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The phenomenon of a succession of upstream-advancing solitary waves generated
by underwater disturbances moving steadily with a transcritical velocity in two-
dimensional shallow water channels is investigated. The two-dimensional Navier–
Stokes (NS) equations with the complete set of viscous boundary conditions are
solved numerically by the finite-difference method to simulate the phenomenon. The
overall features of the phenomenon illustrated by the present numerical results are
unanimous with observations in nature as well as in laboratories. The relations
between amplitude and celerity, and between amplitude and period of generation of
solitary waves can be accurately simulated by the present numerical method, and
are in good agreement with predictions of theoretical formulae. The dependence of
solitary wave radiation on the blockage and on the body shape is investigated. It
furnishes collateral evidence of the experimental findings that the blockage plays a key
role in the generation of solitary waves. The amplitude increases while the period of
generation decreases as the blockage coefficient increases. It is found that in a viscous
flow the shape of an underwater object has a significant effect on the generation of
solitary waves owing to the viscous effect in the boundary layer. If a change in body
shape results in increasing the region of the viscous boundary layer, it enhances the
viscous effect and so does the disturbance forcing; therefore the amplitudes of solitary
waves increase. In addition, detailed information of the flow, such as the pressure
distribution, velocity and vorticity fields, are given by the present NS solutions.

1. Introduction
After the discovery of solitary waves by John Scott Russell, it is now well known

that a forcing disturbance moving steadily at a transcritical velocity on or beneath
the free surface of a shallow water channel can generate, periodically, a succession
of upstream-advancing solitary waves, while a region of ever elongating depressed
water surface develops immediately behind the disturbance, followed by a train of
cnoidal-like waves gradually attenuating in the far field. The salient feature of this
phenomenon is that the motion of the disturbance is steady but the flow excited
does not attain a steady state. The first experimental study of this phenomenon
was in a report of towing tank tests of ship models in shallow water by Thews &
Landweber (1935). Thereafter, laboratory studies on this phenomenon were performed
by several investigators by moving vessels in comparatively narrow channels (Graff
1962; Schmidt-Stiebitz 1966; Huang et al. 1982; Ertekin, Webster & Wehausen 1984;
Sun 1985).
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This phenomenon has been the subject of many theoretical studies. Wu & Wu
(1982) provided theoretical evidence for the excitation of solitary waves near criti-
cal conditions for the case of plane motions by numerically solving the generalized
Boussinesq (g-B) equation using a surface pressure distribution or a bottom top-
ography as forcing functions. Calculations using a surface pressure or bottom dis-
turbance as a forcing term were performed by Akylas (1984) and Cole (1985) based
on the Korteweg–de Vries (KdV) equation, yielding qualitatively similar results. In
a joint theoretical and experimental study, Lee, Yates & Wu (1989) found a broad
agreement between experiments and two theoretical models, i.e. the g-B and the forced
Korteweg–de Vries (fKdV) equation. Wu (1987) carried out a preliminary study to
ascertain the mechanism underlying the phenomenon by approximately analysing the
fKdV equation. For three-dimensional disturbances, such as a real ship, Mei (1986)
derived an inhomogeneous KdV equation with matched asymptotic expansions to
analyse a slender ship hull. This theory was further developed and improved by Mei
& Choi (1987), and Chen & Sharma (1994, 1995). The problem of a three-dimensional
surface-pressure distribution used to simulate a ship hull moving in a channel was
studied numerically by Ertekin, Webster & Wehausen (1986) based on Green–Naghdi’s
directed-sheet model, by Katsis & Akylas (1987) using the Kadomtsev–Petviashvili
equation, and by Pedersen (1988) based on the Boussinesq-type equations.

Besides the simplified theoretical studies of this phenomenon, many numerical
schemes for potential flows with fully nonlinear boundary conditions on the free
surface have been presented. Bai & Kim (1989) presented a finite-element method
based on the Laplace equation for solving a nonlinear free-surface flow for a simple
wedge-shaped ship moving in a towing tank. Protopopov (1991) developed a finite-
difference method to study solitary waves generated by a two-dimensional pressure
distribution moving on the free surface. Choi et al. (1991) studied the generation of
solitary waves by a three-dimensional ship moving in a channel using a finite-element
method. Cao & Beck (1993) presented a simple numerical method to compute the
solitary waves generated by three types of disturbance, i.e. a pressure distribution on
the free surface, a bottom topography, and a submerged cylinder, using the Laplace
equation and fully nonlinear boundary conditions.

The theoretical and numerical studies of the phenomenon mentioned above are
based on the potential-flow theory. The main drawback of these methods is that the
viscous effects are either neglected, or taken into account in a very crude way. To
analyse the complexities of the phenomenon including the viscous effects, a more
general model for solving time-dependent viscous flow with a free surface is required.
Solutions of NS equations with consistent viscous free-surface boundary conditions
offer an opportunity to capture these complexities. Methods of this type have been
developed for a variety of water-wave problems in hydrodynamics (Harlow & Welch
1965; Chan & Street 1970; Miyata & Nishimura 1985; Yeung & Vaidhyanathan
1992). Chang & Tang (1993) studied solitary waves generated by a bottom bump
based on the vorticity–stream function formulation by means of the finite-analytic
method, and found that the amplitudes of advancing solitary waves and downstream
trailing waves were attenuated by the viscous effect at low Reynolds numbers. Zhang
& Chwang (1996) carried out a comprehensive investigation on solitary waves pro-
duced by submerged moving objects. Their numerical solutions of the NS equations
were in excellent agreement with the experimental data of Lee et al. (1989). The
investigation revealed that the source of vorticity at the bottom of the channel and
in the boundary layer of a submerged body is much stronger than that on the
free surface. Although viscous action on the free surface may have some effect,
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the viscous effect in the boundary layer around the body, and on the floor of the
channel, plays an important role in the generation of solitary waves. The excellent
agreement with experiments by the numerical solutions of NS equations is primarily
due to the fact that the viscous effects in the boundary layer around the body and
on the floor of the channel can be correctly simulated in the computation of the
NS formulation. The investigation showed that waves generated are insensitive to
the submergence depth of the body, except when the body is quite close to the
bottom of the channel. This supports the theory and agrees with the experimental
observation.

The present work can be seen as a sequel to the previous study (Zhang & Chwang
1996) and is primarily concerned with the dependence of solitary-wave radiation
on the shape of the submerged transcritically moving object and on the blockage
coefficient. In the experimental study of Ertekin et al. (1984), it was pointed out
that the dominant factor governing the generation of solitary waves is the blockage
coefficient, defined as the ratio of the mid-ship-sectional area to the cross-sectional
area of the channel. Based on the existing inviscid results, different studies (e.g.
Ertekin et al. 1984, 1986; Mei 1986; Ertekin & Qian 1986; Teng & Wu 1997) have
shown that if the disturbance length is sufficiently long (much larger than the water
depth), the dominant forcing parameter is the blockage coefficient, while the shape
of the disturbance does not have a significant effect. When the disturbance length
is of the same order as the water depth, however, the shape of the disturbance
will have a significant effect on the waves. Thus, the objective of the present study
is to verify the blockage coefficient concept and to examine numerically the effect
of disturbance shape on the generation of solitary waves. The important relations
among key flow quantities, such as the relations between amplitude and celerity,
and between amplitude and period of generation, are investigated. The numerical
method employed for calculations is outlined in § 2. Calculations are performed for
a series of elliptic cylinders of the same volume (the same cross-sectional area in the
present two-dimensional case) but of different major-to-minor axis ratios, moving at
a transcritical velocity in a channel of different water depths resulting in different
blockage coefficients. The results of these calculations are presented in § 3, where
the general characteristics of the solitary waves generated are described; the detailed
information of the flow is presented; and the effects of the blockage coefficient and
the shape of submerged bodies on the generation of solitary waves are examined.
Finally, conclusions are given in § 4.

2. Outline of the numerical method
The present computational method is based on the approach of Zhang & Chwang

(1996). Only an outline of the method is given in this section. A Cartesian coordinate
system (xi) is established as the reference frame, with the origin fixed on the mean
free surface at the mid-body, the x1-axis in the downstream direction and the x2-
axis pointing vertically upwards (see figure 1). The motion of an incompressible
viscous fluid under the influence of gravity is governed by the Navier–Stokes (NS)
equations and the continuity equation, which in a boundary fitted coordinate system
(ξj), ξj = ξj(xi, t), are given by
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Figure 1. Schematic diagram of an obstacle fixed in a uniform stream of velocity u0.
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where ui is the velocity component along the xi-axis, t is the time, J is the Jacobian of
the transformation, Uj is the contravariant velocity component along the ξj direction,
gjl is the metric tensor, φ is the redefined pressure term, p is the pressure, and ∂ξj/∂t
associated with the grid movement is the grid point speed. The governing equations
are normalized by the uniform stream velocity (or in a laboratory frame, the steady
velocity of the disturbance) uo and the initial uniform water depth ho. The Reynolds
and Froude numbers are defined as Re = u0h0/ν and Fn = u0/(gh0)

1/2, respectively,
where g is the gravitational constant and ν is the kinematic viscosity coefficient.

The free-surface boundary is not known a priori. The location of the free surface is
part of the solution in the problem and is determined from the free-surface boundary
conditions which consist of one kinematic condition and two dynamic conditions.
The kinematic condition, which states that fluid particles of the free surface stay on
the free surface at any time, is
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The dynamic conditions represent the continuity of stresses on the free surface.
Neglecting the surface tension on the free surface, the dynamic conditions are

niσijnj = 0 (5)

and

tiσijnj = 0 on the free surface, (6)

where ni is the unit outward normal vector and ti the unit tangential vector to the free
surface. The stress tensor for an incompressible Newtonian fluid can be expressed as

σij = −pδij +
1

Re

(
∂uj

∂ξl
∂ξl

∂xi
+
∂ui

∂ξl
∂ξl

∂xj

)
, (7)

where δij is the Kronecker delta.
The no-slip boundary condition is imposed on the body surface and on the bottom

of the channel. The solution domain is made sufficiently large in the upstream
direction so that the generated solitary waves travelling upstream do not hit the
upstream boundary at the final time of computation. Thus, at the far upstream, flow
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is uniform and the free surface is undisturbed. However, the downstream boundary
condition must be carefully implemented to prevent the reflection of waves into the
solution domain. The added dissipation zone method of Chiba & Kuwahara (see
Hinatsu 1992) is used for the downstream boundary. The initial velocity field is taken
to be that of the static (quiescent) fluid case, and a constant acceleration is imposed
in the entire domain until the inflow velocity attains one.

A regular grid is used in the present method for discretization. The velocity
and pressure are evaluated at computational cell centres. Spatial differentials are
discretized using the second-order central difference, and the QUICK scheme of
Leonard (1979) is used for discretization of convection terms. Time marching is
carried out using a time-splitting fractional-step method. It is a two-step predictor–
corrector scheme. In the predictor step, an intermediate velocity field ũi is computed
explicitly by integrating equation (1) in time, using the velocity and pressure from
previous timestep n,
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where ∆t is the time increment and the superscripts n and n+ 1 denote the previous
and the present timesteps, respectively. After the predictor step, the location of the
free surface at timestep n+ 1 is evaluated by integrating equation (4) explicitly,
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(
u2 − u1

∂ξi

∂x1

∂h

∂ξi

)n
, (9)

and the grid of the flow domain is regenerated to fit the newly estimated free surface.
The Jacobian and the metric tensor are recalculated according to the new grid.

At the second step, ũi is corrected by the pressure increment δφ = φn+1 − φn
between the present timestep n+ 1 and the previous timestep n to obtain the velocity
field un+1

i at the present timestep n+ 1
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Note that the difference of the pressure differential between n+ 1 and n timesteps is
simply approximated by the differential of the pressure increment at n+ 1 timesteps.
However, the pressure increment δφ in equation (10) is not known and must be
determined by requiring the velocity field un+1

i to satisfy the continuity equation. The
divergence-free condition applied to un+1

i yields a Poisson equation for δφ by taking
the divergence of equation (10). Thus,[
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Ũi

J

)]n+1

= ∆t

{
∂

∂ξk

[
∂ξk

∂xi

∂

∂ξj

(
δφ

J

∂ξj

∂xi

)]}n+1

, (11)

where Ũi = (∂ξi/∂xj)ũj . The pressure at timestep n + 1 is then obtained by φn+1 =
φn + δφ.

The unsteady problem is treated as a quasi-steady one between successive physical



124 D. Zhang and A. T. Chwang

Case Major–minor Water depth Blockage coefficient Reynolds
number axis ratio (a/b) h0 (cm) (Cb = 2b/h0) number (Re)

1 6 4.00 0.200 3.0068× 104

2 6 4.57 0.175 3.2129× 104

3 6 5.33 0.150 3.4687× 104

4 6 6.40 0.125 3.8033× 104

5 6 8.00 0.100 4.2523× 104

6 2 6.91 0.200 2.2757× 104

7 4 4.89 0.200 2.7095× 104

8 8 3.45 0.200 3.2113× 104

9 10 3.09 0.200 3.4025× 104

Table 1. Parameters used for the nine elliptic cylinders.

timesteps. The known value of a dependent variable at time t can be used as an
initial guess for the unknown value of that variable at time t + ∆t for reasonably
small ∆t. Since this is a relatively good guess, only a few iterations are normally
needed to obtain a convergent solution for time t + ∆t. The grid is aligned to the
free-surface boundary, which moves in time. Therefore, the grid is time dependent in
general. However, equation (1) is integrated in time by the explicit method, within
each timestep the grid is independent of time (see Farmer, Martinelli & Jameson
1994). In an explicit method, which must use small timesteps, the problem associated
with grid movement is often ignored (see Ferziger & Peric 1996). Therefore, the
grid-point speed term, ∂ξj/∂t, is dropped in equations (8) and (9).

3. Discussion of results
In the experimental study of Ertekin et al. (1984), it was pointed out that the

dominant parameter governing the generation of solitary waves is the blockage
coefficient, defined as the ratio of the mid-ship-sectional area to the cross-sectional
area of the channel. Zhang & Chwang (1996) showed that in experimental situations
(the Reynolds numbers are in the range of 104) the viscous effect in the boundary
layer around a body and on the floor of a channel plays an important role in the
generation of solitary waves, indicating that the body shape has a significant effect
on the properties of solitary waves generated. Therefore, a systematic study is carried
out to investigate the effect of the blockage and the effect of the body shape on
the generation of solitary waves. It is difficult to define accurately the shape of an
arbitrary body and to account for the effect of trivially changing its shape on waves
generated. Therefore, elliptic cylinders of the same cross-sectional area but different
aspect ratios are chosen for the investigation of the shape effect. Nine elliptic cylinders
in laboratory scale, all having the same cross-sectional area of 3 cm2, are used for
calculations to investigate the effects of blockage and shape on the waves generated.
The parameters used for the nine calculation cases are listed in table 1. The Reynolds
numbers are based on the body length along the uniform flow direction and the
Froude numbers are all equal to one. The calculations can be organized into two
groups: group 1 (cases 1 to 5) for investigating the effect of blockage coefficient on
solitary-wave generation, and group 2 (cases 6, 7, 1, 8, and 9) for studying the shape
effect on solitary-wave generation.

The calculation domains for all the cases are the same, i.e. 120 units in the horizontal
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direction and 1 unit in the vertical direction. Two-hundred and seventy grid points are
used in the horizontal direction and 47 grid points are given in the vertical direction.
The grid lines are clustered to the solid wall of the body, to the bottom of the channel,
and to the free surface with a minimum grid spacing of 0.002 adjacent to the wall in
the vertical direction (see figure 4). The centroid depth of the elliptic cylinders is −0.7.
The timestep is set to be ∆t = 0.01. The computations start at the initial condition of
zero velocity and pressure everywhere and a flat free surface. A constant acceleration
of 0.33, or 0.33g in the dimensional space, is imposed on the entire domain until
the uniform flow velocity reaches one. For the timestep of ∆t = 0.01, 300 timesteps
are needed to accelerate the uniform flow velocity from zero to one. Two numerical
wave gauges are set up in the calculations to record the waves generated. One is
fixed with the cylinder and positioned at its leading edge to record the ‘birth’ of
the upstream-advancing waves, and another is located at 70 units upstream of the
cylinder initially and then moves with the uniform stream to measure the free-surface
elevation as a function of time.

3.1. General character of the calculated solitary waves

Before the discussion on the blockage and shape effects on the generation of solitary
waves, the properties of upstream-advancing solitary waves calculated by the present
numerical method, such as the preiod of generation, the wave speed, and some other
pertinent flow quantities, are examined.

The free-surface profiles at various times from the present numerical results of
calculation case 1 are shown in figure 2. This plot shows the development of the
surface-wave elevation with time as viewed in the body frame. The overall features of
the aforementioned phenomenon of solitary waves are clearly shown by the plot. It is
evident that waves are generated periodically at the disturbance and developed into
waves of almost constant amplitude, propagating upstream without changing shape at
a constant velocity c−uo relative to the body, c being the amplitude-dependent phase
velocity in the fluid frame. The phase velocity c can be determined with reasonable
accuracy by the slope of a straight line connecting the crests of solitary waves at
different times in the plot. One of the important properties of solitary waves generated
by a disturbance moving at the critical speed is that their speed is supercritical and
related to the amplitude. Two theoretical formulae, one being c = (1 + α)1/2 given
by Rayleigh, and the other being c = 1 + 0.5α given by the KdV model (cf. Teng &
Wu 1992) are available for expressing the relation between the phase velocity c of
a solitary wave and its amplitude α. The relations between c and α of the leading
solitary waves corresponding to all nine cases in table 1 are shown in figure 3 together
with those estimated by the two theoretical formulae. It can be seen that the present
numerical results lie in between the estimations of the two theoretical formulae. For
small α, the present results have a better agreement with those given by the Rayleigh
formula, whereas for large α the present results are about the average of the values
from the two theoretical formulae.

Another important property of solitary waves generated by a transcritically moving
object is that the period of solitary-wave generation is related to its amplitude.
Wu (1987) derived an approximate formula based on mass, momentum and energy
considerations of the fKdV equation to express the relation between the period of
solitary-wave generation TS and wave amplitude α as TS = 12.3/α3/2. The relation
between the period of solitary-wave generation and its amplitude obtained by the
present numerical method is in good agreement with Wu’s formula, and both show
that the period of solitary-wave generation decreases as the wave amplitude increases.



126 D. Zhang and A. T. Chwang

1.5
1.0

100

50

0

h

T

–60 –40 –20 0 20 40 60

x1

Figure 2. Free-surface profiles at various time t for calculation case 1.
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Figures 4 and 5 show the velocity vector plot and vorticity contours for calculation
case 1 at time t = 120, respectively. The viscous thin boundary layers around the
cylinder and on the part of the channel floor under the cylinder, and the flow
separation at the lower part of the trailing edge are clearly shown in these figures.
The presence of the viscous boundary layers may be thought to increase the effective
strength of the cylinder, thus affecting the generation of solitary waves. The pressure
distribution in the flow for calculation case 1 at time t = 120 is given in figure 6. It
can be seen that the pressure is positive under the solitary waves, but negative in the
depressed region and at the upper part of the trailing edge of the cylinder.

3.2. The effect of blockage on the generation of solitary waves

In the experiments of Ertekin et al. (1984), a model of a Series 60, CB = 0.80 ship hull
was used, where CB is the Block coefficient (see Newman 1980). By systematically
varying the water depth, draft and width of the tank, a wide range of blockage
coefficients was obtained. It was found that the amplitude of solitary waves and
the time period of generation depend only on the blockage coefficient. When the
blockage coefficient is made equal, it would generate forward advancing solitary
waves with the same wave elevation and the same period of generation. Based on the
slender-body theory, Mei (1986) derived an inhomogeneous KdV equation in which
the forcing term is related to the blockage coefficient. Two specific cases with the
smallest blockage coefficient corresponding to Ertekin’s experiments were simulated.
The results agreed well with most of the observations of Ertekin et al. (1984). Later,
Ertekin, Qian & Wehausen (1990) used the g-B equation proposed by Wu (1981)
to calculate the precursor solitons generated by a strut of parabolic cross-section.
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Figure 4. Velocity-vector plot at t = 120 for calculation case 1.
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Figure 5. Vorticity contours at t = 120 for calculation case 1.
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Figure 6. Pressure contours at t = 120 for calculation case 1.

In order to facilitate comparison with the experiments of Ertekin et al. (1984), the
calculations matched the blockage coefficients in various experiments, and the ratios
of the half tank width to the water depth. The agreement between the computed
values for the strut and the measured values for the ship model indicates that the
blockage coefficient is of primary importance in determining the properties of the
precursor solitons.

In the present study, numerical simulations based on the NS equations are carried
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out to investigate the effect of the blockage coefficient on the solitary-wave generation.
An elliptic cylinder of 2.4 cm semi-major axis and 0.4 cm semi-minor axis is used for
the calculations. Five different water depths corresponding to five different blockage
coefficients are adopted for calculation cases 1 to 5 in table 1. Wave elevations at
time t = 120 for all calculation cases are presented in figure 7. The figure shows
that the amplitudes of upstream runaway solitary waves and the downstream trailing
waves increase as the blockage coefficient increases. As for the depressed water region
immediately behind the moving disturbance, the water depth of the region decreases
while its length increases as the blockage coefficient increases. Figure 8 shows the
amplitude of the first solitary wave, α, and the period of the solitary wave generation,
TS , versus the blockage coefficient. It can be seen that the amplitude increases while
the period decreases as the blockage coefficient increases.

The available experimental data of Lee et al. (1989) and Teng & Wu (1997) are
included in figure 8 for comparison. In the theoretical and experimental study of
Lee et al. (1989), a two-dimensional body of an arched cross-section with a chord of
4.9 cm, height of 0.65 cm, and span of 72 cm was used. Two water depths, h0 = 4.0 cm
and h0 = 5.33 cm, corresponding to two different blockage coefficients, 0.163 and
0.123, were used for the study. Numerical results from the g-B equation and the
fKdV equation, with the viscous effect being taken into account crudely, showed good
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agreement with the experimental data. Later, Teng & Wu (1997) carried out a similar
experimental study with two identical vertical struts along the channel sidewalls.
The shape and size of the cross-section of the struts were the same as those of the
two-dimensional cylinder in the experiments of Lee et al. (1989). The half-width of
the channel was 5 cm, resulting in a blockage coefficient of 0.132.

It is interesting to note that the detailed geometry of the elliptic cylinder used in
the present numerical calculations is different from that of the arched cylinder used
in the aforementioned experiments, but as long as the blockage coefficient is kept the
same, the amplitudes of solitary waves predicted by the present NS method would
agree well with the experiments. However, as will be discussed in the next section, the
body shape does play a significant role in the generation of solitons in a viscous flow.

It should be noted that the physical models used in the experiments of Lee et al.
(1989) and Teng & Wu (1997) were very small and the Reynolds numbers were of
the order of 104. The viscous effect was significant in these experiments. Therefore,
an empirically determined effective bump height of 0.8 cm instead of the actual
bump height of 0.65 cm was used in their inviscid numerical calculations of the g-B
equation and the fKdV equation to crudely account for the viscous effect. Otherwise,
the comparison between the theoretical and experimental results would be poor.
However, for experiments of high Reynolds numbers, say 106, the overall viscous
effect on the generation of solitary waves may be insignificant. The predictions by the
inviscid theoretical models would be comparable with the experiments. The present
NS method has been used to simulate the experiments of Lee et al. (1989) by Zhang
& Chwang (1996). Using the exact geometry as in the experiments, the present NS
method accurately predicted all the characteristics of solitary waves observed in the
experiments. Further study on solitary waves generated by three-dimensional bodies
such as surface ships is of interest, and can be carried out by the present method.

3.3. The effect of body shape on solitary-wave generation

Different studies based on the approximate inviscid flow theory (Akylas 1984;
Grimshaw & Smyth 1986; Smyth 1987) have shown that the generation of soli-
tary waves depends on the total force only, and not on the precise detail of the
excitation. In the present study, the shape effect on the solitary-wave generation is
investigated by more accurate, fully nonlinear models based on viscous and inviscid
flow theories, i.e. the NS and the Euler equations. By dropping the viscous terms,
the governing NS equations reduce to the Euler equations. The boundary conditions
described above must be modified accordingly. For instance, the no-slip condition
applied on the body surface should be replaced by the no-penetration condition.

The calculation cases 6, 7, 1, 8, and 9 (group 2) are designed to investigate the shape
effect on the solitary-wave generation. All the five elliptic cylinders have the same
cross-sectional area of 3 cm2, meaning the same forcing intensity. The major-to-minor
axis ratios of the five elliptic cylinders are 2, 4, 6, 8, and 10, respectively, and the water
depth varies in such a way that the same blockage coefficient Cb = 0.20 is maintained
for the five calculation cases (see table 1). Wave elevations obtained from the Euler
solutions for the five cases at time t = 120 are shown in figure 9. It can be seen from
the figure that the upstream-advancing solitary waves are essentially the same for all
five cases. For the cases of major-to-minor axis ratio greater than 4, the difference in
depressed water regions and trailing waves are still minor. Noticeable differences are
seen only for case 6(a/b = 2), in which the depressed water region becomes shorter
with a higher water level and the amplitudes of trailing waves become smaller. The
results indicate that, in inviscid flow, the shape of a body has no effect on the
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Figure 9. Free-surface elevation h at time t = 120 for cylinders of different shape with
the same blockage coefficient Cb = 0.2 (Euler solutions).
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Figure 10. Free-surface elevation h at time t = 120 for cylinders of different shape with
the same blockage coefficient Cb = 0.2 (Navier–Stokes solutions).

generation of upstream-advancing solitary waves, but has an effect on the depressed
water region and trailing waves when the length of the body is sufficiently short.

Computations with the NS equations are carried out for the same five bodies to
investigate the shape effect on the wave generation in viscous flow. Similar plots to
those in figures 7 and 8 are given in figures 10 and 11 to display the effect of body
shape, i.e. the major-to-minor axis ratio a/b, on the solitary-wave generation. Similar
trends to those shown in figures 7 and 8 for variations of amplitude and period with
Cb are now seen in figures 10 and 11 for variations of amplitude and period with the
major-to-minor axis ratio a/b. In figure 12, the NS and Euler solutions are shown
together for each case separately. The effect of viscosity on wave generation can be
seen distinctly. As can be seen, the longer the body, the stronger the viscous effect.
The effect stems from the viscous boundary layer in the immediate neighbourhood of
the solid-body surface (see figures 4 and 5). The presence of a viscous boundary layer
around the body may be sought to increase the effective disturbance caused by the
body. If a shape change results in an increase in the affected region of its boundary
layer, the influence on the flow by the body would increase. For elliptic cylinders of
constant cross-sectional area, the larger the major-to-minor axis ratio, the bigger the
area of the solid surface, and so the stronger the viscous effect.

Flow behaviour in a viscous fluid is highly dependent on the Reynolds number.
Tang, Patel & Landweber (1990) investigated the viscous damping of a free-running
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Figure 12. Comparisons of free-surface elevation h at time t = 120 for cylinders of different shape
with the same blockage coefficient Cb = 0.2. —–, NS solution; - - -, Euler solution.

solitary wave in a two-dimensional shallow water channel by numerically solving the
NS equations for three different values of the Reynolds number, Re = 50, 500, and
50 000. They found that the viscous damping of the wave decreases with increasing
Reynolds number. The viscous damping comes from both the bottom of the channel
and the free surface, with that from the former being much stronger. In the present
calculations, the Reynolds number is of the order of 104 (see table 1). Under these
circumstances, the viscous effect on the solitary-wave generation owing to a change
of the body shape comes mainly from the viscous boundary layers around the body
and at the bottom.
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The viscous effect on solitary waves generated by underwater moving objets depends
on factors such as the flow separation, formation of vortices in the boundary layer
and in the wake of the body, and the interaction between waves and viscosity. It
is well established that the boundary layer and the wake can influence the resulting
wave structure through the displacement thickness effect, and the wave structure, in
turn, can influence the boundary layer through wave elevation and the wave-induced
pressure gradient.

3.4. A preliminary discussion on the limit of the resonant regime

The above discussion on the generation of solitary waves by underwater moving
objects is concentrated entirely on the critical case in which the Froude number is
exactly unity. Experiments, numerical simulations and theoretical analyses all indicate
the existence of a transcritical speed range in which an upstream train of solitary
waves of uniform amplitude is observed (Huang et al. 1982; Ertekin et al. 1984;
Miles 1986; Grimshaw & Smyth 1986; Wu 1987; Melville & Helfrich 1987; Lee et
al. 1989). For single-layer flows, Miles (1986) predicted the lower and upper critical
Froude numbers (Fl, Fu) analytically via the Rayleigh asymptotic process. They are
F2
l = 1 − ( 9

2
ε)2/3 and F2

u = 1 + ( 9
4
ε)2/3. Here, ε is the blockage coefficient which

measures the strength of the forcing. Grimshaw & Smyth (1986, hereinafter referred
to as GS) described the flow of a continuously stratified fluid over topography for
both the resonant and non-resonant cases by the fKdV equation. They showed that
the resonant limits are defined by ∆− < ∆ < ∆+. Here ∆ is the detuning parameter,
and ∆− and ∆+ are the lower and upper limits which are scaled differently with the
forcing parameters for broad and narrow obstacles. In order to make comparisons
easily, Melville & Helfrich (1987) extended Miles’ (1986) results to two-layer flows
(described by the fKdV equation), and then expressed both Miles’ (1986) and GS′
(1986) results in terms of the Froude number and the effective blockage coefficient γ
(see their equations (5.2), (5.3), (5.4) for more details). The upper bounds were shown
in their figure 9. It is seen from this figure that values of the upper critical Froude
number predicted by different theories are different. For instance, when γ = 0.0625,
the (Fl, Fu) predicted by Miles and GS for a narrow obstacle and GS for a broad
obstacle are (0.72, 1.17), (0.86, 1.28) and (0.9, 1.21), respectively. Fl shows a 19%
difference between Miles’ prediction and GS’ prediction for a narrow obstacle, and
a 25% difference between Miles’ prediction and GS’ prediction for a broad obstacle,
while Fu shows a 9% and 3% difference, repectively.

It is of interest to examine the existence of a transcritical regime for the generation
of solitary waves by the present fully nonlinear model. A number of computations for
case 1 with the Froude number increasing from 0.85 to 1.05 are carried out for
a preliminary investigation. Figure 13 shows the qualitatively different solutions
obtained for different Froude numbers with the forcing strength and the blockage
coefficient being fixed. It is seen that as the Froude number increases, the solution
goes from upstream undular bores to solitary waves, and then back to undular bores
again. More numerical runs at Froude numbers between 0.9 and 1.05 with an interval
of 0.01 are carried out and the results seem to indicate that Fl and Fu are 0.95 and
1.03, respectively.

Tomasson & Melville (1991) found an upstream front-like solution in the shallow-
water model including the cubic nonlinearity. However, when the Froude number is
within the range of 0.85–1.05, no upstream front-like solutions appear in the present
fully nonlinear model.
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Figure 13. Free-surface elevation h at time t = 120 from computational results of case 1
(NS solution; a/b = 6) at Froude numbers from 0.85 to 1.05. Cb = 0.2.

4. Conclusions
A series of calculations for nine elliptic cylinders of the same cross-sectional area

but of different shape moving steadily at critical speed in shallow water channels of
different water depths is carried out to study the blockage effect and the shape effect
on the generation of solitary waves. The overall features of the generated solitary
waves are accurately simulated by the present numerical method of NS equations. The
relation between the period of solitary-wave generation and its amplitude, calculated
by the present numerical method matches well with Wu’s (1987) theoretical formula
based on the mass, momentum and energy considerations of the fKdV equation.
The relation between the amplitude and celerity of solitary waves calculated by the
present numerical method is also in good agreement with those of two theoretical
formulae, one given by Rayleigh and the other derived from KdV model. Furthermore,
the detailed information of the flow, such as the pressure distribution, velocity and
vorticity fields, is available from the present method.

The present study confirms the findings of experiments that the blockage coefficient
has a significant effect on the solitary-wave generation. The wave amplitude increases
while the period of generation decreases as the blockage coefficient increases. The
effect of a body shape on the solitary-wave generation is investigated by using both
the NS and Euler equations. It is found that, in inviscid flow, the shape of a body
under the free surface has no effect on the generation of upstream-advancing solitary
waves, but has an effect on the depressed water region and trailing waves when the
body length is sufficiently short (body-length/water-depth ratio 2a/h0 < 0.8 in the
present study). While in viscous flow, the shape of a body under the free surface
has a significant effect on the solitary-wave generation through viscous effect in the
boundary layer of the body. In general, if a change in shape results in increasing
the area of the body surface, the viscous effect will be enhanced, and so will the
disturbance forcing. Therefore, the amplitude of solitary waves increases while the
period of generation decreases. For two-dimensional cylinders of elliptic cross-section
of the same area, the thinner (larger major-to-minor axis ratio) the cross-section is,
the larger the amplitude and frequency of the solitary waves will be.
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