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Adaptive LMS Filters for Cellular 
GDMA Overlay Situations 

Jiangzhou Wang, Senior Member, IEEE, and Laurence B. Milstein, Fellow, IEEE 

Abstract- This paper extends and complements previous re- 
search we have performed on the performance of nonadap- 
tive narrowband suppression filters when used in cellular code- 
division multiple-access (CDMA) overlay situations. In this paper, 
an adaptive least mean square (ILMS) filter is applied to a cellular 
CDMA overlay in order to reject narrowband interference. An 
accurate expression for the steady-state tap-weight covariance 
matrix is derived for the real LMS algorithm for arbitrary 
statistics of the overlaid interference. Numerical results illustrate 
that when the ratio of the narrowband interference bandwidth to 
the spread spectrum bandwidth is small, the LMS filter is very 
effective in rejecting the narrowband interference. Furthermore, 
it is seen that the performance of the LMS filter in a CDMA 
overlay environment is not significantly worse than the perfor- 
mance of an ideal Wiener filter, assuming the LMS filter has had 
sufficient time to converge. 

I. INTRODUCTION 
S is well known, a Wiener filter can provide vastly im- A proved performance for a code-division multiple-access 

(CDMA) receiver operating in narrowband interference. For 
large narrowband interference, the CDMA system with a 
Wiener filter can support many more users than can the system 
without a filter. 

However, in practice, since cellular CDMA users are mo- 
bile, there are Doppler frequency-shifts. Also, since the cellular 
channel is fading, the signal and interference statistics are 
rarely constant. Thus, the Wiener filter must be made adaptive. 
In this paper, we are concerned with the adaptive least mean 
square (LMS) filter, which is one of the simplest adaptive 
algorithms to analyze and implement. The work concentrates 
on the uplink, steady-state, performance of CDMA overlay 
systems with adaptive LMS filters, assuming convergence has 
been achieved. This work extends and complements the work 
of [ 13, which evaluates the bit-error rate (BER) performance 
of cellular CDMA overlay situations with Wiener filters. 

The paper is organized as follows: Section I1 introduces 
the basic concepts and notation of the cellular CDMA system 
and describes the statistics of the misadjustment component of 
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the adaptive LMS filter. Section I11 presents the performance 
analysis of the adaptive CDMA receiver. Numerical results 
are presented in Section IV, and Section V provides the 
conclusions. 

11. STATISTICS OF THE MISADJUSTMENT FILTER 

A receiver operating in a cellular CDMA overlay environ- 
ment and which incorporates the use of a Wiener filter was 
described in [ 11. By replacing the Wiener filter with an adap- 
tive LMS filter, the adaptive CDMA receiver is constituted. As 
in [2]-[4], the adaptive LMS filter is modelled as consisting of 
a Wiener filter and a misadjustment filter operating in parallel 
(see Fig. 1). 

First, the basic concepts and notation of the cellular CDMA 
system are introduced. It is assumed that in the cellular system, 
there are C cells, each of which contains K active users and 
one base station. Therefore, there are CK active users, for the 
entire cellular system. The cellular mobile channel between a 
mobile user and a base station is assumed to be a multipath 
Rician-fading channel, where there are L paths associated with 
each user. 

As shown in Fig. 1, the receiver consists of the following 
parts: a bandpass (BP) filter, an adaptive LMS filter, a DS- 
despreader, and a hard decision device. The input signal r ( t )  
to the adaptive filter is the sum of all CDMA signals, a 
narrowband binary phase shift keying (BPSK) representing 
the signal which is overlaid by the CDMA network, and 
band-limited additive white Gaussian noise (AWGN). That is 

T 

where y is a propagation exponent, and ck denotes the cell 
in which the kth user is located; the users are numbered 
such that c k  = int [l + ( k  - l)/K], where int [x] stands 
for integer part of 2 .  The function E ( ? ,  ck, k )  represents 
the yth power of the ratio of the distance of the kth user 
to its own base station (ckth cell) to the distance of the 
kth user to the first cell base station ( c k  = 1). For the 
first cell (cell of interest), we assume E ( Y ,  c k ,  k) lck=l  = 1 
because of perfect adaptive power control. The parameter f o  
denotes the CDMA carrier frequency, b k ( t )  is the kth binary 
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Fig. 1. An adaptive CDMA receiver model 

; I~~~~~~~~~~~~~~~~~~~~~ 
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I 

information sequence with bit duration Tb, ~ ( t )  is a random 
spreading sequence with chip duration T, and processing gain 
N ( N  = Tb/T,), and Akl(0 5 A k l  5 1) and 4k.l are the 
gain and phase of the specular component of the 1th path 
from the kth user, respectively. It is assumed that A k l  = A 
for all k and I ,  and is uniformly distributed in [0, 27r]. 
The random gain P k l  and phase $ k l  of the fading component 
of the Ith path of the lcth user have a Rayleigh distribution 
with E[p,&] = 2pkl = 2 p  for all IC and 1, and a uniform 
distribution in [O, 27r], respectively. The path delay, T ~ L ,  is 
uniformly distributed in [O, Tb] and, to simplify some of the 
analysis to follow, we assume I T ~ L  - T ~ ~ I  2 T, for 1 # i. The 
gains, delays and phases of different paths and/or of different 
users are assumed to be statistically independent. Furthermore, 
J and 0 denote the received nonfading BPSK narrowband 
interference power and phase, respectively, A stands for the 
frequency offset of the interference, and d ( t )  is the binary 
data sequence of the narrowband interference, J ( t ) ,  having 
bit duration Tj. The two parameters p and q are defined as the 
ratio of the interference bandwidth to the spread bandwidth 
and the ratio of the offset of the interference carrier frequency 
to half of the spread bandwidth, respectively, (i.e., p = T,/Tj 
and q = AT,). Finally, n(t)  is bandlimited AWGN with two- 
sided power spectral density N o / 2  and bandwidth 2T;'. Note 
that, for simplicity, while we have bandlimited the noise, we 
have assumed that the BPF passes the signal undistorted. 

The autocorrelation function of the input signal is defined by 

Pr(.) = E [ T ( t ) T ( t  + 7-11 ( 2 )  

although only values of pr(.) at T = mT,, where m is an 
integer, are needed. In particular, p,(mT,) can be written as 

pr(mT,) = ps(mT,) + pj(mTC) + pn(mT,) (3) 

where ps(mT,), pj(mT,) and p,(mTr) correspond to, re- 
spectively, the CDMA signals, the interference and the noise. 
Assuming that foTc is an integer, the CDMA term is given by 

Data Out + 

L 

where E [ a k ,  ( t  - ~ k , l ~ ) a l ~ ~  ( t  + mT, - .k212)] = 0 for kl  # k2 
and E(cosqh,  c o s h 2 )  = E(cos&1, cos$kl,) = 0 for 
11 # 1 2 .  Therefore, ps(mTc) reduces to 

C K  L 

with a similar expression for the autocorrelation of b k ( t ) ,  we 
have 

C K  

P \ ( m T c )  P ( A 2  + 2/-')LS(m)E E [ c ( y ,  C h ,  I . )]  (4) 
k=l 

where S(m) is the Kronecker delta function, and E[€(?; c k ,  

k ) ]  = ~(y? c k )  is independent of the position of the kth user 
since E [ c ( y ,  c k ,  k ) ]  is the average of the kth user's position 
over the ck.th cell. Considering a three-layer cellular model, 
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we have 

where C(7) represents the relative interference from all sur- 

Therefore 
rounding cells, and is defined as <(y) = C,.2t(r, C c). 

( 5 )  ps(mTc) = P(A2 + % P ) [ l  + C'(r)lKL(5(m). 

The narrowband interference autocorrelation is given by 

p,(mT,) = Jrect ( 1 ~ _____ I??) cos (27rAmT4 

= Jrec t (1  - imlp) cos (2nmq) (6) 
where rect(z) = II: or 0 for z 2 0 or L < 0, respectively. 
Also, the noise autocorrelation is given by 

so that, using (3)-(7), p,(mT,) is given by 

J + -rect(l - Imlp) cos (27rmq) 
S 

where H = A,",/(2p;,) = A2/(2p) stands for the ratio of the 
specular component power to the fading component power, 
J /S  = J / ( P A 2 )  is defined as the narrowband interference 
power-to-signal power ratio, and Eb/No = PA2Tb/N0 stands 
for the signal-to-noise ratio (SNR). 

The adaptive filter output is given by 
lL1 

T f ( t )  = (a,, + .um)r(t - mTc) (9) 
m=-nCr 

where a,, m = - M ,  . . . , M ,  denotes the mth tap weight of 
the Wiener filter, and unL, m = - M ,  . . . M ,  denotes the mth 
steady-state tap-weight of the misadjustment filter. Note that 
WO is always zero, because the center tap of the Weiner filter 
is fixed at one (i.e., a0 = 1). 

Most often, via a central limit theorem, it is argued that the 
steady-state tap weights of the misadjustment filter are jointly 
Gaussian [4] for small enough adaptation step size. Hence, 
with the joint Gaussian assumption, the tap-weight covariance 
matrix completely defines the statistics of the misadjustment 
filter. In Appendix A, it is shown that when it is assumed 
that the sum of all active CDMA signals is Gaussian, the 
steady state covariance matrix of the tap weight vector can be 
obtained (approximately) by solving (A1 S), reproduced below 
as (10) 

2M 

[(RTImInl ( ~ v ) n l m ,  + ( R v ) m , n ,  ( ~ T ) n l m 2 1  

= 2PE[(e*)21(RT)m1Tn, + 2d3[(e5)2.G?,jm,1 
nr=l 

- 2 ~ E [ ( e , * ) ~ ] E ( j m l j , n , ) ;  mi, m2 = 1 , . . . , 2 ~  

(10) 

where R, and R, are the covariance matrices of the input 
signal sample vector and the tap weights of the misadjustment 
filter, respectively, and (R)mlnl denotes the mlth row and 
nlth column element of R. Note that (RT)rrL,,2 = p,[(m~ - 
m2)Tr], given by (S), /-L is the adaptation step size, and e* 
and e; are the Wiener prediction error for the composite 
input signal and from the narrowband component of the input, 
respectively, and are defined as e*(* )  = E,"==_, a,r(t - 

mT,) and e*(*)]  = amJ(t  - mT,), respectively, 
where J ( t )  is the narrowband component of the input. In the 
special case where the narrowband interference, j,, at the 
mth tap [see (A14)], is Gaussian, e; is independent of j,. 
Therefore, the last two terms of (IO) cancel each other, so that 
(IO) reduces to the well-known form (A13). Analogous to the 
derivation of p , ( n ~ T , ) , E [ ( e * ) ~ ]  are E[(e ; ) ' ]  are given by 

M 

r ni 1 2  

A4 

% PA2{ (1 + :,),L[l+ <(r)l Qm 2 
m=-M 

M \ 

where it is assumed that fOT, is an integer, and 

A14 M 

'ml=-M mz=-M 
U 

' r e c t ( 1  - Im1 - m2Ip)cos [27r(m1 - "12)4]. (11) 

111. PERFORMANCE ANALYSIS OF 
THE ADAPTIVE CDMA RECEIVER 

Assuming the Ith path of the ith user (reference user) of the 
cell-of-interest is the reference path, and TLL = 4il = 0, the 
despreader output is given by 

<(A) = i"*"" T,(t)aa;( t )  cos (2nfot) d t .  (12) 
I A T ,  

To simplify the analysis, the self-interference, due to the main 
path of the reference user, and caused by the taps of the filter 
excluding the zeroth tap, is neglected when the number of 
active users is much greater than unity, as in [l]. Therefore, 
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The first term is the desired signal, corresponding to the 
specular component of the Ith path of the reference user 
and the zeroth tap of the Wiener filter. The useful signal 
power is ST = 2PA2Tt. 
D(A) is an interference term with conditional variance 
0% = 2PpTf due to the fading component of the Ith 
path of the reference user and the zeroth tap of the 
Wiener filter (see [l]). 
I k  is either a multipath interference term for k E i ,  
or an in-cell multiple access interference term for k = 
l , . . . , K ,  k # i ,  or an adjacent cell multiple access 
interference term for k K + 1, . . . , C K ,  and is given 
by 

L 

l # l  

CL1 I i , f ,  k = i, 
multipath interference 

in-cell multiple-access interference 

adjacent-cell multi-access interference. 

Cf=lIk,i, k = 1 , . . . , K , k # i ,  (14) 
L 

xizl Ik , i ,  k = K + 1, ' ' . , CK,  

For a large number of CDMA users ( K  >> I), the effect of the 
multipath of the desired user is very small, since it roughly acts 
as one additional user. However, its inclusion in the analysis 
greatly complicates that analysis, and so it will be ignored, as 
justified in [l]. Then, in (14), for k # i 

1 k . f  = @[A,f COS (4,f) + P,[ COS ($k[)l 

M 

' d G - a i  ( G r L t ' u m )  
m z - M  

. a ; ( t )  d t .  (15) 

The conditional variance of the total in-cell multiple access 
interference and adjacent cell multiple access interference 
terms (ET$ I k )  equals (see Appendix B), conditioned on 
the tap weights ( U  [ u - M , .  . . , WM]) of the misadjustment 
filter and the spreading sequence {a:'} of the reference user 
(the ith user) 

"i(2) ,  a z ( t ) )  

r~ 

Lm=-M 

4) N (  A) is due to the thermal noise; its conditional variance 

5 )  J(A) is due to the BPSK narrowband interference, and 
equals g$ = N ~ T ~ C ~ = = _ ,  (am + 
is given by 

M 

L:+lIT6 m d ( t  - mT,) 

. COS [ 2 ~ A ( t  - mT,) + 0]a; ( t )  d t .  (17) 

In order to simply analyze the statistics of the narrowband 
interference term, assume that there are an integer number of 
bits of the narrowband waveform in Tb seconds, and ignore 
any timing offset between the bits of the narrowband BPSK 
signal and the bits of the reference CDMA signal. Then, as in 
[l], (17) can be approximated (for n >> m) as 

M N - 1  

where 

P(n,m, 0) 
- A sin [27rq(n - m + I) + e]  - sin [27rq(n - m) + e]  

- sin (rq) COS [27rq(n - m) + 01 
- 

2"q 

(19) 

{d ,p(n-m) j}  is the data sequence of the narrowband waveform, 
and [x] is the integer portion of x. Note that (18) can be 
rewritten as 

- 
" 4  

N-I 

n=O 

where 
M 

xn = (am i- v m ) ~ & i ) d k ( n - m ) ] ~ ( n ,  m, 0).  (21) 
m=-M 

Conditioned on { w m }  and B ,  xn is a function of {db(n -m) l }  
and {a!"}. As in [l], it can be shown that the sequence { z n }  
is, conditionally, a 2M-dependent sequence. As N + cx), 

the sequence {x,} satisfies the conditions of the Hoeffd- 
ing-Robbins version of the central limit theorem for dependent 
random variables, given {urn} and 0. 
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where S(., .) is the Kronecker delta function. 
Assuming that the sum of the in cell multiple access 

interference and adjacent cell interference is conditionally 
Gaussian, the decision variable <(A) in (13) is conditionally 
Gaussian, conditioned on the random phase, 8, of the narrow- 
band interference, the random tap-weight variables, U, of the 
misadjustment filter, and the spreading sequence, uz ( t ) ,  of the 
reference user. However, the conditional variances in (16) and 
(22) are not functions of a,(t) .  Therefore, the bit-error rate 
(BER) is given by 

1 27r 00 00 

,PP(8, u)P(u )  d6’ ~ U - M  . . . dUM 

(23) 
p p  = - 27r i 1,- 1, 
where P(w) is a jointly Gaussian distribution, given by 

and where R, is the steady-state tap weight covariance matrix 
of ‘U, det (.) is its determinant, R;’ denotes the inverse of Rv, 
and uT denotes the transpose of 71. 

In (23), Pe(6’, U )  is given by 

where SNR(8, U) is the total SNR, conditioned on 0 and U, 

given by 

. M  1 

and where Eh = PA2Tb is the average energy per bit, 
J / S  = J / ( P A 2 )  denotes the interference interference power 
to useful signal power ratio, and I-I = A2/(2p) .  

IV. NUMERICAL RESULTS 

Unless otherwise noted, the numerical results for the BER’s 
of the adaptive CDMA overlay system are presented for the 
following common parameters: It is assumed that the ratio of 
the interference bandwidth to the spread spectrum bandwidth 
is 10% ( p  = 0.1) and the ratio of the offset of the interference 
carrier frequency to half of the spread spectrum bandwidth 
is either zero or 20% ( q  = O j  0.2). The processing gain and 
the number of taps on each side of a suppression filter are 
set at N = 255 and M = 2, respectively. The number of 
paths, the propagation exponent and the ratio of the specular 
component power to the fading component power are assumed 
to be L = 3 ,  y = 3,  and H = 7 dB, respectively. Note that 
y = 3 means that the adjacent cell interference <(r )  = 0.97. 
That is, the interference from all adjacent cells is 97% of the 
interference of the cell-of-interest. Finally, the adaptation step 
size is selected as 

1 1 p=- 
10x,,, 20Mpr(0) 

where A,,, and p,(O) are the maximum eigenvalue of the 
covariance matrix of the input signal and the power of the 
input signal, respectively. 

Fig. 2 illustrates the BER’s of the adaptive CDMA overlay 
system as a function of &/No. Fig. 2(a) and (b) correspond 
to q = 0 and q = 0.2, respectively. It is seen that, as 
expected, the adaptive LMS filter is very effective in rejecting 
the narrowband interference. Note that for q = 0, the adaptive 
filter is not as effective as it is for q = 0.2, compared to the 
Wiener filter. 

Fig. 3 shows the asymptotic (&/No + 00) BER’s of the 
CDMA system as a function of (J/S)/[(l+ <(r ) )KL] ,  which 
is roughly the ratio of J / S  to all multiple access interference. 
When J / S  is sufficiently small (i.e., ( J / S ) / [ ( l + C ( y ) ) K L ]  << 
0 dB), neither a Wiener filter nor an adaptive filter is necessary, 
because the multiple access interference dominates, whereas 
when J / S  is sufficiently large, an adaptive filter can provide 
a large improvement in performance. 

In Fig. 4, the asymptotic BER of the CDMA overlay system 
is plotted as a function of the number of the active users K 
per cell, for various values of J / S .  It is clearly seen that the 
system using a suppression filter can support many more users 
than can the system without a filter. 

In Fig. 5 ,  the asymptotic BER of the CDMA overlay system 
is shown as a function of the ratio (p) of the narrowband band- 
width to the spread spectrum bandwidth for q = 0, 0.1, 0.2, 
and 0.4. It is seen that when p is small, an adaptive filter is 
very effective. 

Fig. 6 illustrates the BER performance of the overlay system 
as a function of the ratio ( q )  of the offset of the interference 
carrier frequency to the half spread spectrum bandwidth for 
different numbers of taps on each side. It is seen that when 
q is small, the adaptive filter performs noticeably worse than 
the Wiener filter. However, when q is large, the BER’s of the 
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systems with the adaptive filter and the Wiener filter are almost 
identical. That is, the noise caused by the Inisadjustment filter 
is negligible. 

expression for the steady+tate tap-weight covariance marrix is 
derived for the real L M ~  algorithm for &,itrary 
interference. It is shown that the adaptive filter is very effective 
in rejecting the narrowband interference when the ratio of the 
narrowband interference bandwidth to the spread spectrum V. CONCLUSION 

In this paper, the effect of an adaptive LMS filter in a bandwidth is small. Also, it is seen that the pedomance 
of the LMS filter in a CDMA overlay environment is not cellular CDMA overlay situation is investigated. An accurate 
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Fig. 4. 
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The asymptotic BER of CDMA overlay system as a function of the 

significantly worse than is the performance of an ideal Wiener 
filter, assuming the LMS filter has had sufficient time to 
converge. Further, the adaptive filter is more effective when 
the carrier frequency of the narrowband interference is offset 
from the carrier of the spread spectrum signals. Note that 
the results shown here do no1 include diversity and channel 
coding. Using multipath diversity and interleaved coding, the 
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Fig. 5. The asymptotic BER of CDMA overlay system as a function of the 
ratio (p) of the interference bandwidth (BW) to spread spectrnm BW: (a) 
q = 0,  0.1 and (b) q = 0.2,  0.4. 

APPENDIX A 
DERIVATION OF THE STEADY-STATE TAP WEIGHT 

COVARIANCE MATRIX OF THE MISADJUSTMENT FILTER 

From the adaptive LMS algorithm, the tap weight vector of 
BER performance can be significantly improved. the misadjustment filter (or the tap error-weight vector of the 
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BER's as a function of the ratio ((1) of the interference carrier 

adaptive filter) can be presented as [4] 

V ( j  + 1) = [I  - 2 p X ( j ) X T ( , j ) ] V ( j )  + 2 p e * ( j ) X ( j )  (All  

where V ( j )  is the column tap weight vector on the j th 
adaptation, I stands for an identity matrix, X ( j )  is the sample 
vector of the input signal on the j th adaptation, p, is the LMS 
algorithm step size, and e*(j)  is the prediction error at the 
Wiener filter output on the j th  adaptation, and is assumed 
independent of V ( j ) .  

Therefore, the steady-state tap weight covariance matrix can 
be expressed as 

R, = E[VVT]  = lim E [ V ( j  + l ) V T ( j  + 1 ) ]  

= lim E [ ( I  - a p ~ ( j ) x ' ( j ) ) v ( j ) v ~ ( j )  
j i o o  

j-00 

. ( I  - 2 P X ( . W ( d ) l  
+ (2pL)2E[(e*(j))2X(j)XT(j)l (A2) 

where it is assumed that the successive input signal vectors 
X( j )  and X(.j + 1) are independent from adaptation time 
to adaptation time. In order to approximately guarantee this 
independence, the period of adaptation time should be at least 
as great as the correlation time of the narrowband interference. 
Because the tap weight vector V ( j  + 1) is a function only of 
the past input signal vectors, X ( j ) :  X ( . j -  l) ,  . . . , X(O) ,  V ( j )  
is independent of X ( j ) .  That is 

E [ V ( j ) X T ( j ) ]  = E [ V ( j ) ] E [ X T ( j ) ]  = 0. (A3) 

The estimate of V ( j )  is asymptotically unbiased (i.e., 
E [ V ( j ) ]  = 0), so that the cross terms in (A2) drop out. 
Further, (A2) can be decomposed as 

R,, = E ( V V T )  = E ( V V T )  - 2 @ ( X X T ) E ( V V T )  
- 2 p E ( V V T ) E ( X X T )  
+ 4 p 2 E ( X X T V V T X X T )  + 4 p 2 E [ ( e * ) * X X T ] .  (A4) 

Note that although e* and X are uncorrelated by the orthog- 
onality principle, they are not independent, except if the input 
is Gaussian. 

If we express the Wiener prediction error as e* = 20 - 
anxn, where x0 represents the current value on the 

center tap of the Wiener filter (for simplicity, we are indexing 
from one to 2 M  instead of from M to M ,  excluding zero), the 
elements (R,,),, m 2  of the asymptotic tap-weight covariance 
matrix R,, satisfy 

2M 

2 M 

( ~ u ) m , m ,  ( ~ v ) m l r n *  - 21-1 1 (R , . )m1n ,  ( ~ u ) n 1 r r L Z  

111 =1 
2M 

n , = l  

2M 2M 

n 1 =1 nz=l  

n1=l nz=l  J 

where R,. is the covariance matrix of the input sample vector. 
Then, (A5) becomes 

2 M 

[(Rr)nLlnl (&)rr,mz + ( fL) , ,n ,  (R7-)n1m21 
n l = l  

n1=1 nz= l  

The solution of (A6) is a function of p, so that the first term 
on the right hand side (rhs) is a function of p2. When 1-1 is 
selected sufficiently small in steady state, the first term on the 
rhs can be neglected, and we have 

2 lbf 

[ ( R r l m t n l  ( ~ u ) n i m 2  + ( ~ i i ) m t n i  ( ~ T l n i m 2 I  

2 hif 
n l = l  

If we assume initially that the input signal is Gaussian, e* is 
independent of X. Therefore, (A7) becomes 
2M 

I (Rr)mlnl  ( ~ v ) n l m a  + ( ~ v ) m i n i  ( ~ , . ) n i m 2 1  

nl=1 

I= 2 p ~ [ ( e * ) ~ ] ( R , . ) ~ , , , ,  (A@ 
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and (AS) can be represented as samples of a Gaussian process. However, the fourth moment 
of x, is given by 

E[xix2x3x4] 

R,R, + R,R, :Y 2pE[(e*)']R,. (A9) 

Equation (A9) may be uncoupled using the eigen- 
value-eigenvector decomposition E[(ni + ji)(n2 + j 2 ) ( n 3  + j 3 ) ( r L 4  + j4)] 

+ E(nln2j3.h) + E(nln3n&) + E(nlTL3j2j4) 

= E(nln2n3n4) + E(nln2n3j4) + E(nln2n4j3) 
R, = QAQ-l (AlOa) 

R,, = &&,Q-l (AlObj 
+ E(TLln4jZ.j3) + E(n1.72,?3.;4) + E(n2n3n4jl) 

+ E(n2n3,jljLl) + E(nZn4jlj3) + E(nZjlj3j4) 
+ E(n3n4jlj2) + E(TL3.jl.j2j4) where Q and Q-l are an orthogonal (real unitary) matrix 

of eigenvectors and its inverse matrix, respectively, A is a + E(n4jljZj3) + E(jl,j2.?3.j4). ('415) 
diagonal matrix of the eigenvalues of R, and R, is the weight 
covariance matrix in the principal axis system. Using this 
transformation, (A9) can be expressed as 

Since 

E(nln2n3j4) = E(nlnZn4j3) E(TLln3n4j2) 

QAQ-lQRvQ-l + QR,,Q-lQhQpl E 2pE[(e*)z]QAQ-1 zz E(?Lljzj3j~l) = 0 

and or 

Because R, is symmetric, (Alla)  reduces to 

(A, + X,)a,, z= 0 for i f j (Allb) (A15) reduces to 

where AC are the eigenvalues of R, and aij  is the ith row 
and the j th column element of A?). Again, because R, is a 
correlation matrix, the eigenvalues A, of R ,  are always greater 
than or equal to zero. Assuming that none of the X i  equal zero, 
ai j  = 0 for i # j. That is, R," is a diagonal matrix. Because 
both A and k,  are diagonal, A R ,  = Rt,A.  Therefore, (Alla) 
reduces to 

R, E pLE[(e*)2]1 (A12) 

From (AlOb) and (A12j, we have 

+ E(T?,ln4)E(j2j3) + E(n2123)E(jlj4) 

+ E(n2%)E(jlj3) + E(TL3n4)E(jlj2) + E(jlj2j3j4) 

E ( x 1 x 2 2 3 2 4 ) I ~ ~ ~ ~ ~ ~ ~ ~  + E(.jlj2.j3j4) 

- E ( j l j 2 j 3 . i 4 )  I G~~~~~~~~ (A 16) 

where E (x1x2x3x4) l G a l l s s i a n  is defined as E ( ~ z g 3 x 4 )  un- 
der the assumption that zl, x2, 5 3 ,  x4 are jointly Gaussian. 
By substituting the expression for the fourth moment of the 
input signal into (A7), we obtain the following relation for the 
elements of the tap-weight error vector covariance matrix in 
steady state: 

(A131 

With the Gaussian assumption of the input signal, the tap 
weight covariance matrix is al diagonal matrix, which com- 
pletely defines the statistics of the misadjustment filter for the 
Gaussian input signal. That is, in the steady state, the variance 
of different tap weights are equal and different tap weights are 
uncorrelated and independent. 

Since our input is not Gaussian, it will be seen that the tap 
weight covariance matrix is no longer diagonal. We begin the 
derivation of the tap-weight covariance matrix by considering 
some properties of the input signal. Define the input signal as 

2 IL.1 

i r  

IGaussian 

where n, and j ,  stand for Gaussian noise (both white noise - E(jOjnljmIjrn2 IIGaussian) 

+ 2~ 1 aniain,{E(jnijn*.~mljm2) 

- E ( j n ,  j n z j ,  1 j , ,  ) I Gaussian } 

and CDMA signals) and narrowband interference, respec- 2M 2 M  

tively, and n, and j ,  are independent. 
The first and second moments of the narrowband interfer- nr=l T L ? = ~  

ence samples are identical to those that would result if j ,  were (A171 



r 

I 
I 

I 
I 

I b0 

bl 

A 

f m3Tc bl 

I I I 

I 

I 
I 
I 
I 

b0 
A 

f m4Tc bl 

or where E[d(t  + mlT,)d(t + m2Tr)d(t + m3Tc)d(t + m4Tc)] 
is the fourth moment of the binary sequence, ~ ( t ) .  As shown 
in Fig. 7, d ( t  + mlT,)d(t + m2Tc)d(t + m3Tr)d(f + m4T~) 
depends on both the random position and the value of 1 ( t )  at 

2M 

[(K-)rnln,  ( R u ) n 1 m 2  + (RlJrnInL ( W n , m 2 1  

any instant of time. Assuming 2MTr < T3, one obtains nl=l 

2 A4 

n,=l 

denotes the narrowband interference component of the Wiener 
prediction error. In order to solve equation (A16), we must 
know the second and the fourth moments of the BPSK nar- 
rowband interference. The second moment of the narrowband 
interference term in (1) is given by 

The fourth moment of the narrowband interference is given 
by 

APPENDIX B 
CONDITIONAL VARIANCE OF ~ f 5  lk: = E;=, ~ ~ , j  k > A  i.5. 

I k , f  can be written as 

where 

n - 1  I 

' {cos [27r(m1 + 7 n 2  - m3 - m4)q] 
and where n = int [F] and TO = z-n. The conditional 

(A2 1 ) variance of fk,f, conditioned on {a : i ) } ,  {ai"},  70, and {uWL},  
+ cos [27r(rnl - m2 + m3 - m 4 ) q ]  

+ cos [27r(ml - m2 - 7n3 + m&]} 
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is given by 

I n n  

j l = O j z = O  

n-1 n-I 

31 =O j*=O 

j l=n+l  j 2=n+l  

j=O 
M 

m = - M  

j=n+l 

M 

+ ( T c  - Z J 2 ( N  - n) (am + 
m=-M 

M M 

3=71 

+ 27O(TC - q ) ( N  - n. - 1) 

jL=n+l  J2=n 

Therefore 

M M 

m=-M 

m=-M 

M 

= N 7 i  
m=-kl 

M M 

j = O  

+ 2(N - l)TO(T, - To) 
M 
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M M 

3=0 
3 f n  

Note that for large processing gains, terms roughly of the form 
ai”’as;)-Jl, for j l  # 0, modN, are approximately 

zero, since they correspond to an out-of-phase correlation of 
the spreading sequence. Therefore, we can approximate 

m=-M 
M 

and thus 

Note that E [(fk,i,?1 
Finally 

1 is not a function of {asi ’} .  
{a:$)  >>{.?n 1 

4[(1+ <(y))KL - L]P(A2/2  + p ) T i  

. [mgM (am + vm)2 

+ (am + ‘ k ) ( a m + l  f U m + 1 )  ( 3 N ) .  

(B7) 
I /  M 1 

m=-M 
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