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Abstract. – A Schwinger boson mean-field theory is developed for spin liquids in a symmet-
ric spin-orbital model in higher dimensions. Spin, orbital and coupled spin-orbital operators
are treated equally. We evaluate the dynamic correlation functions and collective excitations
spectra. As the collective excitations have a finite energy gap, we conclude that the ground
state is a spin-orbital liquid with a two-fold degeneracy, which breaks the discrete spin-orbital
symmetry. Based on this conclusion, we propose that broken symmetry or symmetric frustra-
tion instead of geometric quantum frustration provides a new route to explore the spin liquid
states. Possible relevence of this spin liquid state to several realistic systems, such as CaV4O9

and Na2Sb2Ti2O, are discussed.

The formation of a spin gap in two- or higher-dimensional quantum spin systems is a long-
standing issue in strongly correlated problems [1]. Several physical mechanisms were proposed
to explain the spin gap in the low-energy excitations. Most of them focus on one-dimensional
spin chains and spin ladders. In higher dimensions Anderson proposed that strong quantum
fluctuations for spin-(1/2) systems may destroy the antiferromagnetic long-range order in two
dimensions, and lead to form a resonating valence bond (RVB) state in which a spin gap
may open [2]. However, it becomes true only for some frustrated spin systems such as on
the Kagome lattice or in the Majumdar-Ghosh model with a strong next–nearest-neighbor
interaction, otherwise there exists antiferromagnetic long-range orders in the ground state on
a square and triangle lattice. Recently, it has been realized that orbital degrees of freedom
of d- and f -electrons in transition metal ions provide a new route to explore the formation
of spin gap. Several spin-orbital models [3–10] have shown the tendency to form a spin gap
in the ground states due to strong orbital and spin quantum fluctuations. Accumulating
numerical calculations show that spin liquid state may be formed in some one-dimensional
spin-orbital coupled systems. Behaviors in higher-dimensional systems are relatively less clear.
Experimentally, several higher-dimensional spin gap materials, such as Na2Ti2Sb2O [11] and
c© EDP Sciences
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NaV4O9 [12], are synthesized, in which the orbital degree of freedom might play a key role in
the formation of the spin gap.

The spin-orbital model Hamiltonian is written as [13,14]

H = J
∑
〈ij〉

(
2Si · Sj +

1
2

)(
2τi · τj +

1
2

)
+

+Js

∑
〈ij〉

(
2Si · Sj +

1
2

)
+ Jτ

∑
〈ij〉

(
2τi · τj +

1
2

)
. (1)

This model may be derived from an electronic model with double orbital degeneracy. This
model possesses an SU (2) ⊗ SU (2) symmetry. When Js = Jτ = J0, the model has an
additional permutation symmetry between spin and orbital. In this case the model can be
written as a combination of two symmetric models

H = (J + J0)
∑
〈ij〉

(
2Si · Sj +

1
2

)(
2τi · τj +

1
2

)
−

−J0

∑
〈ij〉

(
2Si · Sj − 1

2

)(
2τi · τj − 1

2

)
. (2)

The former part is the standard SU (4) spin-orbital model, which is solvable in one-dimension
and has been investigated intensively [6]. The second part is the model first proposed by
Santoro [3], and also possesses the SU (4) symmetry with different generators on a bipartite
lattice. However, the combination of the two models breaks the SU (4) symmetry. From
previous studies, it has been found that the interplay between spin and orbital degrees of
freedom produces either quantum ordered or disordered phases. Spin liquid states with an
energy gap were found in one dimension [3, 4, 8, 10]. To investigate the model systematically,
we try to develop a theory, which can describe the disordered state with an energy gap as well
as the ordered states. The Schwinger boson theory is an ideal candidate. The theory was first
used to the spin SU (2) Heisenberg model [15], and was generalized to study the symmetric
spin-orbital model at J = −J0 by the present authors [10]. The advantage of this theory is
that it can describe either quantum ordered or disordered states. The results for the two- and
three-dimensional Heisenberg model are fully consistent with the spin wave theory. Here we
present the Schwinger boson mean-field theory for this spin-orbital system.

For the present model, there are four possible states on each site i according to the eigen-
values of Sz

i and τz
i : |1〉 = | + 1/2,+1/2〉, |2〉 = | − 1/2,+1/2〉, |3〉 = | + 1/2,−1/2〉,

|4〉 = | − 1/2,−1/2〉. We introduce four Schwinger bosons to describe these four states:
|µ〉 = a†

iµ|0〉, where |0〉 is the vacuum states and µ = 1, 2, 3, 4. There is a local constraint for
the four bosons,

∑4
µ=1 a†

iµaiµ = 1, for each site. On these bases the spin and orbital operators
can be expressed in terms of these four Schwinger bosons:

S+
i = a†

i1ai2 + a†
i3ai4, τ+

i = a†
i1ai3 + a†

i2ai4,

S−
i = a†

i2ai1 + a†
i4ai3, τ−

i = a†
i3ai1 + a†

i4ai2,

Sz
i =

1
2
(
a†

i1ai1 − a†
i2ai2 + a†

i3ai3 − a†
i4ai4

)
,

τz
i =

1
2
(
a†

i1ai1 − a†
i3ai3 + a†

i2ai2 − a†
i4ai4

)
.
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Thus, the Hamiltonian is rewritten in terms of the Schwinger bosons:

H = −J + J0

2

∑
〈ij〉,µν

A†
ij,µνAij,µν −

−J0

∑
〈ij〉,µν

(
B†

ij,14 − B†
ij,23

)(
Bij,14 − Bij,23

)
+

+
∑

i

λi

( 4∑
µ=1

a†
iµaiµ − 1

)
+

1
2
zNΛ

(
J + 2J0

)
, (3)

where Aij,µν = aiµajν − aiνajµ and Bij,µν = aiµajν + aiνajµ. We have introduced antisym-
metric and symmetric operators A and B for the purpose of the mean-field calculations. The
present theory is limited to the case J0 ≥ 0 and J + J0 ≥ 0. The local Lagrangian multipliers
are introduced to realize the local constraint for hard-core bosons. In the mean-field approach
we shall take them as site-independent λi ≡ λ. The thermodynamic averages of the operators
A and B are introduced as the order parameters, respectively,〈

Aij,µν

〉 ≡ −2i∆o
µν(ri − rj),

〈
Bij,µν

〉 ≡ 2∆e
µν(ri − rj).

∆o
µν(ri − rj) and ∆e

µν(ri − rj) are odd and even functions with respect to the indices µ, ν or
the sites ri, rj . In the momentum space, we take

i

Z

∑
δ

∆o
µν(δ)e−ik·δ ≡ ∆o

µν

d

∑
α

sin kα ≡ ∆o
µνγs(k),

1
Z

∑
δ

∆e
µν(δ)e−ik·δ ≡ ∆e

µν

d

∑
α

cos kα ≡ ∆e
µνγc(k),

where δ points to the nearest-neighbor sites. By utilizing the Pauli matrices σα (α = x, y, z)
and the 2 × 2 identity matrix σ0, the mean-field Hamiltonian can be expressed in a compact
form of 8 × 8 matrix,

H =
1
2

∑
k

Φ†
kH(k)Φk + E0,

where

Φ†
k =

(
a†

k1, a
†
k2, a

†
k3, a

†
k4, a−k1, a−k2, a−k3, a−k4

)
,

H(k) = λσ0 ⊗ σ0 ⊗ σ0 − iσy ⊗ A(k) + b(k)σx ⊗ σy ⊗ σy,

A(k) = −2z(J + J0)γs(k)




0 ∆o
12 ∆o

13 ∆o
14

−∆o
12 0 ∆o

23 ∆o
24

−∆o
13 −∆o

23 0 ∆o
34

−∆o
14 −∆o

24 −∆o
34 0


 ,

E0

NΛ
= +z

(
J + J0

)∑
∆2

µν + 2zJ0(∆e
14 − ∆e

23)
2 − 3λ +

1
2
z(J + 2J0),

where b(k) = −2zJ0(∆e
14 −∆e

23)γc(k). The Kronecker product for block matrices is used [16].
The Hamiltonian can thus be diagonalized analytically, and the free energy is evaluated to
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establish the mean-field equations. Due to the symmetry in the Hamiltonian, there exist two
sets of solutions: I) ∆e

14 − ∆e
23 = ∆2, ∆o

12 = ∆o
34 = ∆, ∆o

13 = −∆o
24, ∆o

14 = ∆o
23, with

∆1 =
√

∆2
13 + ∆2

14; II) ∆e
14 − ∆e

23 = ∆2, ∆o
12 = −∆o

34, ∆o
13 = ∆o

24, ∆o
14 = −∆o

23 = ∆,
with ∆1 =

√
∆2

12 + ∆2
13. With the notation ∆, ∆1, and ∆2, the same branches of spectra

are given by ω(k)± =
√

λ2 − a2(k) − b2±(k), where a(k) = −2z(J + J0)∆γs(k) and b±(k) =
−2z(J +J0)∆1γs(k)±2zJ0∆2γc(k). Moreover, these two ground states are degenerated. The
degeneracy may originate from the symmetry of permutation of spin and orbital operators.
When J0 = 0, the model is reduced to the standard SU (4) spin-orbital model. The two
spectra become degenerated, ω(k) =

√
λ2 − [2z(J + J0)γs(k)]2(∆2

12 + ∆2
13 + ∆2

14). In this
way we recover the spectra for the SU (N = 4) model.

In the following we will focus on the ground state with an energy gap, i.e., min(ω(k)) �= 0.
The free energy per site is given by E =

∫
dk

(2π)d (ω+(k)+ω−(k))/2+E0/NΛ. To determine the

order parameters, we introduce a set of dimensionless parameters ∆̃ = 2z(J + J0)∆/λ, ∆̃1 =
2z(J +J0)∆1/λ, ∆̃2 = 2zJ0∆2/λ, and λ̃ = λ/[z(J +J0)], then the dimensionless quasiparticle
excitation spectrum becomes

ω̃±(k) =
√

1 − ∆̃2γ2
s (k) − [∆̃1γs(k) ± ∆̃2γc(k)]2. (4)

The self-consistent mean-field equations are established by minimizing the free energy,∫
dk

(2π)d

[
1

ω̃+(k)
+

1
ω̃−(k)

]
= 3, (5a)

∫
dk

(2π)d

[
γ2

s (k)
ω̃+(k)

+
γ2

s (k)
ω̃−(k)

]
= 2λ̃, (5b)

∫
dk

(2π)d


 (∆̃1γs(k)+∆̃2γc(k))γs(k)

ω̃+(k)

+ (∆̃1γs(k)−∆̃2γc(k))γs(k)
ω̃−(k)


 = 2λ̃∆̃1, (5c)

∫
dk

(2π)d


 (∆̃1γs(k)+∆̃2γc(k))γc(k)

ω̃+(k)

− (∆̃1γs(k)−∆̃2γc(k))γc(k)
ω̃−(k)


 = λ̃∆̃2

(
1 +

J

J0

)
. (5d)

Substituting eq. (5b) into eq. (5c), we have∫
dk

(2π)d

[
1

ω̃+(k)
− 1

ω̃−(k)

]
∆̃2γc(k)γs(k) = 0.

If ∆̃2 �= 0, ∆̃1 must be equal to zero. Oppositely, if ∆̃2 = 0, the solution is for the case of
J0 = 0. Therefore for J0 > 0, the solution is ∆̃1 = 0, with ω̃+(k) = ω̃−(k) ≡ ω̃(k). The
two spectra are also degenerated. Two sets of saddle point solutions become, corresponding
to the spin liquid phase with an energy gap in elementary excitations: I) ∆e

14 − ∆e
23 = ∆2,

∆o
12 = ∆o

34 = ∆, and ∆o
µν = 0 otherwise. II) ∆e

14 − ∆e
23 = ∆2, ∆o

13 = −∆o
24 = ∆, and

∆o
µν = 0 otherwise. We focus on the first set of solutions and then present the results for the

second set of solutions. For a given value of J/J0, we have a set of solutions for λ̃, ∆̃, ∆̃2.
To determine the physical properties of the state, we define the one-particle Green’s func-

tion in an 8 × 8 matrix form as

G(k, t) = −i
〈
0
∣∣T{Φk(t)Φ†

k(0)
}∣∣0〉,
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where |0〉 is the ground state of the Hamiltonian. Its Fourier transform is given by

G(k, ω) =
(
(ω + iδ)σz ⊗ σ0 ⊗ σ0 − Hk

)−1

=
1

ω2 − λ2 + a2(k) + b2(k) + iδ
×

×
{

ωσz ⊗ σ0 ⊗ σ0 − λσ0 ⊗ σ0 ⊗ σ0

+a(k)σy ⊗ σ0 ⊗ σy − b(k)σx ⊗ σy ⊗ σy

}
,

with a(k) = −2z(J + J0)∆γs(k) and b(k) = −2zJ0∆2γc(k). From these Green functions, we
evaluate the dynamic correlation functions for the spin Sz

i , orbital T z
i , and spin-orbital density

operators 2Sz
i T z

i . After some algebra, we have

χX(q,Ω + iδ) =
1
8

∫
dk

(2π)d

(
CX(k, q)

ω(k)ω(k + q)
− 1
)
×

×
[

1
Ω + iδ + ω(k) + ω(k + q)

− 1
Ω + iδ − ω(k) − ω(k + q)

]
,

with (X = S, T, ST )

CS(k, q) = λ2 − a(k)a(k + q) − b(k)b(k + q),

CT (k, q) = λ2 + a(k)a(k + q) − b(k)b(k + q),

CST (k, q) = λ2 − a(k)a(k + q) + b(k)b(k + q).

If the minimum of ω(k) is non-zero, Im[χX(q,Ω)] become non-zero only when Ω ≥ 2min(ω(k)).
Thus the three collective excitations for the density-density correlation function have a finite
energy gap, ∆gap = 2min(ω(k)). It is worth mentioning that the solution has broken the
discrete permutation symmetry of spin and orbital. This can be seen from the fact that, in
general, χS(q,Ω) �= χT (q,Ω). The same expressions are obtained for the second set of solutions
if we permute the indices S and T . The spectra and free energy as well as the energy gap
are identical to the first set of solutions. Thus the two sets of solutions are energetically
degenerated. The symmetries in the two states are different. More important, the double
degeneracy of the ground state was also observed in one dimension in other approaches [4,17].
Therefore, this two-fold degeneracy is not a consequence of the mean-field approach, and can
be regarded as an evidence to support our mean-field theory.

Now we come to evaluate the energy gap by solving the mean-field equations. On a one-
dimensional chain, the energy gap can be evaluated analytically by introducing a parameter
x0 = (∆̃2 − ∆̃2

2)/(1 − ∆̃2
2). The energy gap and the ratio of J0/J are

∆gap = 4z(J + J0) ×




K(x0) − E(x0)
πx0

, if x0 < 0,

√
1 − x0

K(x0) − E(x0)
πx0

, if x0 ≥ 0,

J

J0
= −1 + 2

K(x0) − E(x0)
E(x0) − (1 − x0)K(x0)

,

where K(x) is the complete elliptic integral of the second kind and E(x) is the complete
elliptic integral of the first kind. We have established a one-to-one correspondence between
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Fig. 1 – The energy gap (2z(J + J0)) via the ratio of J0/J in two and three dimensions.

the ratio J0/J and the energy gap. We find that there is a turning point at J0/J = 1. The
theory fails at the symmetric point J0 = 0. The energy gap still opens at that point, which is
in conflict with the solution of Bethe ansatz [18]. The same problem was encountered in the
spin-(1/2) SU (2) theory in one dimension.

The mean-field equations for two-dimensional square lattice and three-dimensional cubic
lattice are solved numerically. The energy gaps for two- and three-dimensional lattices are
plotted in fig. 1. We find that the energy gap opens in the regime of 0.380 < J0/J < 9.84
for d = 2 and of 0.666 < J0/J < 1.667 for d = 3. The gap closes at two critical ratios
J0/J . From fig. 1, it is shown that the energy gap appears in a larger parameter range in
two dimensions than in three dimensions. This is consistent with the fact that the quantum
fluctuations are stronger in two dimensions. Out of the above parameter regimes the Bose
condensations have to be considered, otherwise the mean-field equations have no solutions.
The Bose condensation of Schwinger bosons is characteristic of the magnetic or orbital long-
range orders, as we discussed in the symmetric point J = −J0 [10]. At the point of J = −J0,
the ground state possesses ferromagnetic coupled spin-orbital long-range order as well as the
conventional spin and orbital long-range orders. At another point of J0 = 0, the ground state
possesses antiferromagnetic coupled spin-orbital long-range order. A detailed discussion on
these phases will be presented elsewhere. As far as we know, the Schwinger boson mean-field
theory is very successful for the spin liquid state for s = 1 in one dimension, and anti- and
ferromagnetic states for higher dimensions. Our theory shows that it also works very well for
spin-orbital liquid states in higher dimensions.

Physically, it is broken symmetry or symmetric frustration which drives the system to a
spin-orbital liquid. Traditionally, we explore the spin liquids based on geometric quantum
frustration as proposed by Anderson [2]. The idea was realized in some strongly frustrated
systems. In the present theory, the couplings are not frustrated. The spin-orbital liquids arise
in the regime which deviates from two high symmetric points, which do not break the spin
SU (2) symmetry. The term in eq. (1) which breaks the high symmetry forces the system
to destroy the ordered states to enter frustrated liquid states. This contains a new physics:
symmetric frustration provides a new possible route to explore the spin liquid. Some higher-
spin systems break the high symmetry and may have liquid states [19]. The formation of a spin
energy gap indicates that the ground state is a spin-orbital liquid. Experimentally the energy
gap can be measured from magnetic susceptibility. There are several higher-dimensional
materials such as Na2Ti2Sb2O and CaV4O9 [12]. It is believed that the orbital degrees of
freedom play an important role in the formation of spin gap [4, 5]. The low-temperature
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phases of these materials may be relevant to the spin-orbital liquid with the energy gap as we
discuss in this paper.

In conclusion, we develop a Schwinger boson mean-field theory for spin gap in any di-
mensions. The ground state of the model is a spin-orbital liquid with an energy gap in an
extensive parameter regime. This ground state breaks the discrete symmetry of permutation
of spin and orbital, and is doubly degenerated. The broken high symmetry plays a key role
in the formation of the spin gap.

∗ ∗ ∗

This work was supported by a RGC grant of Hong Kong.

REFERENCES

[1] Dagotto E. and Rice T. M., Science, 271 (1996) 618.
[2] Anderson P. W., Mater. Res. Bull., 8 (1973) 153.
[3] Santoro G. et al., Phys. Rev. B, 55 (1997) 16168; Phys. Rev. Lett., 83 (1999) 3065.
[4] Pati S. K., Singh R. R. P. and Khomskii D. I., Phys. Rev. Lett., 81 (1998) 5406.
[5] Katoh N. and Imada M., J. Phys. Soc. Jpn., 67 (1998) 564.
[6] Li Y. Q., Ma M., Shi D. N. and Zhang F. C., Phys. Rev. Lett., 81 (1998) 3527.
[7] Martins M. J. and Nienhuis B., Phys. Rev. Lett., 85 (2000) 4956
[8] Ito C., Qin S. J. and Affleck I., Phys. Rev. B, 61 (2000) 6747.
[9] van den Bossche M. et al., Phys. Rev. Lett., 86 (2001) 4214.

[10] Zhang G. M. and Shen S. Q., Phys. Rev. Lett., 87 (2001) 157201.
[11] Axtell E., Ozawa T., Kauzlarich S. and Singh R. R. P., J. Solid State Chem., 134 (1997)

423.
[12] Taniguchi S. et al., J. Phys. Soc. Jpn., 64 (1995) 2758.
[13] Kugel I. and Khomskii D. I., Sov. Phys. JETP Lett., 37 (1973) 725.
[14] Castellani C., Natoli C. R. and Ranninger J., Phys. Rev. B, 18 (1978) 4945.
[15] Auerbach A. and Arovas D. P., Phys. Rev. Lett., 61 (1988) 617; Arovas D. P. and Auer-

bach A., Phys. Rev. B, 38 (1988) 316. For a review, see Auerbach A., Interacting Electrons
and Quantum Magnetism (Springer) 1998.

[16] Golub G. H. and van Loan C. F., Matrix Computation, 3rd edition (The Johns Hopkins
University Press, Baltimore and London) 1996.

[17] Kolezhuk A. K. and Mikeska H. J., Phys. Rev. Lett., 80 (1998) 2790.
[18] Sutherland B., Phys. Rev. B, 12 (1975) 3795.
[19] Shen S. Q., Xie X. C. and Zhang F. C., preprint (2001).


