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Reduced density matrix and combined dynamics of electrons and nuclei
Yang Zhao, Satoshi Yokojima, and GuanHua Chen
Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong

~Received 11 February 2000; accepted 14 June 2000!

Nuclear dynamics is incorporated into an efficient density matrix formalism of electronic dynamics
which has been applied to molecular systems containing thousands of atoms. The formalism for the
combined dynamics of electrons and nuclei is derived from the Dirac–Frenkel variational principle.
The single electron reduced density matrices and the Glauber coherent states are used for the
electronic and nuclear degrees of freedom, respectively. The new formalism is applicable to
simulate the dynamics of large molecular systems. As an illustration of its validity, the formalism
is employed to calculate the electron and nuclei dynamics of hydrogen molecules. ©2000
American Institute of Physics.@S0021-9606~00!30734-6#
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I. INTRODUCTION

Recently a linear scaling method, the localized dens
matrix ~LDM ! method, was developed to simulate electro
dynamics of very large molecular systems containing th
sands of atoms.1–3 It is based on the time-depende
Hartree–Fock~TDHF! approximation, and follows the evo
lution of a single electron reduced density matrix in re
time. It has been applied successfully to simulate linear
tical response of electrons in polyacetylene oligomers, c
bon nanotubes, and poly~p-phenylenevinylene! ~PPV! aggre-
gates.1–9 In these calculations the nuclei are frozen, and th
the nuclear dynamics is not included. Since the simulatio
carried out in time domain, it is natural to include the nucle
dynamics. The LDM simulation time step for the electron
dynamics is 0.01 to 0.1 fs while the time step is on the or
of 0.1 fs for the Car–Parrinello method10 and 0.1 to 1 fs for
the force field molecular dynamics simulation.11 It is thus
desirable to include the nuclear motion in the LDM calcu
tion.

Traditionally the dynamics of electrons and nuclei
molecular systems is treated within the Born–Oppenhei
~BO! or the adiabatic approximation in which the time sca
of nuclear motion is assumed to be much longer than tha
the electron motion. The nuclear motion is often compu
with potential energy surfaces~PES! or force fields which
are often obtained fromab initio calculations. Numerica
simulations beyond the BO approximation are limited
small systems due to the requirement of expensive comp
tional resources for the electronic degrees of freedom.
electron–nuclear dynamics~END! method has been applie
to diatomic or triatomic molecules.12–15 The electronic and
nuclear wave functions are approximated by the single Sl
determinants and fixed-width Gaussian wave functions,
spectively. Other important contributions to the nonadiaba
dynamics include the surface-hopping approaches by T
et al.16 which serve as an alternative to methods of a sin
average nuclear path. Also proposed were semiclass
treatments of curve crossings in reaction dynamics by Mi
et al.,17 and applications of similar nature to the spin-bos
problem and internal conversion processes by Stock.18
4010021-9606/2000/113(10)/4016/12/$17.00
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In this paper we propose a method for treating the el
trons and nuclei simultaneously without assuming differ
time scales for electrons and nuclei or the BO approxim
tion. We therefore do not have to resort to the PES or fo
field in the calculation of nuclear dynamics. Since the el
tronic degrees of freedom may be handled efficiently w
the LDM method, it is expected that the new method m
ultimately be used to simulate the electronic and nuclear
namics of large complex molecular systems. We adop
variational approach for the combined dynamics of electr
and nuclei. The equations of motion for the electronic a
nuclear degrees of freedom may be derivedrigorously from
the exact Lagrangian using the Dirac–Frenkel variatio
principle.19 Similar to the END method, Glauber cohere
states which correspond to the fixed-width Gaussians in
space are adopted for the nuclear motion. To take advan
of the LDM treatment of electrons, the reduced density m
trices, instead of the wave functions, are used to describe
electronic dynamics. In parallel to our developments of
LDM methods for fixed nuclei which started from rath
simple Hamiltonians, the semiempirical Hamiltonian, t
complete neglect of differential overlap in spectrosco
~CNDO/S!,20 is used as the first implementation to descri
the dynamics of electrons and nuclei. We emphasize that
adoption of CNDO/S Hamiltonians are not essential to o
approach, and extensions to include more sophistica
Hamiltonians such as PM3 and the density functional the
~DFT!21 can easily be implemented as in the case of fix
nuclei.3,8

The paper is organized as follows. In Sec. II we intr
duce the Dirac–Frenkel variational principle which allow
for dynamical descriptions of the electrons and nuclei in
single framework. Formal equations of motion are derived
their respective subspaces for a single-configurational an
in Sec. II A. The nuclear classical equations of motion a
deduced from the time-dependent variational principle in
limit of small coherent state widths. Generalizations to
clude multiple configurations are discussed in Sec. II B. T
new formalism may be used to simulate the combined
namics of electrons and nuclei in complex molecular s
tems. As a first step towards that goal, we adopt the CND
6 © 2000 American Institute of Physics
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Hamiltonian and simulate the dynamics of electrons and
clei in hydrogen molecules. Results are reported in Sec.
Discussions are presented in Sec. V.

II. COMBINED ELECTRONIC AND NUCLEAR
DYNAMICS

The Dirac–Frenkel variational principle19 is a powerful
technique to obtain approximate dynamics for quantum s
tems for which exact solutions are elusive. The formulat
starts with the exact Lagrangian

L5^fT~ t !u
i\

2

]J

]t
2ĤufT~ t !&, ~2.1!

wherefT(t) is an ansatz for the full normalized wave fun
tion of a quantum system which hinges on parame
hm (m51,2,3,...). Herehm can be complexc numbers or
trial wave functions of subsystems. In general, the Dira
Frenkel variational principle19 leads to

d

dt S ]L

]ḣm
† D 2

]L

]hm
†

50, ~2.2!

wherehm
† stands for the complex conjugate ofhm .

Below we apply the Dirac–Frenkel variational princip
to a single-determinant ansatz and its multiconfiguratio
generalization.

A. Single-configurational ansatz

The TDHF equation for fixed nuclei can be derived fro
the Dirac–Frenkel variational principle.19 The trial wave
function ufHF& for an electronic system is a single Slat
determinant composed ofN single-particle orbitals. One as
sociates a single-particle density matrixr i j (t) with ufHF&

r i j ~ t !5^fHFuaj
†ai ufHF &, ~2.3!

whereaj
†(ai) creates~annihilates! an electron at thej th (i th)

orbital. The density matrixr i j (t), as a projector onto the
space spanned by occupied orbitals, characterizes the S
determinant up to within a phase. This is easily seen
exchanging two orbitals inufHF& which leavesr i j (t) un-
changed butufHF& with a negative sign. In Appendix A, we
give a brief derivation of the equations of motion for th
density matrixr i j (t).

To include nuclear motion, we generalize the trial wa
function in the TDHF approximation to include the nucle
degrees of freedom:

ufT&5ufHF&ufN&, ~2.4!

where the normalized single Slater determinantufHF& is
composed ofN single-particle orbitalsf i , and ufN& repre-
sents a normalized nuclear wave function. The Lagrang
has the form

L5
i\

2 (
i

~^f i uḟ i&2^ḟ i uf i&!1
i\

2
~^fNuḟN&

2^ḟNufN&!2^fTuĤufT&. ~2.5!
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We consider a system withM nuclei andN electrons.
The nuclear and electronic coordinates are labeled asrn (n
51,...,M ) and r i

e ( i 51,...,N), respectively. The energy ex
pression takes the form

E[^fTuĤufT&

5^fNu2(
n

\2

2Mn

]2

]rn
2

1VNN~$rn%!ufN&

1^fTu2(
i

\2

2mi

]2

]r i
e2

1Vee~$r i
e%!ufT&

1^fTuVeN~$rn%,$r i
e%!ufT&, ~2.6!

where Mn are the atomic mass for thenth atom, mi is
the i th electron mass, andVNN($rn%), Vee($r i

e%), and
VeN($rn%,$r i

e%) are the nucleus–nucleus, electron–electr
and nucleus–electron interaction energies, respectively.

Below we discuss separately the electronic and nuc
equations of motion derived from the variational procedu

1. The electronic equations of motion

Applying the time-dependent variational approach,

d

dt S ]L

]^ḟ i u
D 2

]L

]^f i u
50, ~2.7!

we obtain the equations for the electronic degrees of fr
dom:

i\ṙ5@h8,r#, ~2.8!

where the Fock matrixh8 is given by

h8uf i&5
]E

]^f i u
. ~2.9!

The difference betweenh8 and the usual Fock matrixh ~cf.
Appendix A! lies only in thath8, being dependent on

^fHFuVee~$r i
e%!1VeN~$rn%,$r i

e%!ufHF&, ~2.10!

changes with time as the nuclei move. In other words, qu
tities such asv i j in Eq. ~3.1! are now time dependent inh8 as
compared withh. So far basis orbitals have not been spe
fied. Orbitals fixed in space are not suitable to describe
namical chemical systems, which may require a large nu
ber of basis functions. One needs to consider basis orb
$f i(t)% which move with the nuclei. Equations of motion fo
the density matrix in a moving basis is

ṙ i j 5~ i\!21^f i~ t !u@h8,r#uf j~ t !&2r i j ^f i~ t !u
]uf i~ t !&

]r i

•V i2r i j

]^f j~ t !u
]r j

•V j uf j~ t !&, ~2.11!

where r i and V i are, respectively, the position vector an
velocity of the nucleus on which thei th orbital resides. The
details of derivation are given in Appendix B.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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2. Nuclear dynamics as coherent states

The nuclear degrees of the freedom are treated wi
the same variational framework. For example, the form
equation of motion forufN& is derived from

d

dt S ]L

]^ḟNu
D 2

]L

]^fNu
50. ~2.12!

From the energy expression of Eq.~2.6! one readily arrives
at

i\uḟN&5F2(
n

\2

2Mn

]2

]rn
2

1VNN~$rn%!1^fHFuVee~$r i
e%!

1VeN~$rn%,$r i
e%!ufHF&G ufN&. ~2.13!

^fHFuVee($r i
e%)ufHF& is dependent on$rn% in many approxi-

mation schemes, and thus cannot be neglected in Eq.~2.13!.
In order to capture fully the time evolution of nuclear m
tion, some detailed form ofufN& has to be specified, an
corresponding equations of motion derived.

For the nuclear wave function, a convenient ansatz
use is the Glauber coherent state.22 The coherent states ar
equivalent to the so-called frozen Gaussian wave packets23 in
the real space representation. Frozen Gaussian wave pa
are robust in time evolution. In contrast, Gaussian wa
packets with variant widths are often found to be pro
lematic.24,25The coherent state is regarded as a quantum
chanical state which approaches a classical state when
width goes to zero.22,26–28In fact, in a harmonic potential the
coherent state undergoes the same dynamics using clas
mechanics as using quantum mechanics. As\ tends to zero,
the width of the coherent state vanishes, and the nuclei
reduced to classical particles localized in the phase sp
This makes the coherent states especially suitable for m
eling quasiclassical systems.

We approximate the nuclear wave functionufN& with a
coherent state:

ufN&5ua~ t !&5)
i 51

3N

ua i~ t !&, ~2.14!

wherea i ( i 51,...,3N) are complex parameters that chara
terize the motion ofN nuclei alongx, y, andz directions, and
the coherent stateua i(t)& may be expressed in the site re
resentation as

^xua i~ t !&5p21/4expH 2
1

2 FAMiv i

\
x2& Re~a i~ t !!G2

1 i Im~a i~ t !!FA2Miv i

\
x2Re~a i~ t !!G J ,

~2.15!

where v i is the characteristic frequency fori th degree of
freedom which determines the width of the Gaussian w
packet.

The Lagrangian takes the form
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L5
i\

2
~^fNuḟN&2^ḟNufN!&2E8

5
i\

2 (
i 51

3N

~ ȧ ia i* 2ȧ i* a i !2E8 ~2.16!

with

E85^au2(
n

\2

2Mn

]2

]rn
2

1VNNua&

1^au^fHFuVee1VeNufHF&ua&. ~2.17!

This follows from

^a i uȧ i&52
1

2

d

dt
~a ia i* !1^a i ue21/2ua i u

2
ȧ ibi

†ea i bi
†
u0&

52
1

2

d

dt
ua i u21ȧ ia i* , ~2.18!

wherebi
†(bi) is the creation~annihilation! operator fori th

degree of freedom, and is defined as

bi
†5AMiv

2\
qi1A \

2Miv

]

]qi
, ~2.19!

bi5AMiv

2\
qi2A \

2Miv

]

]qi
. ~2.20!

Equations of motion for the complex displacementa i then
assume the simple form

i\ȧ i5
]E8

]a i*
. ~2.21!

Here a i is related to the average nuclear position^qi& t and
momentum^pi& t for the i th nuclear degree of freedom by

a i5AMiv i

2\
^qi& t1 iA 1

2\Miv i
^pi& t ~2.22!

with Mi the corresponding mass.
To understand the physics of Eq.~2.21!, one may as-

sume harmonic potentials for nuclei, for which

E85(
i

~ ua i u211/2!\v i . ~2.23!

The parametersa i follow the equation of motion:

i\ȧ i5\v ia i . ~2.24!

Equation~2.24! is in fact the classical equation of motion fo
a harmonic oscillator if̂ qi& t and^pi& t are substituted by the
corresponding classical quantities. This shall become cle
in the next subsection.

There can be many generalizations for the ansatz o
single coherent state for the nuclear dynamics. One gene
zation is a superposition of many coherent states which
ter captures the quantum nature of the nuclear motio29

When the corresponding electronic state is multiconfigu
tional, such a generalization becomes absolutely neces
In Sec. II B as well as Appendices E and F, we discuss
scenario of a multiconfigurational ansatz with a mul
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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coherent-state nuclear wave function. Elsewhere in the
per, we shall confine ourselves to the single coherent sta

3. Recovery of nuclear classical equations of motion

Here we show that the equations of motion given by
Dirac–Frenkel variational principle lead to classical nucle
dynamics in the limit of vanishing width of the Gaussia
wave packets. We also derive the lowest order correctio
The site and momentum representations of the coherent
are listed in Appendix C. By using the identity

]

]a i*
5

1

2

]

]a i8
1 i

1

2

]

]a i9
, ~2.25!

where

a i85Re~a i !, a i95Im~a i !, ~2.26!

the equation of motion~2.21! becomes

\ȧ i85
1

2

]E8

]a i9
,

\ȧ i952
1

2

]E8

]a i8
. ~2.27!

One uses the momentum-space representation of the
herent states~cf. Appendix C! to evaluate the kinetic term in
E8, yielding

^q̇i& t5
^pi& t

M i
. ~2.28!

One then uses the site-space representation of the coh
states~cf. Appendix C! for the potential terms inE8. Assume
the width of the Gaussian wave packets is small so that
can expand the potential near the mean value^qi& t . To the
second order in the Taylor expansion, one obtains

^ ṗi& t52S ]E8

]qi
D

^qi & t

. ~2.29!

The width of the Gaussian wave packets enters the equa
of motion if the potential is expanded to the fourth order
the vicinity of ^qi& t . The lowest order correction to Eq
~2.29! is quadratic in the wave packet widthai

2
&ai

2

8\ S ]3E8

]xi
3 D

xi5&a
i8

, ~2.30!

where the dimensionless quantityxi is related to the position
qi by

xi5AMiv i

\
qi , ~2.31!

andai5A\/(Miv i) gives the width of the coherent state. T
the second order in the Taylor expansion of the poten
near the mean valuêqi& t , the classical equations of motio
are fully recovered. Quantum effects are presented by
third-order terms which are proportional to the wid
squared.
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B. Multiconfigurational ansatz

A multiconfigurational ansatz which contains more th
one Slater determinants may take the form

ufT&5(
m

cmufm
HF&ufm

N&, ~2.32!

whereufm
HF& are single Slater determinants for the electro

ufm
N& are the nuclear wave functions,cm are the configuration

coefficients, and the configurational indexm runs from 1 to
M. The trial state~2.32! includes the multiple-trajectory fea
ture that the surface-hopping approach,16 and recently, the
full-multiple-spawning method,44 attempt to reproduce. The
fully quantum-mechanical state~2.32! avoids artificial draw-
backs such as undesired coherence destruction of the sur
hopping method. Starting from a single electron–nucl
configuration, a system should evolve on a single poten
surface, and no bifurcation of the nuclear trajectory sho
occur until a curve crossing or a transition region is reach
Then an additional electron–nuclear configuration is int
duced to describe the appearance of the new electronic s
The corresponding time dependence ofcm , ufm

HF& and ufm
N&

can be derived from the Dirac–Frenkel variational princip
As two nuclear trajectories diverge, their overlap vanish
We may neglect the interference between them. Each tra
tory evolves virtually independently. In Appendix E we dem
onstrate how a multiconfigurational ansatz of the form~2.32!
is handled in a time-dependent variational procedure.

The trial wave function~2.32! bears close resemblanc
to the Davydov ansatz for the lattice Holstein model~cf.
Appendix F!:30,31

uF~ t !&5(
n

cn~ t !Bn
†u0&exexpF(

q
~lnq~ t !bq

†2H.c.!G u0&ph,

~2.33!

where the indexn labels the lattice sites,u0&ex(u0&ph) is the
vacuum state for both the exciton~phonon! degrees of free-
dom,Bn

† creates an exciton on siten, andbq
† creates a phonon

of frequencyvq . For each electronic configurationBn
†u0&ex,

a unique lattice wave function is assigned. The tim
dependent parameterscn(t) and lnq(t) which characterize
the Davydov ansatz can also be determined from the Dir
Frenkel variational principle. Details of ensuing equations
motion are given in Appendix F.

The similarities between the two ansa¨tze can be explored
to better understand Eq.~2.32!. Both ansa¨tze attach a distinct
nuclear wave function to an electronic configuration. For
lattice Holstein model, each configuration (Bn

†u0&ex) corre-
sponds to a single exciton stationed on a specific lattice s
For Eq. ~2.32!, each configuration corresponds to a Sla
determinant made of individual orbitals. The Holstein mod
however, does not require changing electronic configurati
to adapt to changes of the lattice wave functions. Because
number of distinct one-exciton configurations equals
number of lattice sites regardless of detailed information
lattice deformation. It is not true for the trial state~2.32!. The
individual orbitals of which the Slater determinants are co
posed change as the nuclei move.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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III. THE CNDOÕS HAMILTONIAN

In this section we adopt a specific Hamiltonian f
the electronic degrees of freedom, and restrict ourse
to closed shell molecules. The semiempirical CNDO
Hamiltonian20,32 is employed to describe the electrons a
nuclei in molecules. With the CNDO/S Hamiltonian as t
approximate Hamiltonian,hi j8 takes the form

hi j8 5t i j 12d i j (
k

v ikrkk2v i j r i j , ~3.1!

whered i j is Kroenecker delta, andv i j is the Coulomb repul-
sion between two electrons at orbitalsi and j. The CNDO/S
model adopts the zero differential overlap~ZDO! approxima-
tion, and the total energy of closed shell electronic syst
may be classified into one-atom and two-atom terms:

Etot5(
n

En1 (
n,m

Enm , ~3.2!

where

En52(
i

i Pn

r i i Uii 1 (
i j

i , j Pn

~2r i i r j j 2r i j r j i !gnn , ~3.3!

Enm5(
i

i Pn

(
j

j Pm

~4r i j b i j 22r i j
2 gnm!1

ZnZm

r nm
2PnnVnm

2PmmVmn1PnnPmmgnm . ~3.4!

Various quantities in Eqs.~3.3! and ~3.4! are defined as fol-
lows. Uii is a one-center term defined as

Uii 5^ i u2 1
2 “ i

22Vi u i &, ~3.5!

whereVi is the potential of electroni from nuclei and core
electrons.gnm is the average Coulomb repulsion energy b
tween an electron in any valence atomic orbital of thenth
atom and another in an orbital of themth atom, andVnm is
the interaction energy of an electron in any valence orbita
nth atom with the core ofmth atom.Zn is the core charge
~including the nucleus and inner shells! of the nth atom,r i j

is the usual one-electron density matrix, andPnn is the total
valence electron charge on thenth atom

Pnn52(
i

i Pn

r i i . ~3.6!

The off-diagonal core matrix elements between atomic or
als on different atoms are estimated by

b i j 5bnm
0 Si j , ~3.7!

whereSi j the overlap integral, andbnm
0 is a parameter de

pending on the nature of atomsn andm. r nm is the distance
between two nuclein andm.

The average interaction energygnm was first calculated
by Roothaan.33 Various approximations ofgnm were later
proposed. For example, in the Nishimoto–Maga
approximation,34 gnm is estimated from the

gnm5e2S 2e2

gnn1gmm
1RnmD 21

, ~3.8!
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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wheregnn is the average on-site repulsion energy for atomn.
If the internuclear distanceRnm is large~above 3.5 Å!, gnm

becomes the interaction between two charged spheres. In
opposite limit when the nuclei coincide,gnm reduces to the
repulsion of two electrons on the same nucleus. These o
centergnn are approximated by the well-known method i
troduced by Pariser35

gnn5 1
2 ~ I n1An!, ~3.9!

whereI n andAn are the valence state ionization potential a
the electron affinity, respectively. Following the CNDO
method,32 Vnm is approximated byZmgnm neglecting the
penetration effects in which electrons in an orbital of o
atom penetrate the shell of another leading to net attract

The force acting on the nucleus of thenth atom can be
calculated from

Fn52“n~Etot1VNN!. ~3.10!

To simplify our simulation, we set

]r

]rn
'0. ~3.11!

Thus

Fn52“n (
m

mÞn

Enm2“nVNN , ~3.12!

where“n stands for the derivative with respect to the po
tion vectorrn of nth nucleus. The reader is referred to A
pendix D for details of the nuclear-force evaluation.

IV. HYDROGEN MOLECULE

To demonstrate the feasibility of our approach to capt
complex dynamics of electrons and nuclei, we simulate
dynamics of a hydrogen molecule under an incident exte
electric field. The ground state for the hydrogen molecule
a symmetric state formed from the atomic 1s orbitals, and
the excited state, on the other hand, corresponds to the
symmetric configuration. Each simulation is composed
two runs. In the first run, the electronic ground state is o
tained via a self-consistent-field~SCF! calculation, and the
equilibrium nuclear configuration is generated by allowi
the nuclei to relax from an arbitrary set of initial position
The electronic relaxation is simultaneously carried out by
time domain LDM ground state calculation.5 Since the pur-
pose of this run is to achieve both electronic and nucl
equilibria, the nuclear kinetic energy is depleted rapidly
fast convergence. In the second run, the equilibrium nuc
configuration is adopted as the initial configuration, and
external field is applied to perturb the combined system
electrons and nuclei. A time-domain Gaussian profile
given to the external field with an adjustable widthtg . This
provides an electronic excitation up to;\/tg . To achieve
excitation at a specific frequencyve , an oscillating term
exp(2ivet/\) is added to the external field. Dissipativ
mechanisms are introduced to relax both the electronic
nuclear subsystems. The electronic system is relaxed via
phenomenological dephasing, while the nuclear system
dissipated with small fraction~;0.05%! of nuclear kinetic
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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energy taken out at each time step. Much weaker nuc
damping is adopted as compared with the first run in wh
1–2 % of the nuclear kinetic energy is depleted per time s
Simulation is completed when the system recovers its in
state prior to the application of external field.

The time-evolution of the hydrogen–hydrogen bo
length during the second run is displayed in Fig. 1. The fi
is applied along the line which connects the two hydrog
atoms so that no rotational motion is introduced. The el
tronic excitation disturbs the neutrality of the atoms caus
a bond contraction in the first few femtoseconds. This
followed by bond oscillations with its mean gradually retur
ing to equilibrium as the electronic excitation is dephas
The oscillation period is about 2.0 fs. Figure 2 shows
position displacement of one of the two nuclei in the seco
run. After the external field is applied, the nuclear movem
exhibits a second oscillation with a much higher frequen
This is attributed to an electronic transition upon the exter
excitation which has an oscillating frequency of 18.54 e

FIG. 1. H–H bond length of a hydrogen molecule with an external fie
The field is applied att50 along the line connecting the two hydroge
atoms with an oscillating frequency of 18.54 eV. An electronic dephasin
0.04 eV is adopted.

FIG. 2. Movement of one hydrogen atom driven by external field at 18
eV. The field is applied att50 along the line connecting the two hydroge
atoms with an oscillating frequency of 18.54 eV. An electronic dephasin
0.04 eV is adopted.
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This in turn affects the nuclear movements. This hig
frequency mode is absent in the bond length evolution sho
in Fig. 1.

In Fig. 3 we plot the weak-field optical response of H2.
The vertical axis represents the value of Im@D(v)#, where
D(v) is the Fourier transform of H2 dipole moment in the
frequency domain. The electric field is weak so that the
clei are only slightly disturbed. Clearly there is a peak
18.54 eV which corresponds to the higher frequency osci
tion in Fig. 2. The ground state of the hydrogen molecule
a symmetric bonding state while the excited state is a dis
ciative antibonding state. The energy gap between
ground state and the excited state is therefore represente
the peak at 18.54 eV. There are structures barely visible
the two sides which are phonon-induced and whose am
tudes strengthen upon increasing the external field. In Fi
we display the strong-field optical response of the hydrog
molecule to a strong external field with a Gaussian pac

.

f

4

f

FIG. 3. The weak-field optical response of a hydrogen molecule: Im@D(v)#
versusv, whenD(v) is the dipole moment of H2. The field is applied along
the line connecting the two hydrogen atoms. An electronic dephasin
0.04 eV is adopted. The main peak is located at 18.54 eV.

FIG. 4. The strong-field optical response of a hydrogen molecule: Im@D(v)#
versusv. The field is applied along the line connecting the two hydrog
atoms. The time-domain width of the pulse is 0.1 fs. An electronic deph
ing of 0.04 eV is adopted.
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width of 0.1 fs. There is a predominant structure at 18.54
Phonon-induced features appearing on two sides are s
rated from the main structure by 1.1 eV which correspon
to the bond length oscillation frequency shown in Fig. 1.

In order to simulate a realistic system where atomic c
lisions frequently occur, we introduce a mechanism for
ergy fluctuations in which the temperature is kept constan36

A stochastic collision term is added to the equations of m
tion for nuclear dynamics. The resulting stochastic differe
tial equations bear close resemblance to the Langevin e
tions for the Brownian motion.37–39Each stochastic collision
is an instantaneous event which affects the momentum
one particle. The times at which different particles unde
collisions are statistically uncorrelated. The probability f
the collision to take place betweent and t1dt is

p~ t !dt5n exp~2nt !dt, ~4.1!

where the characteristic collision time is 1/n. Alternatively,
one may state that the time intervals between two succes
collisions are distributed according top(t). Therefore the
probability for each individual atom to experience the ne
collision increases with time~counting from the previous
collision!

E
0

t

p dt512exp~2nt !. ~4.2!

If a collision occurs, the momentum of the atom is replac
at random from a Boltzmann distribution at the temperat
T

1

~A2pmkBT!3
expS 2

px
21py

21pz
2

2mkBT Ddpx dpy dpz . ~4.3!

The effect of collisions on the strong-field responses o
hydrogen molecule is shown in Fig. 5. The characteris
collision time 1/n in Eq. ~4.1! is 1 fs. The temperature from
which the Boltzmann distribution is drawn is 225 K. Apa
from the added collision term, the system parameters

FIG. 5. Effect of collisions on the strong-field optical response of a hyd
gen molecule. The time-domain width of the pulse is 0.1 fs. The charac
istic collision time 1/n is 1 fs. The temperature for the Boltzmann distrib
tion is 225 K.
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kept the same as those in Fig. 4. Compared with Fig. 4,
signs of the stochastic process are obvious in Fig. 5, altho
the basic features in Fig. 4 survives the collision effect.

V. DISCUSSION

We have developed a method for simulating the co
bined dynamics of electrons and nuclei in complex syste
The dynamics is described by the single reduced density
trices for electrons and the Glauber coherent states for nu
Since the linear-scaling LDM method may be used to sim
late the electronic dynamics, the method opens up a w
range of applications and may be employed to calculate
combined dynamics of large complex systems.

The simulations run so far are mostly in the Born
Oppenheimer regime as the energy scale in the electr
system greatly exceeds that of the nuclear system, altho
nuclear movements on the same order of frequencies as
electrons are shown to exist under a high-frequency driv
field. Our approach can be generally applied to nonadiab
regimes where the two energy scales are comparable. Sim
nonadiabatic methods with combined quantum and class
dynamics for electrons and nuclei were applied to scatte
problems and small systems.12,15,40 Determinantal wave
functions41,42 were used instead of density matrices for t
electronic dynamics. These calculations were restricted o
to small systems. In comparison, our approach has the
tential to be applied to much larger systems. Generalizati
to include multiple configurations and more sophistica
nuclear wave functions are also possible. In Appendix E
illustrate how nuclear and electronic wave functions a
handled in a multiconfigurational ansatz.

The single-trajectory approach employed here belong
the class of theories based on the time-dependent
consistent-field method~TDSCF!.43 Compared with multi-
ple-trajectory approaches such as the surface-hop
method16,39 and the full-multiple-spawning algorithm,44 nu-
clei follow an average mean path in TDSCF. Therefo
TDSCF may not be a good approximation when the exci
state acquires a significant population and its adiabatic
tential surface greatly diverges from that of the ground sta
Since in the cases examined here the excited state popul
is kept small at all times, the validity of our approach shou
hold.

The CNDO/S method gives a larger force constant th
that is experimentally observed for the case of the hydro
molecule~about twice too large, see Ref. 45!. However, the
purpose of our example is mainly to demonstrate the fe
bility of our method instead of providing a close comparis
with the experiments. Furthermore, as we have demonstr
for fixed nuclei, the simplified electronic Hamiltonia
CNDO/S employed in this paper can be generalized
Hamiltonians of higher sophistication~for instance, PM3 and
DFT! in order to better describe nuclear potential surfa
for complex molecules. We have previously extended
LDM calculations from CNDO/S Hamiltonians to PM
Hamiltonians for fixed nuclei with ease.7,8 We expect such
extensions to include more sophisticated electronic Hami
nians carried out for mobile nuclei in the next stage of d
velopments.

-
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Dynamics calculations in the literature often treat t
environment of a quantum system classically.46–48 Attempts
were also made to infer absorption lineshapes from such
brid calculations.49 Our method which mixes the quantu
electronic system with its classical nuclear environmen
expected to capture quantities that have classical interp
tions. These include time-dependent observables suc
electronic populations and mean positions and moment
vibrational modes. However, it is not able to reproduce
vibronic features in the absorption spectra. The failure
caused by inability of classical nuclear dynamics to desc
the nuclear wave function overlaps at different times. A
though the full quantum vibronic spectra are not reprodu
with the lattice treated classically, peaks atveg6nvnuclear~n
is an integer! are observed from the hybrid simulations, a
beit often with negative signs. It is understood as a latt
perturbation to the electronic transition. The signs of
peaks shall depend on the relative phase between the
tronic and nuclear oscillations as demonstrated by the sim
identities:

2 sinx siny52cos~x1y!1cos~x2y!, ~5.1!

2 sinx cosy5sin~x1y!1sin~x2y!, ~5.2!

2 cosx cosy5cos~x1y!1cos~x2y!. ~5.3!

From the first identity, the two peaks atveg6vnuclear will
have opposite signs, while from the last two identities,
peaks will have the same sign. We point out that the opt
response shown in Figs. 3 and 4 are not absorption spe
The coupled equations of motion for electrons Eq.~2.11! and
nuclei with the nuclear force given by Eq.~3.12! are not
expanded in terms of the external electric field and thus
optical responses we obtained include linear and nonlin
components.

In our model the nuclear motion can be viewed as
classical bath that is coupled to the electronic degrees
freedom. The combined system of electrons and nuclei th
fore serves as a paradigm for chromophore-bath system
the nuclear motion is harmonic then the bath is bosonic
simple anharmonic bath is a collection of two-level syste
~TLS!50 which are responsible for the chromophore tran
tion frequency modulation in glasses. Strong anharmoni
is expected in the hydrogen molecule disturbed by a mo
ate external field. We have simulated the transfer of the e
tronic energy from the incident laser light into the nucle
~bath! system. It is found that such transfers in the hydrog
molecule require;100 fs to complete after excitation b
strong external pulses.

There have been studies of the simultaneous dynamic
electrons and nuclei in a linear monatomic chain and i
zig–zag chain of nitrogen atoms.40 What constitutes a physi
cally more interesting system are polymers such as p
acetylene and poly~p-phenylenevinylene!. Polarons and soli-
tons are among the different entities which emerge in th
polymers.51–58 Modern techniques of femtosecond spect
scopy59 shall reveal, in details previously unavailable, t
complex dynamics of electrons and nuclei in these mater
Since the polymers are flexible and can change its sh
easily, spectroscopic properties of polymers depend hea
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on nuclear motion. Most computations of the optical r
sponse of large polymers treat the nuclear effect phenom
logically because of the excessive computational cost
determine the PES. In comparison our method is not c
strained by PES computations. The density-matrix formu
tion given here which can be readily incorporated into t
LDM method is a computationally efficient tool to mod
combined dynamics of electrons and nuclei in large syste
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APPENDIX A: THE TIME-DEPENDENT
HARTREE–FOCK APPROXIMATION

The TDHF equations can be derived from the tim
dependent variational approach. First, one defines the
grangian

L5^fTu
i\

2

]J

]t
2ĤufT&. ~A1!

Here the trial wave functionufT& is a normalized single
Slater determinant so that Lagrange multipliers are
needed. Equations of motion for the trial wave functionufT&
are obtained from

d

dt S ]L

]^f i u
D2

]L

]^f i u
50, ~A2!

whereuf i& are the individual orbitals which make up the H
wave function. We then arrived at

2 i\uḟ i&1
]E

]^f i u
50 ~A3!

with

E[^fTuĤufT&. ~A4!

The complex conjugate of Eq.~A3! has the form

i\^ḟ i u1
]E

]uf i&
50. ~A5!

Define the single-electron density matrixr as

r5(
i

occ

uf i&^f i u ~A6!

and the Fock matrixh as

huf i&5
]E

]^f i u
. ~A7!

From ~A7!, it is easy to show thath is a function ofr. Thus,
one readily obtains the closed equation of motion forr from
Eqs.~A3! and ~A5!,

i\ṙ5@h,r#. ~A8!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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APPENDIX B: EQUATIONS OF MOTION IN A MOVING
BASIS

Orbitals fixed in space are prone to convergence pr
lems in the time evolution. To consider basis orbitals wh
move with the nuclei, we write the one-electron density m
trix in terms of a time-dependent basis:

r5(
i j

r i j ~ t !uf i~ t !&^f j~ t !u, ~B1!

whereuf i(t)& is the orbitals that centers on the moving n
clei. Then the equation of motion forr i j (t) follows:

~ i\!21@h8,r#5 ṙ5(
i j

ṙ i j uf i~ t !&^f j~ t !u

1r i j

]uf i~ t !&
]r i

•V i^f j~ t !u

1r i j uf i~ t !&
]^f j~ t !u

]r j
•V j , ~B2!

where r i and V i are, respectively, the position vector an
velocity of the nucleus on which thei th orbital resides. The
individual elements of the density matrix therefore follow
Eq. ~2.11!. The last two terms in Eq.~2.11! describe the
difference between changes ofi th and j th orbitals. In a hy-
drogen molecule, the two terms cancel each other. When
velocities of the nuclei are small, the two terms can be
glected in general.

APPENDIX C: COHERENT STATES IN SITE AND
MOMENTUM REPRESENTATION

The coherent states in one dimension are related to
number states by

ua&5e2~ uau2/2! (
n50

`
an

An!
un&. ~C1!

In the site-space representation the number states are60

^xun&522~n/2!p2~1/4!
1

An!
e2~x2/2!Hn~x!, ~C2!

whereHn(x) are the Hermite functions. The dimensionle
quantityx is related to the positionqx by

x5AMv

\
qx . ~C3!

The factorAMv/\ determines the width of the Gaussia
wave packet. Utilizing the identity

e2t212tx5 (
n50

`

Hn~x!
tn

n!
, ~C4!

one obtains the site-space expression of the coherent st

^xua&5p2~1/4! exp$2 1
2 @x2& Re~a!#2

1 i Im~a!@&x2Re~a!#%. ~C5!

Whena is real,

^xua&5p2~1/4! exp$2 1
2 @x2& Re~a!#2%, ~C6!
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which is a simply displaced ground state~the ‘‘vacuum’’
statef05p2(1/4)e2(1/2)x2

!. The phase factor in Eq.~C5! is in
fact the so-called ‘‘electron translation factor’’ which a
usually multiplied to atomic orbitals to describe molecules
motion.

The momentum-space representation can be derived
a Fourier transform

^pua&5
1

A2p
E dx e2 ipx^xua&

5p2~1/4! exp$2 1
2 @p2& Im~a!#2

2 i Re~a!@&p2Im~a!#%, ~C7!

where the dimensionless quantityp is related to the momen
tum px by

p5
1

A\Mv
px . ~C8!

Equations~C5! and ~C7! are essential for the derivation o
classical dynamics from the time-dependent variational
proach in Sec. II A 3.

APPENDIX D: THE CNDO ÕS APPROXIMATIONS

The Slater-type basis functions are used in the CNDO
calculations:

xa~r ,u,f!5
~2za!na1~1/2!

A~2na!!
r na21 exp~2zar !Yl am~u,f!,

~D1!

wherena , l a , and m are the principal, azimuthal, and th
magnetic quantum numbers, respectively, andYl am(u,f) is
the real normalized spherical harmonics.za is the orbital
exponent.

The overlap integralSab can be written in terms of the
reduced overlap integrals(na ,l a ,m,na ,l b ,a,b):

Sab~na ,l a ,m,nb ,l b ,a,b!

5
za

na1~1/2!
zb

nb1~1/2!

A~2na!! ~2nb!!
s~na ,l a ,m,na ,l b ,a,b!r ab

na1nb11,

~D2!

where

a5zar ab , b5zbr ab , ~D3!

s~na ,l a ,m,na ,l b ,a,b!5D~ l a ,l b ,m!(
i j

Ci j l

3Ai S a1b

2 DBj S a2b

2 D . ~D4!

HereD( l a ,l b ,m) is a function ofl a , l b , andm, andCi j l are
matrices labeled byl which itself is a function ofna , nb ,
l a , l b , andm:

l5l~na ,nb ,l a ,l b ,m!. ~D5!

The auxiliary functionsA(x) andB(x) are defined as
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Ak~x!5e2x(
n51

k11
k!

xn~k2n11!!
, ~D6!

Bk~x!52Ak~x!2ex(
n51

k11
~21!k2nk!

xn~k2n11!!
. ~D7!

From Eq.~D2!, the derivative of the overlap integralSab

with respect tor ab is composed of two terms:

dSab

drab
5~na1nb11!

Sab

r ab
1

za
na1~1/2!

zb
nb1~1/2!

A~2na!! ~2nb!!

ds

drab
r ab

na1nb11,

~D8!

where

ds

drab
5D~ l a ,l bm!(

i j
Ci j l

F dAi S a1b

2 D
drab

Bj S a2b

2 D

1Ai S a1b

2 D dBj S a2b

2 D
drab

G . ~D9!

The internuclear forces may now be derived from t
energy expressions developed:

Fn52 (
m

mÞn
dEnm

drnm
“nr nm2“nVNN , ~D10!

where

“r nm5
rn2rm

r nm
, ~D11!

dEnm

drnm
52

ZnZm

r nm
2

1
dSnm

drnm
(

i

i Pn

(
j

j Pm

4r i j bnm
0

1
dgnm

drnm
S PnnPmm2PnnZm2PmmZn

1(
i

i Pn

(
j

j Pm

2r i j
2 D . ~D12!

Here the derivative of the overlap integralSnm with respect
to r nm(dSnm /drnm) follows Eq. ~D8!.

In the remainder of this appendix we discuss some s
cifics of the hydrogen molecule. The one-electron den
matrix is calculated from

r i j 5(
n

oc

cn icn j , ~D13!

wherecn j is the coefficients of expansion of the molecu
orbitals in terms of the valence atomic orbitals. Greek in
ces are used to denote the molecular orbitals. For the ca
the hydrogen molecule, all elements of the ground state d
sity matrix equal12. The total molecular energy for H2 in the
CNDO/2 approximation has the form

ET52~ I 1A!H2
1

2
gHH22bHH

0 SHH82
3

2
VHH81

1

RHH8
,

~D14!
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where I H and AH are the ionization potential and electro
affinity of hydrogen, respectively. For two hydrogen atom
gHH8 has the form33

gHH85
z

r F12S 11
11

8
r1

3

4
r21

1

6
r3De22rG , ~D15!

wherez is the orbital exponent,r5zRHH8 . The above ex-
pression forgHH8 is different from the Nishimoto–Magata
approximation. The difference in their derivatives with r
spect to the nuclear separationRHH8 is even greater. Adopt-
ing the Nishimoto–Magata approximation therefore resu
in less accurate equilibrium bond lengths. To remedy
problem, we add a proportionality constant~on the order of
1–2! to the second term on the right-hand side of Eq.~D12!
calculating the forces so that the experimental values of
bond lengths are reproduced.

APPENDIX E: A MULTICONFIGURATIONAL ANSATZ

In this appendix we show how the nuclear and electro
trial wave functions are handled in a multiconfiguration
ansatz in one space dimension. The ansatz has the form

ufT&5(
m

cmufm
HF&ufm

N&, ~E1!

whereufm
HF& are single Slater determinants for the electro

ufm
N& are the nuclear wave functions,cm are the configuration

coefficients, and the configurational indexm runs from 1 to
M. We need to introduce in the variation a Lagrange mu
plier l to ensure

N5^fTuFT&5(
mn

cn* cm^fn
HFufm

HF&^fn
Nufm

N&51. ~E2!

From

d

dt S ]L

] ċk*
D 2

]L

]ck*
5l

]N

]ck*
, ~E3!

we give the equations of motion forcm ,

2 i\(
m

@ ċmI mk1cm~^fk
Nufm

N&^fk
HFuḟm

HF&1^fk
HFufm

HF&

3^fk
Nuḟm

N&!#1
]E

]ck*
5l(

m
cmI mk , ~E4!

where

E5^fTuĤufT&, ~E5!

I mk5^fk
HFufm

HF&^fk
Nufm

N&. ~E6!

Including Eq.~E2!, there are altogetherM11 equations for
M11 variables~ck andl!.

Next, assuming the nuclear wave functions take the
herent state form

ufn
N&5uan&, ~E7!

we derive the nuclear part of the equations of motion fro

d

dt S ]L

]ȧm*
D 2

]L

]am*
5l

]N

]am*
. ~E8!
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Utilizing

^anuam&5exp~an* am2 1
2 uamu22 1

2 uanu2!, ~E9!

^anuȧm&5exp~an* am2 1
2 uamu22 1

2 uanu2!

3S 2
1

2

]

]t
uamu21an* ȧmD , ~E10!

^ȧnuam&5exp~an* am2 1
2 uamu22 1

2 uanu2!

3S 2
1

2

]

]t
uanu21ȧn* amD , ~E11!

one obtains the equations of motion foram :

i\ȧm5
]~E2lN!

]am*
1

i\

4 (
nÞm

Fam~K̇nm2K̇mn!

2
d

dt
~2anKnm!G2

i\

2 (
kn

FJkn

]^anuak&
]am*

2
]Kkn

]am*
S 1

2

d

dt
uaku22

1

2

d

dt
uanu21an* ȧk2ȧn* akD G ,

~E12!

where

Jmn5cn* cm^fn
HFuḟm

HF&1cn* ċm^fn
HFufm

HF&2cn* cm^ḟn
HFufm

HF&

2 ċn* cm^fn
HFufm

HF&, ~E13!

Kmn5cn* cm^fn
HFufn

HF&^fn
Nufm

N&. ~E14!

We are now left with the derivation of the equations
motion for the electronic degrees of freedom. If the inn
products of two Slater determinants^fn

HFuḟm
HF& are written as

^fn
HFuḟm

HF&5dnm(
i

^f i
muḟ i

m&1~12dnm!^fn
HFuḟm

HF&,

~E15!

whereuf i
m& is the individual orbitals making upufm

HF&, equa-
tions of motion for

rk5(
i

occ

uf i
k&^f i

ku ~E16!

can be obtained from

2 i\uḟ i
k&1

]~E1F2lN!

]^f i
ku

2
d

dt S ]F

]^ḟ i
ku
D 50 ~E17!

in a similar fashion as the single configuration case in A
pendix A. Here

F5
i\

2 (
nm

~12dnm!cn* cm^fn
Nufm

N&~^fn
HFuḟm

HF&

2^ḟn
HFufm

HF&!1
i\

2 (
nm

cn* cm^fn
HFufm

HF&~^fn
Nuḟm

N&

2^ḟn
Nufm

M&!1
i\

2 (
nm

~cn* ċm2 ċn* cm!^fn
HFufm

HF&

3^fn
Nufm

N&. ~E18!
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The equations of motion forrm so obtained have the form

i\ṙm5@hm,rm# ~E19!

with the generalized Fock operatorhm given by

hmuf i
m&5

]~E1F2lN!

]^f i
mu

2
d

dt S ]F

]^ḟ i
mu
D . ~E20!

The density matrixrm has a one-to-one correspondence w
the Slater determinantufm

HF& up to a phase. This can be un
derstood from Eq.~E16! in which uf i

k& are the eigenstate
~with eigenvalues 1 or 0! that diagonalize the density matrix
For a given density matrix, therefore, its diagonalization d
termines the molecular orbitalsf i

m , with which a Slater de-
terminant differing fromufm

HF& is constructed upon by a
phase factor.

APPENDIX F: THE DAVYDOV ANSATZ

In this appendix we shall take, as an example, the Da
dov ansatz to illustrate how a multiconfigurational trial wa
function is applied in a time-dependent variational proc
dure. The Davydov ansatz

uF~ t !&5(
n

cn~ t !Bn
†u0&exexpF(

q
~lnq~ t !bq

†2H.c.!G u0&ph

~F1!

is adopted for the Holstein Hamiltonian29,30 also known as
the molecular crystal model,

Ĥ5Ĥex1Ĥph1Ĥex–ph, ~F2!

Ĥex52J(
n

Bn
†~Bn111Bn21!, ~F3!

Ĥph5(
q

\vqbq
†bq , ~F4!

Ĥex–ph5g(
nq

\vq~bq
†e2 iqn1bqeiqn!Bn

†Bn . ~F5!

HereJ is the exciton transfer integral between nearest nei
bor sites, andg is the diagonal exciton-coupling couplin
strength. We define the Debye–Waller factorSmn(t) as

Smn~ t !5pĥ 0uexpF(
q

~lmq* ~ t !bq2H.c.!G
3expF(

q
~lnq~ t !bq

†2H.c.!G u0&ph, ~F6!

or alternatively,

Smn~ t !5^Lm~ t !uLn~ t !&, ~F7!

where

uLn~ t !&5expF(
q

~lnq~ t !bq
†2H.c.!G u0&ph. ~F8!

From Eq.~2.1! the Lagrangian is given by
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L5
i\

2 (
n

~ ċncn* 2ċn* cn!

1
i\

2 (
nq

ucnu2~ l̇nqlnq* 2l̇nq* lnq!2H, ~F9!

whereH is defined as

H[^F~ t !uĤuF~ t !&. ~F10!

From the Dirac–Frenkel variational principle, one arrives

i\ċn1
i\

2
cn(

q
~ l̇nqlnq* 2l̇nq* lnq!5

]H

]cn*
, ~F11!

i\

2
ucnu2l̇nq1

i\

2

d

dt
~ ucnu2lnq!5

]H

]ln*
, ~F12!

whereH is explicitly given by

H52J(
n

cn* ~cn11Sn,n111cn21Sn,n21!

1(
nq

\vqucnu2~ ulnqu21ge2 iqnlnq* 1geiqnlnq!.

~F13!

After simplifications, one obtains

i\ċn52J~cn11Sn,n111cn21Sn,n21!

2cnF i\

2 (
q

~ l̇nqlnq* 2l̇nq* lnq!1\vq~ ulnqu2

1ge2 iqnlnq* 1geiqnlnq!G ~F14!

and

i\cnl̇nq5\vqcn~lnq1ge2 iqn!2Jcn11Sn,n11~ln112ln!

2Jcn21Sn,n21~ln212ln!. ~F15!
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