/2 0 1/2 0 1/2 0 .

Note that the dimension of the no-disturbance polytope is 6, hence, according to the Carathéodory
theorem [107], the set of minimal ensembles of an arbitrary behaviour inside the polytope has at most
7 elements.

We will now focus on a particular class of behaviours within this polytope, namely those lying
on an isotropic line – a mixture of a contextual vertex, say C0 and the maximally mixed behaviour12

which is a non-contextual behaviour. We denote an element on this isotropic line (parameterised by
λ ∈ (0, 1)) as Pλ which can be explicitly written as

Pλ = (1 − λ)C0 + λM

=
2−λ

4
λ
4

2−λ
4

λ
4

λ
4

2−λ
4

λ
4

2−λ
4

λ
4

2−λ
4

2−λ
4

λ
4

(105)

The minimal ensembles of Pλ, have been found by applying numerical techniques to obtain the
solution of a set of linear equations, and they are as follows.

For all λ ∈ (0, 1) we have the following

v =
[ λ

4 ,
λ

4 , 1 − λ

2
]

(106)

M1(P) =
[
N C

2, N C
5, C0

]
(107)

v =
[ λ

4 ,
λ

4 , 1 − λ,
λ

2
]

(108)

M2 =
[
N C

3, N C
4, C0, C1

]
(109)

M3 =
[
N C

1, N C
6, C0, C2

]
(110)

M4 =
[
N C

0, N C
7, C0, C3

]
(111)

12The maximally mixed behaviour M is given by

M =
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

(104)
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v =
[
1 − 3λ

4 ,
λ

4 ,
λ

4 ,
λ

4
]

(112)

M5 =
[

C0, C1, C2, C3
]

(113)

v =
[ λ

4 ,
λ

4 ,
λ

4 ,
λ

4 , 1 − λ
]

(114)

M6 =
[
N C

1, N C
2, N C

3, N C
7, C0

]
(115)

M7 =
[
N C

0, N C
4, N C

5, N C
6, C0

]
(116)

In λ ∈ (0, 2
3), we additionally have

v =
[ λ

4 ,
λ

4 ,
λ

4 ,
λ

4 ,
λ

4 ,
λ

4 , 1 − 3λ
2
]

(117)

M8 =
[
N C

0,N C
1, N C

3, N C
4, N C

6, N C
7, C0

]
(118)

Whilst in λ ∈ (2
3 , 1), the behaviour has another 5 minimal ensembles. However, in this range of λ, Pλ

is non-contextual (see Theorem 1 in [112]) and we are interested in exploring the case in which Pλ

displays contextuality so we will not go into detail about these.
To study the NSEAs for contextuality scenarios we must first recast the scenario into the theory

of non-signalling behaviours. In particular, rather than describing the scenario by a triple of bipartite
distributions (i.e., p(a, b), p(b, c), and p(c, a)) we will instead describe the scenario by a conditional
probability distribution. We do this by associating the input x ∈ {0, 1, 2} to the maximal contexts,
i.e., 0 ∼ {X0, X1}, 1 ∼ {X1, X2}, and 2 ∼ {X2, X0}; and associating an outcome a′ ∈ {0, 1, 2, 3}
to the outcome of the bipartite distributions {+1,−1} × {+1,−1}. This defines an embedding of
the no-disturbance polytope into the polytope of single input output behaviours (with the relevant
dimensions).

In our particular example of interest, namely Pλ using this embedding we can associate the
behaviour of the contextuality scenario Pλ to the single input output behaviour

P′
Aλ =

a′x 0 1 2

0 2−λ
4

2−λ
4

λ
4

1 λ
4

λ
4

2−λ
4

2 λ
4

λ
4

2−λ
4

3 2−λ
4

2−λ
4

λ
4

(119)

Now we are in the position that we can construct the NSCE of P ′
Aλ, in particular, focusing on the

contextual case in which λ ∈ (0, 2
3). Note however, that we want to construct the NSCE not for the

minimal ensembles of the behaviour within the single input output polytope, but for the ensembles
within the embedded no-disturbance polytope. The NSCE of this will however still live inside the
polytope of no signalling behaviours with a pair of inputs and outputs (of suitable dimensions).
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In particular, one can show that the NSEA of P ′
Aλ in λ ∈ (0, 2

3) is given by

P′
AEλ (ae|xz) =

x 0 1 2
z e

a 0 1 2 3 0 1 2 3 0 1 2 3

0
0 0 λ

4 0 0 0 0 λ
4 0 λ

4 0 0 0
1 0 0 λ

4 0 0 λ
4 0 0 0 0 0 λ

4
2 2−λ

4 0 0 2−λ
4

2−λ
4 0 0 2−λ

4 0 2−λ
4

2−λ
4 0

1

0 0 0 λ
4 0 λ

4 0 0 0 0 λ
4 0 0

1 0 λ
4 0 0 0 0 0 λ

4 0 0 λ
4 0

2 1−λ
2 0 0 1−λ

2
1−λ

2 0 0 1−λ
2 0 1−λ

2
1−λ

2 0
3 λ

4 0 0 λ
4 0 λ

4
λ
4 0 λ

4 0 0 λ
4

2

0 λ
4 0 0 0 0 λ

4 0 0 0 0 λ
4 0

1 0 0 0 λ
4 0 0 λ

4 0 0 λ
4 0 0

2 1−λ
2 0 0 1−λ

2
1−λ

2 0 0 1−λ
2 0 1−λ

2
1−λ

2 0
3 0 λ

4
λ
4 0 λ

4 0 0 λ
4

λ
4 0 0 λ

4

3

0 λ
4 0 0 0 λ

4 0 0 0 λ
4 0 0 0

1 0 0 0 λ
4 0 0 0 λ

4 0 0 0 λ
4

2 1−λ
2 0 0 1−λ

2
1−λ

2 0 0 1−λ
2 0 1−λ

2
1−λ

2 0
3 0 λ

4
λ
4 0 0 λ

4
λ
4 0 0 λ

4
λ
4 0

4

0 4−3λ
8 0 0 4−3λ

8
4−3λ

8 0 0 4−3λ
8 0 4−3λ

8
4−3λ

8 0
1 λ

8 0 0 λ
8 0 λ

8
λ
8 0 λ

8 0 0 λ
8

2 0 λ
8

λ
8 0 λ

8 0 0 λ
8

λ
8 0 0 λ

8
3 0 λ

8
λ
8 0 0 λ

8
λ
8 0 0 λ

8
λ
8 0

5

0 λ
4 0 0 0 0 λ

4 0 0 0 0 λ
4 0

1 0 λ
4 0 0 0 0 λ

4 0 λ
4 0 0 0

2 0 0 λ
4 0 λ

4 0 0 0 0 λ
4 0 0

3 0 0 0 λ
4 0 0 0 λ

4 0 0 0 λ
4

4 1−λ
2 0 0 1−λ

2
1−λ

2 0 0 1−λ
2 0 1−λ

2
1−λ

2 0

6

0 λ
4 0 0 0 λ

4 0 0 0 λ
4 0 0 0

1 0 λ
4 0 0 0 0 0 λ

4 0 0 λ
4 0

2 0 0 λ
4 0 0 λ

4 0 0 0 0 0 λ
4

3 0 0 0 λ
4 0 0 λ

4 0 0 λ
4 0 0

4 1−λ
2 0 0 1−λ

2
1−λ

2 0 0 1−λ
2 0 1−λ

2
1−λ

2 0

7

0 λ
4 0 0 0 λ

4 0 0 0 λ
4 0 0 0

1 λ
4 0 0 0 0 λ

4 0 0 0 0 λ
4 0

2 0 0 λ
4 0 λ

4 0 0 0 0 λ
4 0 0

3 0 λ
4 0 0 0 0 0 λ

4 0 0 λ
4 0

4 0 0 0 λ
4 0 0 λ

4 0 0 λ
4 0 0

5 0 0 0 λ
4 0 0 0 λ

4 0 0 0 λ
4

6 2−3λ
4 0 0 2−3λ

4
2−3λ

4 0 0 2−3λ
4 0 2−3λ

4
2−3λ

4 0

(120)

One can then observe that non-locality is a special case of contextuality in which the no-disturbance
polytope coincides with a non-signalling polytope – in such a case the NSCE that we construct for the
contextuality scenario will be precisely that which we would construct in the non-signalling scenario.

Note that as the no-disturbance polytope is a discrete theory, that theorem 7 applies and so in
general the NSEAs that we construct will not be purifications. However, it would be interesting to
study the cases in which they are.
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B.4 Complete extension of the behaviours lying on the isotropic line
The aim of this section is to construct explicitly the NSCE of the isotropic behaviour, that is, a
mixture of the PR and anti-PR box. We therefore focus on the polytope of behaviours, PAB(ab|xy),
with two binary inputs x, y ∈ {0, 1}, two binary outputs a, b ∈ {0, 1}, and satisfying the non-signaling
condition. There are 24 extremal (pure) behaviours (vertices) of this polytope, among which 16 are
local behaviours given by

Lαβγδ(ab|xy) =


1 if a = αx⊕ b,

b = γy ⊕ δ
0 otherwise.

(121)

with α, β, γ and δ ∈ {0, 1}. And another 8 non-local behaviours, which are

Brst(ab|xy) =
{

1/2 if a⊕ b = xy ⊕ rx⊕ sy ⊕ t
0 otherwise. (122)

with r, s, t taking values either 0 or 1 [102]. The triple (r, s, t) enumerates the non-local behaviours
in the polytope of behaviours with two binary inputs and two binary outputs. Hence, the isotropic
behaviour can be formulated as, B(η)AB(ab|xy) = ηB000(ab|xy) + (1 − η)B111(ab|xy), where η ∈
(0, 1), and where B000 and B111 are the PR and anti-PR boxes respectively. One can easily check
that B(1

2) = Pm
AB(ab|xy), is a maximally mixed behaviour in the polytope of two input two output

behaviours (the one taking value P (ab|xy) = 1
4 for all a, b, x, y ∈ {0, 1}). All the behaviours B(η), for

η ∈ (1, 1
2) can be transformed into to the behaviours B(η), for η ∈ (1

2 , 0) by local relabeling of inputs
and outputs. Thus, in our investigation we will consider only the behaviours lying on the isotropic
line from the PR box to maximally mixed behaviour, i.e., for B(η), where η ∈ [1

2 , 1).
We know from the definition of NSCE, Definition 18, that, corresponding to each input of the

extending party, there is a minimal ensemble M(B(η)), where the members of the ensembles are
enumerated by the outputs of the extending system. Hence, finding all possible minimal ensembles of
a behaviour is sufficient for the construction of NSCE.

B.4.1 Minimal ensembles for isotropic behaviours

Our aim is to find the minimal ensembles for the behaviours lying on the isotropic line, but, in
this section we first focus on the minimal ensembles for a particular behaviour, the Bell Tsirelson
behaviour [116]. The Bell Tsirelson behaviour, lying on the isotropic line for η = 2+

√
2

4 , reaches the
quantum limit in violating the CHSH inequality [99]. The challenge in finding the minimal ensembles
is that the Bell Tsirelson behaviour is specified by an irrational number, however, despite this, we are
able to find all of its minimal ensembles analytically, due to the following observations and a theorem.

Observation 37. All the pure members ensembles of the behaviours B(η), in the isotropic line,
contains the PR box, B000 as one of its member element, for all η ∈ (3

4 , 1].

Proof. By direct inspection of the 24 vertices of the polytope of behaviours with two binary inputs
and two binary outputs we observe that PR-box is the only behaviour, which has value 4 of the CHSH
functional which reads

β(P ) =
∑
x,y

∑
(a,b)∈supp(B000)

P (ab|xy) (123)

Moreover, for all other vertices the functional achieves values ≤ 3. It is also clear that the functional
β is linear (in fact it is equal to 2⟨P |B000⟩ where ⟨.|.⟩ denotes Euclidean scalar product of vectors (see
Lemma 4 of [117]). Let us then suppose that there exists an ensemble {pi, Vi}i of a behaviour P from
the isotropic line (3/4, 1], which does not have PR in its set of members (here Vi are the vertices of
the polytope). We have then β(P ) = β(

∑
i piVi) =

∑
i piβ(Vi) ≤

∑
i pi3 ≤ 3. This contradicts the fact

that all behaviours from the considered set satisfy β(P ) > 3 i.e. they violate CHSH inequality.

Let SM (η) denote the set of all minimal ensembles of the isotropic behaviour B(η).
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Lemma 38. Let 1 > η′ > η > 3
4 , then for any minimal ensemble from SM (η), there exists a unique

minimal ensemble of SM (η′) with the same set of members.

Proof. Since η, η′ ∈ (3
4 , 1) by observation 37, all the minimal ensembles of B(η) must contain B000 as

its members elements. Now, from lemma 29, for the set V (M1) there exists unique weights {pi > 0}n
i=0

such that ∑
Vi∈V (M1)

piVi = B(η), (124)

where V0 = B000 and Vi for i =∈ {1, ..., n} are vertices of the polytope of behaviours with two binary
inputs and two binary outputs. Now, from η′ > η there exists unique weight 1 > q > 0 such, that
B(η′) = qB(η) + (1 − q)B000. Hence, for the set {Vi}n

i=0 there exist unique weights {ri}n
i=0 given by

equations r0 = qp0 + (1 − q) and ri = pi(1 − q) for i ∈ {1, ..., n}, such that
∑

i riVi = B(η′). Hence, by
lemma 29, the ensemble {ri, Vi}n

i=0 is minimal ensemble of B(η′), and the assertion follows.

We will now adopt the notation, that V is the set of the sets of members of minimal ensembles:

V(P ) :=
⋃

M∈SM(P )
{V (M(P ))}. (125)

From lemma 38 we have the immediate corollary:

Corollary 39. Let 1 > η′ > η > 3
4 , and B(η) = ηB000 +(1−η)B111 then, there is V(P (η)) ⊆ V(P (η′))

Theorem 40. Let 3
4 < η′ < η < η′′ < 1. If V(B(η′)) = V(B(η′′)) ≡ V, then we also have V(η) = V.

Proof. Since η′, η′′ ∈ (3
4 , 1), from the Corollary 39, we have

V(B(η′)) ⊆ V(B(η)) ⊆ V(B(η′′)) (126)

However by assumption there is V(B(η′′)) ⊆ V(B(η′)), hence V(B(η)) ⊆ V(B(η′)), and the assertion
follows.

The above theorem holds for the range of the isotropic parameter (3
4 , 1). Moreover, due to this

theorem we are able to find out the minimal ensembles of all non-local B(η) for η ∈ (1
2 , 1). However,

numerical investigate indicates that it holds true also for the (1
2 ,

3
4 ], hence we conjecture as follows:

Conjecture 41. Let 1
2 < η′ < η < η′′ < 1. If V(B(η′)) = V(B(η′′)) ≡ V, then we also have V(η) = V.

The above observation and theorem help us to find out the NSEA of the Bell-Tsirelson’s box.
There are a total of 354 minimal ensembles of B(η), for η = 2+

√
2

4 . Surprisingly, the NSEA of a noisy
PR box leads to an extending system E embedded in a vector space of dimension 2, 837 (taking into
account the normalization constraints it effectively lives in a 2, 483 dimensional space) and the entire
NSEA, is lying in a polytope which is embedded in a vector space of dimension 45, 392 taking into
account the normalization and non-signaling constraints effectively lives in space of dimension 22, 355.
The list of these ensembles are given in Sec. B.4.3.

B.4.2 Dimension of the extending party for the behaviours lying on the isotropic line

In the previous section, we discussed how one can construct the NSCE of the Bell-Tsirelson box. In
this section, due to the large number of minimal ensembles for a generic B(η), we will discuss some
of the statistics of the NSCE of more general isotropic behaviours.

For any value of η ∈ [1
2 , 1), we have provided an estimate of the NSCE for the bipartite behaviour

B(η) for η ∈ (1
2 , 1). This is indeed an NSCE of this behaviour provided that conjecture 41 holds

true. The number of elements in each of the minimal ensembles is bounded between 2 and dim B + 1,
which is 9, for two input and two output binary behaviours. In the entire range of η ∈ (1

2 , 1), we
have numerically calculated the total number of inputs (number of minimal ensembles |M|) of the
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Figure 9: Panel a) Histogram plot of the total number of inputs |Z| = |M| of the extending system of the NSEA
of the behaviours along the isotropic line. Different color in each column of the histogram shows the the number of
inputs having different numbers of outputs. The height of the yellow color in each column represents the number
of inputs with 9 outputs, orange represents the same for 8 outputs, green is for 7 outputs, red is for 6 outputs and
so on. The inputs of the extending system for various values of outputs are given in Table 1. Panel b) Histogram
plot of the memory required in the extending system to store the information about the minimal ensembles of the
behaviours along the isotropic line. Here DE represents the dimension of the extending system of NSEA. All the
plots have been given from η = 0 to η = 1

2 , i.e., from the PR box to the maximally mixed box.

extending system, which have an equal number of outputs vj ∈ {2, 3, . . . , 9}. This is given in table 1.
The Bell-Tsirelson box, η = 2+

√
2

4 , lying in the range η ∈ (3
4 , 1), is given in the last column of Table 1,

having total number of inputs as 354. Among these 354 inputs there are 130 inputs having 9 outputs,
160 inputs having 8 outputs and so on. The minimal ensembles associated with each input of the
Bell-Tsirelson box have been given in Sec. B.4.3 of the supplemental material. Here, M represent the
number of minimal ensembles of a behaviour and the length of the column represent the number of
pure behaviours in each of the minimal ensembles.

vj
η 1

2 (1
2 ,

5
9 ] (5

9 ,
4
7 ] (4

7 ,
3
5 ] (3

5 ,
2
3 ] (2

3 ,
3
4 ] (3

4 , 1)

2 4 1 1 1 1 1 1

3 0 3 3 3 3 3 3

4 12 0 0 0 0 0 0

5 0 12 12 12 12 12 12

6 32 38 38 38 26 20 20

7 64 100 100 100 96 28 28

8 176 528 528 520 376 160 160

9 120 988 972 844 356 144 130

total 408 1670 1654 1518 870 368 354

Table 1: Table shows the number of inputs (number of minimal ensembles |M|), of the extending system which have
same number of outputs vj , for various values of vj ∈ {2, 3, . . . , 9}, in the entire range of the parameter η.

The number of inputs of the extending system for various values of η, has been given in figure 9(a).
The color represent the number of inputs among the total number of inputs having equal number of
outputs. The yellow color stands for the set of inputs having 9 outputs, orange is for 8, green is for
7 and red is for 6 and so on. We have also plotted the memory required by the extending system, to
store the information about the all possible minimal ensembles of the behaviours lying on the isotropic
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line, in figure 9(b). Here DE represent the dimension of the extending system.

dim η 1
2 (1

2 ,
5
9 ] (5

9 ,
4
7 ] (4

7 ,
3
5 ] (3

5 ,
2
3 ] (2

3 ,
3
4 ] (3

4 , 1)

E 2776 12445 12317 11237 6241 2595 2483

NSCE 24992 112013 110861 101141 56177 23363 22355

Table 2: Table shows the dimension of the extending system as well as the total dimension of the NSCE, of the
behaviours lying on the isotropic line.

The dimension of the extending system as well as the total dimension of the NSCE, as given in
Eq. (89), for various values of η ∈ (1

2 , 1) has been enlisted in Table 2. We have observed that the
dimension of the NSCE is a maximum when the behaviour is in the vicinity of the maximally mixed
behaviour. The system size is considerably lower in the range of our interest i.e., when η ∈ (3

4 , 1), that
is, when the behaviour B(η) starts showing non-classical features.

B.4.3 Minimal ensembles for non-local isotropic behaviours

Here we present the minimal ensembles of the Bell-Tsirelson box, which lies on the isotropic line

B(η) = ηB000 + (1 − η)B001, (127)

for η = 2+
√

2
4 . This behaviour lies in a polytope of dimension d = 8 [102], and, according to the theorem

of Carathéodory [106], the minimal ensembles of B(η), consists of at most d+1 pure behaviours. Hence,
we present only those minimal ensembles having at most 9 elements.

We group the ensembles by the intervals of the parameter η for which they are valid minimal
ensembles. They are minimal, as otherwise we would find their subsets which would be minimal and
also valid for higher α. The interval of the parameter α is the due to the requirement that the B000
coefficient must be greater or equal 0.

We also group the ensembles by the vector of coefficients corresponding to the behaviours of the
decomposition which summed up give the B(α).

1. Having η ∈ (0, 1) .

v = [η, 1 − η]
M1 = [B000,B001]

2. Having η ∈
(

1
4 , 1
)
.

v =
[4η

3 − 1
3 ,

1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6

]
M2 = [B000, L0001, L0011, L0100, L0110, L1001, L1010, L1100, L1111]

3. Having η ∈
(

1
3 , 1
)
.

v =
[3η

2 − 1
2 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4

]
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M3 = [B000, L0000, L0001, L0100, L0110, L1001, L1111]
M4 = [B000, L0001, L0011, L0100, L0101, L1010, L1100]
M5 = [B000, L0001, L0011, L0110, L0111, L1010, L1100]
M6 = [B000, L0001, L0110, L1000, L1001, L1100, L1111]
M7 = [B000, L0001, L0110, L1010, L1011, L1100, L1111]
M8 = [B000, L0010, L0011, L0100, L0110, L1001, L1111]
M9 = [B000, L0011, L0100, L1001, L1010, L1100, L1101]

M10 = [B000, L0011, L0100, L1001, L1010, L1110, L1111]

v =
[3η

2 − 1
2 ,

1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4

]

M11 = [B000,B010, L0001, L0011, L0100, L0110]
M12 = [B000,B011, L1001, L1010, L1100, L1111]
M13 = [B000,B100, L0001, L0100, L1001, L1100]
M14 = [B000,B101, L0011, L0110, L1010, L1111]
M15 = [B000,B110, L0011, L0110, L1001, L1100]
M16 = [B000,B111, L0001, L0100, L1010, L1111]

4. Having η ∈
(

2
5 , 1
)
.

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3

]

M17 = [B000,B110, L0001, L0011,L0101,L0110,L1010,L1011,L1100]
M18 = [B000,B111,L0001,L0010,L0100,L0110,L1000,L1001,L1111]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6

]
M19 = [B000,B110,L0000,L0011,L0100,L0110,L1001,L1110,L1111]
M20 = [B000,B111,L0001,L0011,L0100,L0111,L1010,L1100,L1101]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
3 − η

3

]
M21 = [B000,B011,L0000,L0010,L0100,L0110,L1001,L1111]
M22 = [B000,B011,L0001,L0011,L0101,L0111,L1010,L1100]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3

]
M23 = [B000,B011,L0010,L0110,L1000,L1001,L1100,L1111]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6

]
M24 = [B000,B011,L0011,L0111,L1001,L1010,L1100,L1101]
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v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6

]

M25 = [B000,B110,L0000,L0001,L0110,L1001,L1011,L1100,L1111]
M26 = [B000,B111,L0010,L0011,L0100,L1001,L1010,L1101,L1111]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3

]
M27 = [B000,B011,L0000,L0100,L1001,L1010,L1110,L1111]
M28 = [B000,B101,L0000,L0001,L0110,L1000,L1001,L1111]
M29 = [B000,B101,L0000,L0001,L0110,L1010,L1011,L1111]
M30 = [B000,B101,L0010,L0011,L0110,L1000,L1001,L1111]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6

]
M31 = [B000,B011,L0001,L0101,L1010,L1011,L1100,L1111]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6

]

M32 = [B000,B100,L0000,L0001,L0100,L1001,L1110,L1111]
M33 = [B000,B100,L0010,L0011,L0100,L1001,L1100,L1101]
M34 = [B000,B100,L0010,L0011,L0100,L1001,L1110,L1111]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6

]
M35 = [B000,B010,L0000,L0001,L0100,L0110,L1011,L1111]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6

]

M36 = [B000,B010,L0001,L0011,L0100,L0101,L1010,L1110]
M37 = [B000,B010,L0010,L0011,L0100,L0110,L1001,L1101]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6

]

M38 = [B000,B110,L0011,L0100,L0101,L1001,L1010,L1100,L1110]
M39 = [B000,B111,L0001,L0110,L0111,L1000,L1010,L1100,L1111]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3

]
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M40 = [B000,B011,B100,L0001,L0111,L1001,L1010,L1100]
M41 = [B000,B011,B101,L0000,L0110,L1001,L1010,L1111]
M42 = [B000,B011,B110,L0011,L0101,L1001,L1010,L1100]
M43 = [B000,B011,B111,L0010,L0100,L1001,L1010,L1111]
M44 = [B000,B100,B110,L0001,L0110,L1001,L1011,L1100]
M45 = [B000,B100,L0001,L0100,L0101,L1010,L1011,L1100]
M46 = [B000,B100,L0001,L0110,L0111,L1000,L1001,L1100]
M47 = [B000,B100,L0001,L0110,L0111,L1010,L1011,L1100]
M48 = [B000,B101,B111,L0001,L0110,L1000,L1010,L1111]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6

]

M49 = [B000,B010,B100,L0001,L0011,L0100,L1001,L1110]
M50 = [B000,B010,B101,L0001,L0011,L0110,L1000,L1111]
M51 = [B000,B010,B110,L0001,L0011,L0110,L1011,L1100]
M52 = [B000,B010,B111,L0001,L0011,L0100,L1010,L1101]
M53 = [B000,B011,B100,L0010,L0100,L1001,L1100,L1111]
M54 = [B000,B011,B101,L0011,L0101,L1010,L1100,L1111]
M55 = [B000,B011,B110,L0000,L0110,L1001,L1100,L1111]
M56 = [B000,B011,B111,L0001,L0111,L1010,L1100,L1111]
M57 = [B000,B100,B110,L0011,L0100,L1001,L1100,L1110]
M58 = [B000,B100,B111,L0001,L0010,L0100,L1001,L1111]
M59 = [B000,B101,B110,L0000,L0011,L0110,L1001,L1111]
M60 = [B000,B101,B111,L0011,L0100,L1010,L1101,L1111]
M61 = [B000,B101,L0011,L0100,L0101,L1010,L1100,L1101]
M62 = [B000,B101,L0011,L0100,L0101,L1010,L1110,L1111]
M63 = [B000,B101,L0011,L0110,L0111,L1010,L1100,L1101]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6

]
M64 = [B000,B010,L0001,L0011,L0110,L0111,L1000,L1100]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6

]
M65 = [B000,B010,B100,L0001,L0100,L0110,L1011,L1100]
M66 = [B000,B010,B101,L0011,L0100,L0110,L1010,L1101]
M67 = [B000,B010,B110,L0011,L0100,L0110,L1001,L1110]
M68 = [B000,B010,B111,L0001,L0100,L0110,L1000,L1111]
M69 = [B000,B010,L0001,L0110,L1000,L1011,L1100,L1111]
M70 = [B000,B010,L0011,L0100,L1001,L1010,L1101,L1110]
M71 = [B000,B100,B111,L0001,L0100,L0111,L1010,L1100]
M72 = [B000,B101,B110,L0011,L0101,L0110,L1010,L1100]

v =
[5η

3 − 2
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3

]
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M73 = [B000,B010,B100,B111,L0001,L0100]
M74 = [B000,B010,B101,B110,L0011,L0110]
M75 = [B000,B011,B100,B110,L1001,L1100]
M76 = [B000,B011,B101,B111,L1010,L1111]

5. Having η ∈
(

3
7 , 1
)
.

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
8 − η

8 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
4 − η

4 ,
3
8 − 3η

8

]
M77 = [B000,B011,B101,L0000,L0010,L0110,L1000,L1001,L1111]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
8 − η

8 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
8 − η

8 ,
3
8 − 3η

8

]

M78 = [B000,B011,B110,L0001,L0011,L0101,L1010,L1011,L1100]
M79 = [B000,B101,B111,L0001,L0010,L0110,L1000,L1001,L1111]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
8 − η

8 ,
1
4 − η

4 ,
3
8 − 3η

8 ,
1
8 − η

8 ,
1
4 − η

4

]
M80 = [B000,B011,B100,L0000,L0010,L0100,L1001,L1110,L1111]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
8 − η

8 ,
1
4 − η

4 ,
3
8 − 3η

8 ,
1
4 − η

4 ,
1
8 − η

8

]

M81 = [B000,B011,B111,L0001,L0011,L0111,L1010,L1100,L1101]
M82 = [B000,B100,B110,L0000,L0011,L0100,L1001,L1110,L1111]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
4 − η

4 ,
3
8 − 3η

8 ,
1
8 − η

8 ,
1
8 − η

8 ,
1
4 − η

4

]

M83 = [B000,B010,B101,L0000,L0001,L0110,L1000,L1011,L1111]
M84 = [B000,B010,B111,L0010,L0011,L0100,L1001,L1010,L1101]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
4 − η

4 ,
3
8 − 3η

8 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
8 − η

8

]

M85 = [B000,B010,B100,L0010,L0011,L0100,L1001,L1101,L1110]
M86 = [B000,B010,B110,L0000,L0001,L0110,L1011,L1100,L1111]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
8 − η

8 ,
1
8 − η

8 ,
1
4 − η

4 ,
3
8 − 3η

8

]

M87 = [B000,B011,B111,L0010,L0100,L0110,L1000,L1001,L1111]
M88 = [B000,B100,B110,L0001,L0101,L0110,L1010,L1011,L1100]
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v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
8 − η

8 ,
1
4 − η

4 ,
1
8 − η

8 ,
3
8 − 3η

8

]
M89 = [B000,B011,B100,L0001,L0101,L0111,L1010,L1011,L1100]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
8 − η

8 ,
3
8 − 3η

8 ,
1
8 − η

8 ,
1
4 − η

4

]

M90 = [B000,B011,B110,L0000,L0100,L0110,L1001,L1110,L1111]
M91 = [B000,B101,B111,L0011,L0100,L0111,L1010,L1100,L1101]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
8 − η

8 ,
3
8 − 3η

8 ,
1
4 − η

4 ,
1
8 − η

8

]
M92 = [B000,B011,B101,L0011,L0101,L0111,L1010,L1100,L1101]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
8 − η

8 ,
3
8 − 3η

8 ,
1
8 − η

8 ,
1
8 − η

8 ,
1
4 − η

4

]
M93 = [B000,B101,B110,L0000,L0001,L0110,L1001,L1011,L1111]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
8 − η

8 ,
3
8 − 3η

8 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
8 − η

8

]
M94 = [B000,B100,B111,L0010,L0011,L0100,L1001,L1101,L1111]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4

]

M95 = [B000,B010,B100,B110,L0001,L0110,L1011,L1100]
M96 = [B000,B010,B100,B110,L0011,L0100,L1001,L1110]
M97 = [B000,B010,B101,B111,L0001,L0110,L1000,L1111]
M98 = [B000,B010,B101,B111,L0011,L0100,L1010,L1101]
M99 = [B000,B011,B100,B111,L0001,L0111,L1010,L1100]

M100 = [B000,B011,B100,B111,L0010,L0100,L1001,L1111]
M101 = [B000,B011,B101,B110,L0000,L0110,L1001,L1111]
M102 = [B000,B011,B101,B110,L0011,L0101,L1010,L1100]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
3
8 − 3η

8 ,
1
8 − η

8 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
8 − η

8 ,
1
4 − η

4

]
M103 = [B000,B100,B111,L0001,L0110,L0111,L1000,L1010,L1100]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
3
8 − 3η

8 ,
1
8 − η

8 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
8 − η

8

]
M104 = [B000,B101,B110,L0011,L0100,L0101,L1010,L1100,L1110]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
3
8 − 3η

8 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
8 − η

8 ,
1
8 − η

8 ,
1
4 − η

4

]
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M105 = [B000,B010,B100,L0001,L0110,L0111,L1000,L1011,L1100]
M106 = [B000,B010,B110,L0011,L0100,L0101,L1001,L1010,L1110]

v =
[7η

4 − 3
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
3
8 − 3η

8 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
4 − η

4 ,
1
8 − η

8 ,
1
8 − η

8

]

M107 = [B000,B010,B101,L0011,L0100,L0101,L1010,L1101,L1110]
M108 = [B000,B010,B111,L0001,L0110,L0111,L1000,L1100,L1111]

6. Having η ∈
(

4
9 , 1
)
.

v =
[9η

5 − 4
5 ,

1
5 − η

5 ,
1
5 − η

5 ,
1
5 − η

5 ,
1
5 − η

5 ,
1
5 − η

5 ,
1
5 − η

5 ,
1
5 − η

5 ,
2
5 − 2η

5

]

M109 = [B000,B011,B100,B110,L0001,L0101,L1010,L1011,L1100]
M110 = [B000,B011,B101,B111,L0010,L0110,L1000,L1001,L1111]

v =
[9η

5 − 4
5 ,

1
5 − η

5 ,
1
5 − η

5 ,
1
5 − η

5 ,
1
5 − η

5 ,
1
5 − η

5 ,
2
5 − 2η

5 ,
1
5 − η

5 ,
1
5 − η

5

]
M111 = [B000,B010,B100,B111,L0010,L0011,L0100,L1001,L1101]
M112 = [B000,B010,B101,B110,L0000,L0001,L0110,L1011,L1111]
M113 = [B000,B011,B100,B110,L0000,L0100,L1001,L1110,L1111]
M114 = [B000,B011,B101,B111,L0011,L0111,L1010,L1100,L1101]

v =
[9η

5 − 4
5 ,

1
5 − η

5 ,
1
5 − η

5 ,
1
5 − η

5 ,
2
5 − 2η

5 ,
1
5 − η

5 ,
1
5 − η

5 ,
1
5 − η

5 ,
1
5 − η

5

]

M115 = [B000,B010,B100,B111,L0001,L0110,L0111,L1000,L1100]
M116 = [B000,B010,B101,B110,L0011,L0100,L0101,L1010,L1110]

7. Having η ∈
(

1
2 , 1
)
.

v =
[
2η − 1, 1

3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
3 − η

3

]

M117 = [B000,B100,B110,L0000,L0011,L0100,L0111,L1001,L1110]
M118 = [B000,B100,B110,L0001,L0010,L0101,L0110,L1011,L1100]
M119 = [B000,B101,B111,L0000,L0011,L0100,L0111,L1010,L1101]
M120 = [B000,B101,B111,L0001,L0010,L0101,L0110,L1000,L1111]

v =
[
2η − 1, 1

3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3

]
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M121 = [B000,B100,B110,L0011,L0111,L1000,L1001,L1100,L1110]
M122 = [B000,B101,B111,L0011,L0111,L1000,L1010,L1100,L1101]

v =
[
2η − 1, 1

3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6

]

M123 = [B000,B100,B110,L0001,L0101,L1010,L1011,L1100,L1110]
M124 = [B000,B100,B110,L0010,L0110,L1001,L1011,L1100,L1101]

v =
[
2η − 1, 1

3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3

]

M125 = [B000,B010,B111,L0000,L0001,L0100,L1010,L1011,L1101]
M126 = [B000,B010,B111,L0010,L0011,L0100,L1000,L1001,L1101]
M127 = [B000,B010,B111,L0010,L0011,L0100,L1010,L1011,L1101]
M128 = [B000,B011,B110,L0000,L0001,L0101,L1010,L1011,L1100]
M129 = [B000,B011,B110,L0010,L0011,L0101,L1000,L1001,L1100]
M130 = [B000,B011,B110,L0010,L0011,L0101,L1010,L1011,L1100]
M131 = [B000,B101,B111,L0001,L0101,L1000,L1010,L1110,L1111]
M132 = [B000,B101,B111,L0010,L0110,L1000,L1001,L1101,L1111]

v =
[
2η − 1, 1

3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6

]

M133 = [B000,B100,B110,L0000,L0100,L1001,L1011,L1110,L1111]
M134 = [B000,B101,B111,L0000,L0100,L1010,L1011,L1101,L1111]

v =
[
2η − 1, 1

3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6

]

M135 = [B000,B010,B110,L0000,L0001,L0110,L1011,L1100,L1101]
M136 = [B000,B010,B110,L0000,L0001,L0110,L1011,L1110,L1111]
M137 = [B000,B010,B110,L0010,L0011,L0110,L1011,L1100,L1101]
M138 = [B000,B011,B111,L0000,L0001,L0111,L1010,L1100,L1101]
M139 = [B000,B011,B111,L0000,L0001,L0111,L1010,L1110,L1111]
M140 = [B000,B011,B111,L0010,L0011,L0111,L1010,L1100,L1101]

v =
[
2η − 1, 1

3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6

]
M141 = [B000,B100,B111,L0000,L0001,L0100,L0111,L1010,L1110]
M142 = [B000,B101,B110,L0000,L0011,L0100,L0101,L1010,L1110]

v =
[
2η − 1, 1

3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6

]
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M143 = [B000,B100,B111,L0001,L0010,L0100,L0101,L1011,L1111]
M144 = [B000,B101,B110,L0010,L0011,L0101,L0110,L1000,L1100]

v =
[
2η − 1, 1

3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3

]

M145 = [B000,B010,B110,L0011,L0100,L0101,L1000,L1001,L1110]
M146 = [B000,B010,B110,L0011,L0100,L0101,L1010,L1011,L1110]
M147 = [B000,B010,B110,L0011,L0110,L0111,L1000,L1001,L1110]
M148 = [B000,B011,B111,L0010,L0100,L0101,L1000,L1001,L1111]
M149 = [B000,B011,B111,L0010,L0100,L0101,L1010,L1011,L1111]
M150 = [B000,B011,B111,L0010,L0110,L0111,L1000,L1001,L1111]

v =
[
2η − 1, 1

3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6

]

M151 = [B000,B010,B111,L0001,L0100,L0101,L1000,L1110,L1111]
M152 = [B000,B010,B111,L0001,L0110,L0111,L1000,L1100,L1101]
M153 = [B000,B010,B111,L0001,L0110,L0111,L1000,L1110,L1111]
M154 = [B000,B011,B110,L0000,L0100,L0101,L1001,L1110,L1111]
M155 = [B000,B011,B110,L0000,L0110,L0111,L1001,L1100,L1101]
M156 = [B000,B011,B110,L0000,L0110,L0111,L1001,L1110,L1111]
M157 = [B000,B100,B111,L0001,L0010,L0110,L0111,L1000,L1100]
M158 = [B000,B101,B110,L0000,L0001,L0101,L0110,L1011,L1111]

v =
[
2η − 1, 1

3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6

]

M159 = [B000,B100,B111,L0010,L0011,L0100,L0111,L1001,L1101]
M160 = [B000,B101,B110,L0000,L0011,L0110,L0111,L1001,L1101]

v =
[
2η − 1, 1

3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6

]

M161 = [B000,B100,B111,L0001,L0111,L1000,L1010,L1100,L1110]
M162 = [B000,B100,B111,L0010,L0100,L1001,L1011,L1101,L1111]
M163 = [B000,B101,B110,L0000,L0110,L1001,L1011,L1101,L1111]
M164 = [B000,B101,B110,L0011,L0101,L1000,L1010,L1100,L1110]

v =
[
2η − 1, 1

2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4

]
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M165 = [B000,B010,L0000,L0001,L0100,L0110,L1011,L1101]
M166 = [B000,B010,L0001,L0011,L0100,L0101,L1000,L1110]
M167 = [B000,B010,L0001,L0011,L0110,L0111,L1000,L1110]
M168 = [B000,B010,L0001,L0110,L1000,L1011,L1100,L1101]
M169 = [B000,B010,L0001,L0110,L1000,L1011,L1110,L1111]
M170 = [B000,B010,L0010,L0011,L0100,L0110,L1011,L1101]
M171 = [B000,B010,L0011,L0100,L1000,L1001,L1101,L1110]
M172 = [B000,B010,L0011,L0100,L1010,L1011,L1101,L1110]
M173 = [B000,B011,L0000,L0001,L0101,L0111,L1010,L1100]
M174 = [B000,B011,L0000,L0010,L0100,L0101,L1001,L1111]
M175 = [B000,B011,L0000,L0010,L0110,L0111,L1001,L1111]
M176 = [B000,B011,L0000,L0111,L1001,L1010,L1100,L1101]
M177 = [B000,B011,L0000,L0111,L1001,L1010,L1110,L1111]
M178 = [B000,B011,L0010,L0011,L0101,L0111,L1010,L1100]
M179 = [B000,B011,L0010,L0101,L1000,L1001,L1100,L1111]
M180 = [B000,B011,L0010,L0101,L1010,L1011,L1100,L1111]
M181 = [B000,B100,L0000,L0001,L0100,L0111,L1001,L1110]
M182 = [B000,B100,L0001,L0010,L0100,L0101,L1011,L1100]
M183 = [B000,B100,L0001,L0010,L0110,L0111,L1011,L1100]
M184 = [B000,B100,L0001,L0111,L1000,L1001,L1100,L1110]
M185 = [B000,B100,L0001,L0111,L1010,L1011,L1100,L1110]
M186 = [B000,B100,L0010,L0011,L0100,L0111,L1001,L1110]
M187 = [B000,B100,L0010,L0100,L1001,L1011,L1100,L1101]
M188 = [B000,B100,L0010,L0100,L1001,L1011,L1110,L1111]
M189 = [B000,B101,L0000,L0001,L0101,L0110,L1000,L1111]
M190 = [B000,B101,L0000,L0011,L0100,L0101,L1010,L1101]
M191 = [B000,B101,L0000,L0011,L0110,L0111,L1010,L1101]
M192 = [B000,B101,L0000,L0110,L1000,L1001,L1101,L1111]
M193 = [B000,B101,L0000,L0110,L1010,L1011,L1101,L1111]
M194 = [B000,B101,L0010,L0011,L0101,L0110,L1000,L1111]
M195 = [B000,B101,L0011,L0101,L1000,L1010,L1100,L1101]
M196 = [B000,B101,L0011,L0101,L1000,L1010,L1110,L1111]
M197 = [B000,B110,L0000,L0001,L0101,L0110,L1011,L1100]
M198 = [B000,B110,L0000,L0011,L0100,L0101,L1001,L1110]
M199 = [B000,B110,L0000,L0011,L0110,L0111,L1001,L1110]
M200 = [B000,B110,L0000,L0110,L1001,L1011,L1100,L1101]
M201 = [B000,B110,L0000,L0110,L1001,L1011,L1110,L1111]
M202 = [B000,B110,L0010,L0011,L0101,L0110,L1011,L1100]
M203 = [B000,B110,L0011,L0101,L1000,L1001,L1100,L1110]
M204 = [B000,B110,L0011,L0101,L1010,L1011,L1100,L1110]
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M205 = [B000,B111,L0000,L0001,L0100,L0111,L1010,L1101]
M206 = [B000,B111,L0001,L0010,L0100,L0101,L1000,L1111]
M207 = [B000,B111,L0001,L0010,L0110,L0111,L1000,L1111]
M208 = [B000,B111,L0001,L0111,L1000,L1010,L1100,L1101]
M209 = [B000,B111,L0001,L0111,L1000,L1010,L1110,L1111]
M210 = [B000,B111,L0010,L0011,L0100,L0111,L1010,L1101]
M211 = [B000,B111,L0010,L0100,L1000,L1001,L1101,L1111]
M212 = [B000,B111,L0010,L0100,L1010,L1011,L1101,L1111]

v =
[
2η − 1, 1

2 − η

2 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4

]
M213 = [B000,B010,B100,L0001,L0100,L1011,L1110]
M214 = [B000,B010,B101,L0011,L0110,L1000,L1101]
M215 = [B000,B010,B110,L0011,L0110,L1011,L1110]
M216 = [B000,B010,B111,L0001,L0100,L1000,L1101]
M217 = [B000,B011,B100,L0010,L0111,L1001,L1100]
M218 = [B000,B011,B101,L0000,L0101,L1010,L1111]
M219 = [B000,B011,B110,L0000,L0101,L1001,L1100]
M220 = [B000,B011,B111,L0010,L0111,L1010,L1111]
M221 = [B000,B100,B110,L1001,L1011,L1100,L1110]
M222 = [B000,B100,B111,L0001,L0010,L0100,L0111]
M223 = [B000,B101,B110,L0000,L0011,L0101,L0110]
M224 = [B000,B101,B111,L1000,L1010,L1101,L1111]

v =
[
2η − 1, 1

2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2

]

M225 = [B000,L0000,L0001,L0100,L0101]
M226 = [B000,L0000,L0001,L0110,L0111]
M227 = [B000,L0000,L0100,L1001,L1101]
M228 = [B000,L0001,L0101,L1000,L1100]
M229 = [B000,L0010,L0011,L0100,L0101]
M230 = [B000,L0010,L0011,L0110,L0111]
M231 = [B000,L0010,L0110,L1011,L1111]
M232 = [B000,L0011,L0111,L1010,L1110]
M233 = [B000,L1000,L1001,L1100,L1101]
M234 = [B000,L1000,L1001,L1110,L1111]
M235 = [B000,L1010,L1011,L1100,L1101]
M236 = [B000,L1010,L1011,L1110,L1111]

v = [2η − 1, 1 − η, 1 − η]

M237 = [B000,B010,B011]
M238 = [B000,B100,B101]
M239 = [B000,B110,B111]

Accepted in Quantum 2023-01-27, click title to verify. Published under CC-BY 4.0. 63



8. Having η ∈
(

5
9 , 1
)
.

v =
[9η

4 − 5
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2

]

M240 = [B000,B010,B100,B110,L0011,L0111,L1000,L1001,L1110]
M241 = [B000,B010,B101,B111,L0000,L0100,L1010,L1011,L1101]

v =
[9η

4 − 5
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4

]

M242 = [B000,B010,B100,B110,L0010,L0110,L1011,L1100,L1101]
M243 = [B000,B010,B101,B111,L0001,L0101,L1000,L1110,L1111]
M244 = [B000,B011,B100,B111,L0000,L0001,L0111,L1010,L1110]
M245 = [B000,B011,B101,B110,L0010,L0011,L0101,L1000,L1100]

v =
[9η

4 − 5
4 ,

1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4

]

M246 = [B000,B011,B100,B111,L0010,L0100,L0101,L1011,L1111]
M247 = [B000,B011,B101,B110,L0000,L0110,L0111,L1001,L1101]

9. Having η ∈
(

4
7 , 1
)
.

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
2 − η

2

]

M248 = [B000,B010,B111,L0000,L0010,L0100,L1010,L1011,L1101]
M249 = [B000,B100,B110,L0000,L0011,L0111,L1000,L1001,L1110]

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
2 − η

2

]

M250 = [B000,B010,B100,L0001,L0011,L0111,L1000,L1001,L1110]

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
2 − η

2 ,
1
6 − η

6 ,
1
3 − η

3

]

M251 = [B000,B010,B110,L0000,L0010,L0110,L1011,L1100,L1101]
M252 = [B000,B101,B111,L0001,L0010,L0101,L1000,L1110,L1111]
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v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
2 − η

2 ,
1
3 − η

3 ,
1
6 − η

6

]

M253 = [B000,B010,B101,L0001,L0011,L0101,L1000,L1110,L1111]

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
2 − η

2 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3

]

M254 = [B000,B100,B111,L0000,L0001,L0111,L1000,L1010,L1110]

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
2 − η

2 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6

]

M255 = [B000,B101,B110,L0010,L0011,L0101,L1000,L1100,L1110]

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
2 − η

2

]

M256 = [B000,B010,B101,L0000,L0100,L0110,L1010,L1011,L1101]

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
2 − η

2

]

M257 = [B000,B010,B110,L0011,L0101,L0111,L1000,L1001,L1110]
M258 = [B000,B101,B111,L0000,L0100,L0111,L1010,L1011,L1101]

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
2 − η

2 ,
1
6 − η

6 ,
1
3 − η

3

]

M259 = [B000,B010,B100,L0010,L0100,L0110,L1011,L1100,L1101]

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
2 − η

2 ,
1
3 − η

3 ,
1
6 − η

6

]

M260 = [B000,B010,B111,L0001,L0101,L0111,L1000,L1110,L1111]
M261 = [B000,B100,B110,L0010,L0101,L0110,L1011,L1100,L1101]

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
2 − η

2 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3

]

M262 = [B000,B011,B100,L0000,L0001,L0111,L1001,L1010,L1110]
M263 = [B000,B011,B110,L0010,L0011,L0101,L1000,L1011,L1100]
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v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
2 − η

2 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6

]

M264 = [B000,B011,B101,L0010,L0011,L0101,L1000,L1100,L1111]
M265 = [B000,B011,B111,L0000,L0001,L0111,L1010,L1101,L1110]

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
3 − η

3

]

M266 = [B000,B010,B100,B111,L0001,L0111,L1000,L1110]
M267 = [B000,B010,B100,B111,L0010,L0100,L1011,L1101]
M268 = [B000,B010,B101,B110,L0000,L0110,L1011,L1101]
M269 = [B000,B010,B101,B110,L0011,L0101,L1000,L1110]
M270 = [B000,B011,B100,B110,L0000,L0111,L1001,L1110]
M271 = [B000,B011,B100,B110,L0010,L0101,L1011,L1100]
M272 = [B000,B011,B101,B111,L0000,L0111,L1010,L1101]
M273 = [B000,B011,B101,B111,L0010,L0101,L1000,L1111]

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
2 − η

2 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3

]

M274 = [B000,B011,B101,L0000,L0110,L0111,L1001,L1010,L1101]
M275 = [B000,B011,B111,L0010,L0100,L0101,L1000,L1011,L1111]

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
2 − η

2 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6

]

M276 = [B000,B011,B100,L0010,L0100,L0101,L1011,L1100,L1111]
M277 = [B000,B011,B110,L0000,L0110,L0111,L1001,L1101,L1110]

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
2 − η

2 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
6 − η

6 ,
1
3 − η

3

]
M278 = [B000,B101,B110,L0000,L0110,L0111,L1001,L1011,L1101]

v =
[7η

3 − 4
3 ,

1
3 − η

3 ,
1
3 − η

3 ,
1
2 − η

2 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
3 − η

3 ,
1
6 − η

6 ,
1
6 − η

6

]
M279 = [B000,B100,B111,L0010,L0100,L0101,L1011,L1101,L1111]

10. Having η ∈
(

3
5 , 1
)
.

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2

]

M280 = [B000,B110,L0000,L0011,L0101,L0111,L1000,L1001,L1110]
M281 = [B000,B111,L0000,L0010,L0100,L0111,L1010,L1011,L1101]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4

]
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M282 = [B000,B110,L0000,L0010,L0101,L0110,L1011,L1100,L1101]
M283 = [B000,B111,L0001,L0010,L0101,L0111,L1000,L1110,L1111]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
2 − η

2

]

M284 = [B000,B010,L0000,L0010,L0100,L0110,L1011,L1101]
M285 = [B000,B010,L0001,L0011,L0101,L0111,L1000,L1110]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
2 − η

2

]
M286 = [B000,B010,L0010,L0110,L1000,L1011,L1100,L1101]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
4 − η

4

]
M287 = [B000,B010,L0000,L0100,L1010,L1011,L1101,L1110]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4

]

M288 = [B000,B110,L0010,L0011,L0101,L1000,L1011,L1100,L1110]
M289 = [B000,B111,L0000,L0001,L0111,L1000,L1010,L1101,L1110]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2

]

M290 = [B000,B010,L0011,L0111,L1000,L1001,L1101,L1110]
M291 = [B000,B100,L0000,L0001,L0111,L1000,L1001,L1110]
M292 = [B000,B100,L0000,L0001,L0111,L1010,L1011,L1110]
M293 = [B000,B100,L0010,L0011,L0111,L1000,L1001,L1110]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
4 − η

4

]
M294 = [B000,B010,L0001,L0101,L1000,L1011,L1110,L1111]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4

]

M295 = [B000,B101,L0000,L0001,L0101,L1000,L1110,L1111]
M296 = [B000,B101,L0010,L0011,L0101,L1000,L1100,L1101]
M297 = [B000,B101,L0010,L0011,L0101,L1000,L1110,L1111]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4

]
M298 = [B000,B011,L0000,L0010,L0100,L0101,L1011,L1111]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4

]
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M299 = [B000,B110,L0000,L0110,L0111,L1001,L1011,L1101,L1110]
M300 = [B000,B111,L0010,L0100,L0101,L1000,L1011,L1101,L1111]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2

]

M301 = [B000,B010,B100,L0001,L0111,L1000,L1011,L1110]
M302 = [B000,B010,B101,L0000,L0110,L1000,L1011,L1101]
M303 = [B000,B010,B110,L0011,L0101,L1000,L1011,L1110]
M304 = [B000,B010,B111,L0010,L0100,L1000,L1011,L1101]
M305 = [B000,B100,B110,L0000,L0111,L1001,L1011,L1110]
M306 = [B000,B101,B111,L0000,L0111,L1000,L1010,L1101]
M307 = [B000,B101,L0000,L0100,L0101,L1010,L1011,L1101]
M308 = [B000,B101,L0000,L0110,L0111,L1000,L1001,L1101]
M309 = [B000,B101,L0000,L0110,L0111,L1010,L1011,L1101]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4

]

M310 = [B000,B010,B100,L0010,L0100,L1011,L1101,L1110]
M311 = [B000,B010,B101,L0011,L0101,L1000,L1101,L1110]
M312 = [B000,B010,B110,L0000,L0110,L1011,L1101,L1110]
M313 = [B000,B010,B111,L0001,L0111,L1000,L1101,L1110]
M314 = [B000,B011,B100,L0000,L0010,L0111,L1001,L1110]
M315 = [B000,B011,B101,L0000,L0010,L0101,L1000,L1111]
M316 = [B000,B011,B110,L0000,L0010,L0101,L1011,L1100]
M317 = [B000,B011,B111,L0000,L0010,L0111,L1010,L1101]
M318 = [B000,B011,L0000,L0001,L0101,L0111,L1010,L1110]
M319 = [B000,B011,L0000,L0010,L0110,L0111,L1001,L1101]
M320 = [B000,B100,B110,L0010,L0101,L1011,L1100,L1110]
M321 = [B000,B100,B111,L0001,L0010,L0111,L1000,L1110]
M322 = [B000,B100,L0010,L0100,L0101,L1011,L1100,L1101]
M323 = [B000,B100,L0010,L0100,L0101,L1011,L1110,L1111]
M324 = [B000,B100,L0010,L0110,L0111,L1011,L1100,L1101]
M325 = [B000,B101,B110,L0000,L0011,L0101,L1000,L1110]
M326 = [B000,B101,B111,L0010,L0101,L1000,L1101,L1111]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4

]
M327 = [B000,B011,L0010,L0011,L0101,L0111,L1000,L1100]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4 ,
1
4 − η

4

]
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M328 = [B000,B011,B100,L0010,L0101,L0111,L1011,L1100]
M329 = [B000,B011,B101,L0000,L0101,L0111,L1010,L1101]
M330 = [B000,B011,B110,L0000,L0101,L0111,L1001,L1110]
M331 = [B000,B011,B111,L0010,L0101,L0111,L1000,L1111]
M332 = [B000,B011,L0000,L0111,L1001,L1010,L1101,L1110]
M333 = [B000,B011,L0010,L0101,L1000,L1011,L1100,L1111]
M334 = [B000,B100,B111,L0010,L0100,L0111,L1011,L1101]
M335 = [B000,B101,B110,L0000,L0101,L0110,L1011,L1101]

v =
[5η

2 − 3
2 ,

1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2

]

M336 = [B000,B010,B100,B110,L1011,L1110]
M337 = [B000,B010,B101,B111,L1000,L1101]
M338 = [B000,B011,B100,B111,L0010,L0111]
M339 = [B000,B011,B101,B110,L0000,L0101]

11. Having η ∈
(

2
3 , 1
)
.

v =
[
3η − 2, 1

2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2

]

M340 = [B000,L0000,L0001,L0101,L0111,L1000,L1110]
M341 = [B000,L0000,L0010,L0100,L0101,L1011,L1101]
M342 = [B000,L0000,L0010,L0110,L0111,L1011,L1101]
M343 = [B000,L0000,L0111,L1000,L1001,L1101,L1110]
M344 = [B000,L0000,L0111,L1010,L1011,L1101,L1110]
M345 = [B000,L0010,L0011,L0101,L0111,L1000,L1110]
M346 = [B000,L0010,L0101,L1000,L1011,L1100,L1101]
M347 = [B000,L0010,L0101,L1000,L1011,L1110,L1111]

v =
[
3η − 2, 1 − η,

1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2

]

M348 = [B000,B010,L1000,L1011,L1101,L1110]
M349 = [B000,B011,L0000,L0010,L0101,L0111]
M350 = [B000,B100,L0010,L0111,L1011,L1110]
M351 = [B000,B101,L0000,L0101,L1000,L1101]
M352 = [B000,B110,L0000,L0101,L1011,L1110]
M353 = [B000,B111,L0010,L0111,L1000,L1101]

12. Having η ∈
(

3
4 , 1
)
.

v =
[
4η − 3, 1

2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2 ,
1
2 − η

2

]
M354 = [B000,L0000,L0010,L0101,L0111,L1000,L1011,L1101,L1110]
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List of Symbols and abbreviations:
PP: Purification postulate.
CEP: Complete extension postulate.
A: Access property.
G: Generation property.
EU: Essential uniqueness.
ONSEA: Overcomplete non-signaling extension
with access.
NSEA: Complete non-signaling extension
with access.
NSCE: Non-signaling complete extension.
GPT: Generalised probabilistic theory.
G : A generalized probabilistic theory.
Syst[G] : Systems associated with G.
⊗: Composition rule in a GPT.
×: Cartesian product.
VA: A finite dimensional real vector space
associated to system A.
V ∗

A: Dual space of VA.
RΛ: Vector space of real valued functions
for some finite sample space Λ in classical

theory.
ΩA: Convex set within the vector space VA,
represents the state space of system A.
Ω∗

A: subset of dual vectors in V ∗
A which

evaluate to (a subset of) the unit interval
on ΩA.
EA: Convex set within the dual space V ∗

A,
represents the effect space of system A.
KA: Convex cone associated with ΩA.
e: An instance of an effect in the effect
space EA.
e(ΩA): Image of e when its domain is restricted
to ΩA.
uA: Unit effect on ΩA.
T B

A : Space of transformations from system
A to system B.
M : Measurement, belongs to T B

A .
∆I : Classical systems contained in every
GPT, where I denotes the set of classical
(deterministic) states.
δi: a vertex of ∆I .
ϵi: a vertex of ∆∗

I .

1∆I
: Identity transformation for system

∆I .
ωA: Arbitrary state of system A.
ϵAB: A non-signalling extension of ωA to
system B.
EωA : The set of all states that purify ωA.
TrB: Partial trace over systemB, of a composite
system.
T (T ′): A system type in Syst[G].
s: An arbitrary state in a GPT.
s(T ): An arbitrary state of type T .
{(pi, si)}: An ensemble of states.
Ens[s]: The set of all possible ensembles
for a state s.
EnsP [s]: The set of all pure ensembles of
s.
Face[s]: Face of a state s.
Ext[s]: The set of extensions of s.
ExtP [s]: The set of all pure extensions of
s.
Extclass[s]: A class of extension of s, where
the extending system is classical.
Vert[∆I ]: The set of vertices of ∆I .
σp: A purification of system s, belongs to
ExtP [s].
Σ: Arbitrary extension of system s, belongs
to Ext[s].
T1→2: A reversible transformation in the
extending system.
p∗

A: Alice’s cheating probability in integer-
commitment.
p∗

B: Bob’s cheating probability in integer-
commitment.
TrB: Partial trace on systemB of a composite
quantum state ρAB.
Tr̸=Ai

: Partial trace on all systems despite
of systemAi of a composite state ρA1A2...AN

.
V : Number of the vertices within a theory.
ℵ0: The cardinality of the set of natural
numbers.
c: The cardinality of the continuum.
P: A partition of a composite system into
mutually non-signaling subsystems.
SP

i : An ith system of a partition P.
ρA: Arbitrary quantum state of system A.
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|ψAE⟩: A pure quantum state of the composite
system A and E.
ΘE : Quantum channel in part of system E.
{(pi, ρ

i
A)}: Ensemble of a quantum state.

PA: A behaviour of system A.
PAE : A composite behaviour of system A
and E.
{pi, P

i
A}: Ensemble of the behaviour of system

A.
pA|X (a|x): A conditional probability distribution.
pAE|X Z(ae|xz): A bipartite conditional probability
distribution.
X : The set of all input {x}, of the conditional
probability distribution pA|X (a|x).
Z: The set of all input {z}, of the bipartite
conditional probability distribution
pAE|X Z(ae|xz).

A: The set of all output {a}, of the conditional
probability distribution pA|X (a|x).
E : The set of all output {e}, of the bipartite
conditional probability distribution
pAE|X Z(ae|xz).

PE : Classical pre(post)-processing channel
acting on the inputs(outputs) of system E.
PE: A behaviour which is an extremal point.
E (P ): An arbitrary ensemble of the behaviour
P .
V (E ): The set of members of the ensemble
E .
Epure(P ): Pure members ensemble of the
behaviour P .
M (P ): Minimal ensemble of the behaviour
P .
E(P )AE : Non-signaling Extension with Access
of behaviour PA.
Dj : A dice, characterized by the probability
distribution p̃(k|z′ = j).
Cj : Classical post-processing channel, characterized
by conditional distribution
pc(m|e, z′ = j).

B: A behaviour polytope.
dim B: Dimension of a behaviour polytope.
PP R: Popescu-Rohrlich box.
Pm: Maximally mixed behaviour.
PA′ : Conjugate behaviour of behaviour PA.

Lαβγδ: Local vertices of the polytope of
binary input out behaviours, α, β, γ, δ ∈
{0, 1}.
Brst: Non-local vertices of the polytope of
binary input out behaviours, r, s, t ∈ {0, 1}.
B(η): Arbitrary behaviour on the line joining
PR box and anti-PR box.
β(P ): Linear map on the behaviour P , computing
the CHSH functional.
V(P ): Set of the sets of members of minimal
ensembles.
C3: The set of maximal contexts for the
three-cycle contextuality scenario.
N C

j : jth non-contextual vertex of the no-
disturbance polytope.
Cj : jth contextual vertex of the no-disturbance
polytope.
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