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Abstract—Switching power supplies, due to their high-fre- basic theory in terms of the ideal circuit elememi|lor, which
guency switching operation, draw a substantial amount of input  js composed of aullator and anorator. The idea is to “null” the
ripple current. Such ripple current manifests itself as electromag- ripple current by placing a nullator at a suitable position in the
netic interference (EMI). Active and passive ripple cancellation . - . .
methods have been proposed in the past. This paper discusseLireuit. The norator|§then included to supply current or voltage
the cancellation methods, and classifies the basic circuit config- @t Some other location, as would be necessary to restore the
urations for ripple current cancellation. The basis of discussion normal loading or input condition. In fact, many previously re-
is a “nullification” process, which can be described effectively ported active filters and noise cancelling circuits can be synthe-
in terms of the ideal circuit element nullor. The initial focus IS gj76q from these basic configurations [3]-[11]. Also, the tech-
on differential-mode noise cancellation, but the basic technique . - . . .
can be applied equally to cancelling common-mode noise. The nique s equa”}’ appllpable to combatl_ng Common'mOde .n0|se,
classification provides a clear guideline for synthesizing practical although our discussion focuses on differential-mode noise for

cancellation circuits. Both active and passive implementation simplicity. We will present a comparative study of the basic ap-

examples are given and experimentally demonstrated. proaches, and discuss their practical implementations. Finally,
Index Terms—Electromagnetic interference, ripple current can-  results from experimental tests will be presented for verifica-
cellation, switching regulators. tion.

. INTRODUCTION Il. POSSIBILITIES OFZERO INPUT RIPPLE CURRENT

I NPUT ripple current from a switching power supply con- The ideal circuit elementullator is a two-terminal device

tains considerable low-order harmonics, necessitating ex{fqose voltage and current are zero, while tizator is one

design efforts for reducing or limiting the amount of electron/ 0S¢ valtage and current can assume any value. Fig. 1(a)

magnetic interference (EMI) in the frequency range concerné&ov,\['sh their CII’CIUI'[ sy[)nbols.f Ob|\|/|?usly a(rjly SOl\{ableAC'r.C;'t |
To achieve electromagnetic compatibility (EMC) compliancér,]us ave equal numbers of nuliators and norators. An ldea

flteri h | _ h h -amp, for example, can be represented by a pair of nullator
iltering approaches are commonly used. Such approaches ﬁmd norator [12].

ally involve bulky components so as to provide effective sup- Consid itchi v which d
pression of the relatively high content of low-order harmonics Ion5| er ?(?w a E\]N' ching plc_)ger;u;t)ﬁy which raV\(/js an ac
[1], [2]. The use of bulky filters, however, does not seem to be ippie current from the mains. Lel, be e mains impedance

economical design solution for the light and shrinking switchin%no.l“ be the equwa!ent ac currgnt that Is being injected to the
power supplies. ains. Suppose an input capaciir,, is connected across the

Active and passive ripple cancellations provide alternative a@_ams. Fig. 1(b) shows the ac equivalent circuit model. If we

proaches to the problem. Some practical forms of active canc\eﬂ—Sh to null off the current that flows intd;,, we can either

lation circuits have been reported recently [3]-[11]. Althoug onnect a nullator in series or in paralle| wif,. Four con-

the basic method has been known for some time, there seem(ﬁqldrations are possible, as shown in Fig. 1(c) through (d). We

be no systematic synthesis procedure of active or passive n QOte’ for brevity, these configurations as Types I, II, lil, and
cancelling circuits that can expedite the practical design of suc

circuits. In this paper, we attempt to generalize the approach an, n the cor_wﬂgyratlons of Types | and Il, a nuIIator_ IS In Sernes
with the mains impedance. Zero current thus flow&jn How-

derive a family of basic circuit configurations which can be im h t will itate th f
plemented in both active and passive forms. We will describe ffgSh such an arrangement will necessitate the presence of a no-

rator in order to satisfy Kirchhoff’s laws. Likewise, for Types

' ' _ [ll and 1V, a nullator is in parallel with the mains impedance,
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Fig. 1. (a) Nullor symbols, (b) simplified ac equivalent model for input current and mains interaction and (c)—(f) ideal circuits for nullingoipwutuirent.
(c) Type 1. (d) Type Il. (e) Type lll. (f) Type IV.
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T o T [
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Fig. 2. Active circuit realization of input ripple current nullifier: (a) corresponding to Type | [Fig. 1(c)], (b) corresponding to Type Il [Fig(d)ddrresponding
to Type Ill [Fig. 1(e)], and (d) corresponding to Type IV [Fig. 1(f)].

Note that, in all cases, the norator has either zero voltagelionit the performance. An approximation for the noise suppres-
current. Thus, the power dissipation of the nullor, in each caséon performance can be represented by
is theoretically zero.

It should be obvious that configurations of Types | and I

would mandatorily require the presence of a decoupling capac- Vv _ f_n 3)
itor Cy,, whereas those of Types Il and IV can omit such a ca- Vi o fs
pacitor theoretically.
where
IIl. AcCTIVE CIRCUIT REALIZATION VN noise voltage across;, if no nullifier circuit is used;

Vi noise voltage across;, when a nullifier circuit with

A. Basic Configurations of Active Nullifiers : ! !
an open-loop gain-bandwidth product £f is used,

The conceptual circuits derived in the foregoing section
can be realized using active devices. Specifically, nullors are/n
implementable by active devices like op-amps and transistdiste that if fs = co, we have perfect nullification.

[12]. Whenever necessary, isolation transformers and dc leveFortunately, the bandwidth of the op-amp does not need to
shifters may be included. Moreover, realization is not uniquegver the whole EMI spectrum for most practical purposes since
and there can be many possible realization styles. Fig. 2 shdws noise current spectrum generally falls off at 40 dB/dec at
the circuit implementations for the configurations showhigh frequencies. Most existing designs of differential-mode fil-
in Fig. 1(c)—(f). These circuits use op-amps as nullors, amers focus on the first several harmonics of the switching fre-
transformers for voltage level alignments. quency. Hence, it usually suffices to choose an op-amp whose

In theory the resultant input current would be reduced to zegain-bandwidth product is high enough to ensure good nulling
if the op-amp was ideal. However, in practice, the gain-bangerformance for the first several harmonics of the switching fre-
width product of the op-amp and the sensing circuit bandwidtjuency.

noise bandwidth.
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Fig. 3. Comparison of noise attenuation of the four types of active nullifiers fof {a)= 10Q2||10Q:H and (b)Z,, = 0.1£2. Assume openloop gains for all
types are X 10°/(1+75 f/15).

TABLE | —vc
PROPERTIES OFACTIVE NULLIFIERS
.I_ —
. ) : . : +
Type | Amplifiertype = Amplifier gain Noise attenuation 1
Zin C'in v 1s
. = -
I transresistance 2 Tt —
12 Tz
; . 1
II current gain A; vy (a)
. 14ty
I voltage gain A, Lty
At +
1 1
IV | transconductance gt 1497 Zin Cin v is
Is

B. Comparison of the Basic Active Nullifiers

Although all basic nullifier circuits in theory achieve the same ()
function of removing the input ripple current, they do have rekig. 4.  Alternative implementations for (a) circuits of Types I and Il and (b)
ative advantages and disadvantages when considered fromfcgits of Types Il and IVC;, can be omitted in (b).
practical point of view. In this section, we attempt to provide
a comparative review of the basic configurations, the aim being Vg x(~1/5Cin)
to identify their inherent properties that make them particularly '/_\\\
suitable or unsuitable for practical applications. S C

To compare the effectiveness of the nullifier circuits, we cal- +
culate for each case tmoise attenuatioywhich is defined as Zin C, —— Q> i

NA = Hrlwith nutier @

[-[1] without nullifier

where[/, ]witn nuntitier N[ ]witLout nuniger are the input ripple @)
current with and without the use of a nullifier circuit, respec- x1
tively. .

For the active nullifier of Type | [Fig. 2(a)], the noise attenu-
ation is readily found as

1
o SCinZir]l_ (5)
1+ 4+ —F— b
Z; 5CinZin ®)
h is th | . d in f Fig. 5. Conceptual circuit realization of input ripple current nullifier by
where Zt. Is the open-loop trans-impe .ance gain from t edforward of noise current: (a) passive type | corresponding to Fig. 4(a) and
sensed input current to the counteracting voltage, as shogyypassive type Il corresponding to Fig. 4(B}., can be omitted in (b).

1+

NAr =
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in Fig. 2(a). Note that the presence 6f, is necessary for
absorbing the ripple current. However, for the active nullifier
of Type Il [Fig. 2(b)], the noise attenuation is found as

1
1+ A,

NAj = (6)

where A; is the open-loop current gain from the sensed input
current to the counteracting current, as shown in Fig. 2(b).
Clearly, C;, is not mandatory in this case. Moreover, for the
active nullifier of Type Ill [Fig. 2(c)], the noise attenuation is

1+

SCinZin

VA
(@

Np
ae
7 |
NAm = x ) B O 7

1+A, +——
et SCinZin N

where A, is the open-loop voltage gain from the sensed input
voltage to the counteracting voltage, as shown in Fig. 2(c). Note
thatC}, is mandatory for this type of active nullifier. Finally, forFig. 6. Passive circuit realization of input ripple current nullifier based on

the active nullifier of Type IV [Fig. 2(d)], the noise attenuatiorieedforward of noise current: (a) passive type | corresponding to Fig. 5(a) and
. (b) passive type Il corresponding to Fig. 5(b},, can be omitted in (b).

is
1
NAp = Trozo (8) TABLE I
+ 9tZin EXAMPLES OF REPORTEDCIRCUITS
where ¢; is the open-loop trans-conductance gain from the
sensed input voltage to the counteracting current, as shown in Previous work Type Mode
Fig. 2(d). For this one’;, is not necessary. Farkas-Schlecht [3] | activell | differential
From the above-derived expressions, one can conclude that Viatkoui | , . )
the effectiveness of the methods depend on the siz&,pf atkovic et al. 4] activel | differential
(pick-up impedance), the size of the shunt capacitance if exists, Lee-Cho [5] activel | differential
and the open-loop gain of the active device used. Specifically, . active II . .
the following observations are made. Hamill [6] el differential
1) Types | and Il nullifiers require the use of decoupling passtve
capacitance, while Types Il and IV do not. Takahashi er al. [8] | activell | common
2) Active nullifiers of Types | and Il have identical perfor- Julian et al. [9] passive I common
mance ifz/Zi, = A,. o L 10 v III
3) Active nullifiers of Types Il and IV have identical perfor- gasawara et al. [10] | - active common
mance ifA; = ¢, Z:... Hamill-Krein [11] assive II | differential
i GtLin p

4) For Z, > z/A,, active nullifiers of Type | perform
better than those of Type lll, and vice versa.

5) ForZin > A;/g:, active nullifiers of Type Il perform 4 cioser look, the null condition can in fact be maintained if a
better than those of Type IV, and vice versa. voltage or current source of the right magnitude is applied in lieu
6) Whenzi, > 1/sCiy,, active nullifiers of Types Il and qf the norator. Two cases can be identified according to Fig. 1.
Il have similar performance. Hence, at high frequencies, 1) For the circuits of Types | and Ill, the norator needs to

the',r performances are asymptotpglly t.he same. , supply avoltageof —v¢ according to (1) in order to main-
A convenient way to compare these nullifiers is to plot the noise  t5in the null condition.

attenuation for different;,,. Fig. 3(a) and (b) compare the noise 2) For the circuits of Types Il and IV, the norator needs to
attenuation of the four active nullifiers for two differeft,’s. supply acurrentof i, according to (2) in order to maintain
In all cases, we assume th@ag, = 1 xF, and the active device the null condition.

g?i:?qui(egiooi gj:l’;un:@fz 126 ;nia2li><wl-(f)r6e/q(l;e£?f;cilé—)off Now it is apparent that if we can place a_voltage (current) source
Table | sijrﬁrﬁ;rizes thhe es;entiatl oroperties . that.assumes exactly the value-efi- (i) in series (parallel) to

: the input, then we would be able to make the input current zero.
Moreover, this approach may need no nullator and require only
passive components. Fig. 4 illustrates these alternative configu-

The foregoing has illustrated the use of a nullator to force thations.

input ripple current to zero, with a norator helping to keep the The circuits of Fig. 4 can be conceptually constructed by di-
null condition by supplying a suitable voltage or current. Takingect feedforward of the noise current, as illustrated in Fig. 5. A

IV. PASSIVE CIRCUIT REALIZATION
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Fig. 7. Experimental circuits for active nullification. All 20H transformers/inductors aféR11 x 5 x 4 iron power toroid. (a) Type I. (b) Type Il. (c) Type lIl.
(d) Type IV.

straightforward implementation of these feedforward circuits impedanceZ; be given by

to use a transformer, with suitable sensing impedance, as shown

in Fig. 6. For the circuit of Fig. 6(a), nulling can be achieved

if the transformer secondary produces a voltage which is very sLt1
close tovc, as explained earlier. This requires that the sensing Zs = $2L Cong — 1

9)
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Fig. 8. Experimental circuits for passive nullification (a) corresponding to Fig. 6(a) and (b) corresponding to Fig. 6(b)uAllt2thsformers/inductors are
FR11 x 5 x 4 iron power toroid.

where L, is the magnetizing inductance seen from the tranef the transformer to the lower side 6%, (i.e., ground). Such
former primary anch; is the turns ratiaV, /N,,. If sLiny 3> shifting can be done becausg, is a virtual ac short-circuit
1/sCi,, we have under the nullification condition. The circuit of Fig. 8(b) is
therefore equivalent to that of Fig. 6(b). Moreover, it is in-
Z, =~ 1 . (10) teresting to note that the coupled filter discussed in Hamill
sCinnr and Krein [11] is in fact directly derivable from the basic
circuit of Fig. 6(b).
For the circuit of Fig. 6(b), nulling can be gchi_eved if thebtrans— Each cirCL?it is(az)plied to a boost converter operating at 100
formgr secondary produces a current Whlch_ is very cloge.to kHz and stepping up voltage from 24 V/ to 48 V. For each case,
Ignoring the transformer leakage, the requirement can be %E measure the input current waveform and its frequency spec-
pressed as trum. Results are shown in Figs. 9 and 10 for the active nulli-
fiers and the passive nullifiers respectively. For comparison, in

_ Fig. 9(b), we also give the measured input current waveforms
ZSTLT(]. 7’LT) ‘g .
Ip = ————F— (11) and spectra when no nullifier is used and when only a.B0

1+ —> choke is used. In all cases, we observe significant reduction in

shr the input current ripple that can be gained using the nullification

which can be approximated &, ~ Z,nr if np < 1 and technique. _ _
sLri > Z.. Note that in this case, the decoupling capacitor Remarks: Comparing the experimental results and the anal-
C.. can be omitted. ysis presented earlier, one can observe some obvious discrepan-

Remarks: Passive nulling has been proposed repeatedly B'&gs between the experimental measurements and the analytical
various authors, as surveyed by Hamill and Krein [11]. odredictions, notably in respect of the relative amount of noise
intention here, however, is to generalize the technique in terfienuation of different types of active nullifiers. This, in fact,
of nullification of input current. Furthermore, it is possible®@" be easily understood since our analysis assumes equal gain

to derive alternative realizations based on sensing volta g_lues for allz;, Ab Ai, anth’ while prgcticgl implementa-
For instance, referring to Fig. 6(a), the transformer primaRP"S of these gains are subject to varying limitations and re-

may be connected acro€%,, sensing the noise voltage andluirements for maintaining loop stability under different imple-
1 ’

the secondary produces the voltage source as required in fHtations.
basic configuration shown in Fig. 5(a). Table Il shows some
previously reported circuits, including both active and passive VI. CONCLUSION

approaches. . . . . .
PP Noise cancellation techniques are useful in power electronics

for control of EMI. Literature abounds with practical circuits for
noise cancellation in both active and passive forms. However, in
We have constructed four active nullifier circuits correerder to fully exploit the possibilities of noise cancellation, we
sponding to the four basic types discussed in Section Ill, anded a formal classification, based on which we can develop
also two passive nullifier circuits corresponding to the twaoise cancelling circuits systematically.
basic types discussed in Section IV. The schematics of these siin short, the basic approach consists of nulling the input
experimental circuits are shown in Figs. 7 and 8. All circuitac current which demands knowledge of the noise source
except the one shown in Fig. 8(b) are obvious derivatives @ifence sensing of noise source). The nulling operation can
the respective basic forms. Moreover, upon closer inspectidre performed with a high-gain active device whose input is
the circuit of Fig. 8(b) is indeed derivable from the basiapplied to the quantity to be nulled, and whose output is applied
circuit of Fig. 6(b). First, we make use of the inductance appropriately to fulfill the circuit condition as restricted by
the boost converter to serve &. Second, we shift one endKirchhoff’s laws. Alternatively, passive feedforward can be

V. EXPERIMENTAL VERIFICATION
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Fig. 9. Results from experimental circuits of active nullifiers. Upper trace: spectrum (starting 0 Hz, horiz. 100 kHz/div, vert. 4 mA/div); Laeveitd current
ripple waveform (horiz. 1Q:s/div, vert. 20 mA/div). (a) Without cancellation. (b) With a 2®1 series choke. (c) With active nullifier of Fig. 8a. (d) With active
nullifier of Fig. 8b. (e) With active nullifier of Fig. 8c. (f) With active nullifier of Fig. 8d.

applied to achieve “near” null condition. In this paper, we havgave focused our attention on the derivation of noise cancelling
attempted to classify the basic noise cancellation methodscincuits from first principles.

terms of the basic process of nullification. Specifically, we have Practical implementations are numerous. Many papers
derived four fundamental nulling configurations, discussd8]-[11] were written and patents [13] produced in the past,
their practical implementations, and compared their relatiagdressing particular circuit implementations. While “new”

merits. Instead of introducing or inventing new circuits, weircuits continue to be invented, it may be worthwhile to re-
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Fig. 10. Results from experimental circuits of passive nullifiers. Upper trace: spectrum (starting 0 Hz, horiz. 100 kHz/div, vert. 4 mA/div);domwverut
current ripple waveform (horiz. 10s/div, vert. 20 mA/div). (a) With passive nullifier of Fig. 9a. (b) With passive nullifier of Fig. 9b.

consider the fundamentals in greater depth in order to reinfol
the theoretical basis that is necessary for the construction
effective noise cancelling circuits.
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