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[�4:0; 4:0] � [�6:0; �0:1] � [0:1; 6:0]. Now, choosing = 1;
�0 = 0:1; �(0) = [�2; 2; �2; 2]T , and all other initial conditions
equal to zero, we implemented the adaptive law (3.4)–(3.8).

Let �(t) = [�1(t); �2(t); �3(t); �4(t)]
T denote the estimate of��

obtained from the robust adaptive law (3.4)–(3.8). Then the frozen-
time estimated modeled part of the plant is given by

P̂0(s; t) =
�3(t)s+ �4(t)

s2 + (2� �1(t))s+ (2� �2(t))

and the right half-plane zero is given byb̂1 = �(�4=�3).
ChoosingW (s) = 0:01=(s+ 0:01), from (3.10), we have

Q̂(s; t) = 1�
s+ 0:01

b̂1 + 0:01

s2 + (2� �1)s+ (2� �2)

�3s+ �4
F (s)

=
b̂1 � s

�3s+ �4

(s2 + (2� �1)s+ (2� �2))

b̂1 + 0:01
F (s)

= �
1

�3

(s2 + (2� �1)s+ (2� �2))

b̂1 + 0:01
F (s)

using b̂1 = �
�4
�3

:

It is now clear that, to makêQ(s; t) proper,F (s) must be of relative
degree2. So, let us chooseF (s) = (1=(0:15s+ 1)2), which results
in nd = 2. We now choose�1(s) = s2 + 2s + 2, and implement
the control law (3.9). Choosingr(t) = 1:0 andr(t) = 0:8 sin(0:2t),
we obtained the plots shown in Fig. 3. From these plots, we see that
the robust adaptiveH1 optimal controller does produce reasonably
good tracking.

V. CONCLUDING REMARKS

In this paper, we have presented the design of an adaptiveH1 op-
timal controller based on the IMC structure. The certainty equivalence
approach of adaptive control was used to combine a robust adaptive
law with a robustH1 internal model controller structure to obtain a
robust adaptiveH1 internal model control scheme with provable
guarantees of robustness. We do believe that the results of this
paper complete our earlier work [4], [5] on adaptive internal model
control of single-input single-output stable systems. The extension of
these results to multiinput multioutput plants, as well as plants with
significant nonlinearities and time delays, is not clear at this stage,
and is a topic for further investigation.
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Lyapunov and Riccati Equations of
Discrete-Time Descriptor Systems

Liqian Zhang, James Lam, and Qingling Zhang

Abstract—In this paper, we further develop the generalized Lyapunov
equations for discrete-time descriptor systems given by Bender. We asso-
ciate a stable discrete-time descriptor system with a Lyapunov equation
which has a unique solution. Furthermore, under the assumptions of
reachability and observability, the solutions are guaranteed to be positive
definite. All results are valid for causal and noncausal descriptor systems.
This provides a unification of Lyapunov equations and theories estab-
lished for both normal and descriptor systems. Based on the developed
Lyapunov equation, a Riccati equation is also obtained for solving the
state-feedback stabilization problem.

I. INTRODUCTION

In recent years, there has been much research work aimed at
generalizing existing theories, especially in the time domain, from
normal systems to descriptor systems via different approaches. An
approach often used is to transform the system into the Weierstrass
canonical form, which provides deep insight into the underlying
structure of singular systems. Controllability, observability, stability,
and pole placement by state feedback have been considered in [2],
[3], and [17]. However, this approach does not always provide a
convenient framework for actual computation, not to mention the pos-
sible numerical difficulties. The canonical form also entails a change
of the internal variables. In many practical situations, designers are
often reluctant to execute a variable change due to the contextual
and structural significance of the original variables [11], [21]. Hence,
many attempts have been made to analyze the systems without a
change of variables [11], [15], [16], [21]. The Laurent parameters (or
fundamental matrix) play an important role in analyzing descriptor
systems [9], [12]. Using this approach, many notions and theories
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for normal systems are easily extended to descriptor systems, such
as the expression of the solution [9], [12], the Cayley–Hamilton
theorem [7], [8], reachability and observability [7], [9], the semistate-
transition matrix, and the Tschirnhausen polynomials [12]. The pre-
requisite of this approach is that the Laurent parameters have to be
computed.

It is well known that Lyapunov equations have been widely applied
to normal systems in controller design [5] and system analysis [13],
[20]. Lewis [8] applied the Lyapunov theory to solve optimal control
problems for descriptor systems. Zhanget al. [19] used generalized
Lyapunov methods to analyze structural stability, and solved the
linear quadratic control problems. The applications of generalized
Lyapunov methods to discuss asymptotic stability can be found in
[15] and [16]. For these reasons, the significance of developing
Lyapunov equations for descriptor systems is evident. On the other
hand, discrete-time descriptor systems may possess anticipation or
noncausal behavior which, in the continuous-time case, corresponds
to the impulsive behavior. These properties distinguish descriptor
systems from normal systems. However, the aforementioned results
related to generalized Lyapunov theories were developed only for the
causal or impulse-free case. For the noncausal or impulsive situation,
Benderet al. [1] defined reachability and observability Grammians
based on the Laurent parameters, and the associated Lyapunov-
like equations are analyzed in terms of reachability, observability,
and stability. Zhanget al. [18] gave generalized Lyapunov and
Riccati equations to examine asymptotic stability and stabilizability of
descriptor systems without the impulse-free restriction. Unfortunately,
from a computational point of view, it is difficult to obtain the
solutions of the already established generalized Lyapunov equations
due to the nonuniqueness or the associated constraints for their
solutions. This presents a major difficulty in applying the solutions of
these equations to develop synthesis and analysis techniques similar
to the case of normal systems.

The present paper proposes a kind of Lyapunov equations for
discrete-time descriptor systems based on those given in [1]. All
results to be established are valid for causal and noncausal descriptor
systems. The Lyapunov equations are very similar to those of normal
systems in either appearance or theories. The positive definiteness of
the solutions implies asymptotic stability of the descriptor systems.
Moreover, it is numerically easy to compute the solutions. The
corresponding Riccati equation is also developed for stabilization
problems.

II. PRELIMINARIES

Throughout the paper, if not explicitly stated, all matrices are
assumed to have compatible dimensions. We useM > 0 (resp.
M � 0) to denote a symmetric positive-definite (resp. semidefinite)
matrix M . The ith eigenvalue ofM is denoted by�i(M).

Consider a linear time-invariant discrete-time descriptor system of
the form

Exk+1 = Axk +Buk; yk = Cxk (1)

whereE, A 2 IRn�n; B 2 IRn�m, C 2 IRm�n, and(zE�A) is a
regular pencil. The above system is also identified by the realization
quadruple(E; A; B; C). The Laurent parameters�k;�� � k <1,
specify the unique series expansion of the resolvent matrix about
z = 1:

(zE �A)�1 = z
�1

1

k=��

�kz
�k
; � � 0 (2)

which is valid in the set0 < jzj � � for some � > 0.
The positive integer� is the nilpotent index. There exist two

square invertible matricesU and V such that (E; A; B; C) is
transformed to the Weierstrass canonical form(E; A; B; C) �
(U�1EV �1; U�1AV �1; U�1B; CV �1) with

zE �A =
zI � J 0

0 zN � I
;

B =
B1

B2

;

C = [C1 C2] (3)

whereJ andN are in Jordan canonical forms andN is nilpotent.
Also,

�k := V �kU =

Jk 0
0 0

; k � 0

0 0
0 �N�k�1

; k < 0:

(4)

The solution of a discrete-time system can be expressed directly in
terms of the Laurent parameters [1] as

xi =(�0A)
i
x0 +

i�1

k=0

(�0A)
i�k�1

�0Buk

� (���1E)mxi+m +

m�1

k=0

(���1E)k��1Bui+k : (5)

A descriptor system isasymptotically stableif and only if its causal
subsystem(I; J; B1; C1) is asymptotically stable. The reachability
(observability) of a descriptor system is equivalent to both its causal
subsystem and noncausal subsystem(N; I; B2; C2) beingreachable
(observable) [4].

Definition 1—Reachability/Observability Grammian [1]:For the
discrete-time descriptor system(E; A; B; C), the causal reachability
(resp. observability) Grammian is

P
r
c =

1

k=0

�kBB
T
�
T
k resp.P o

c =

1

k=0

�
T
kC

T
C�k ;

provided that the series converges; the noncausal reachability (resp.
observability) Grammian is

P
r
nc =

�1

k=��

�kBB
T
�
T
k resp.P o

nc =

�1

k=��

�
T
kC

T
C�k :

The reachability (resp. observability) Grammian is

P
r = P

r
c + P

r
nc (resp.P o = P

o
c + P

o
nc):

In Weierstrass canonical form (3), the corresponding Grammians
of P r

c ; P
r
nc; P

o
c , andP o

nc are denoted byP r
c ; P

r
nc; P

o
c , andP o

nc,
respectively. From (3) and (4), it can be easily shown that

P
r
c =V P

r
c V

T
; P

r
nc = V P

r
ncV

T
;

P
o
c =U

T
P
o
c U; P

o
nc = U

T
P
o
ncU: (6)

Lemma 1 [1], [9]:

�0E�k =
�k; k � 0
0; k < 0

(7)

��1A�k =
0; k � 0
��k; k < 0.

(8)

Proposition 1:

i)

�0EP
r
c E

T
�
T
0 = P

r
c ; �

T
0 E

T
P
o
c E�0 = P

o
c : (9)

ii)

��1AP
r
ncA

T
�
T
�1 = P

r
nc; �

T
�1A

T
P
o
ncA��1 = P

o
nc: (10)
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Proof:

i) From (7), we have

�0EP
r

c E
T
�
T
0 =

1

k=0

�0E�kBB
T
�
T
kE

T
�
T
0

=

1

k=0

�kBB
T
�
T
k = P

r
c

�
T
0 E

T
P
o
c E�0 =

1

k=0

�
T
0 E

T
�
T
kC

T
C�kE�0

=

1

k=0

�
T
kC

T
C�k = P

o
c :

ii) From (8), we have

��1AP
r
ncA

T
�
T
�1 =

�1

k=��

��1A�kBB
T
�
T
kA

T
�
T
�1

=

�1

k=��

�kBB
T
�
T
k = P

r
nc

and

�
T
�1A

T
P
o
ncA��1 =

�1

k=��

�
T
�1A

T
�
T
kC

T
C�kA��1

=

�1

k=��

�
T
kC

T
C�k = P

o
nc:

III. L YAPUNOV EQUATIONS AND ASYMPTOTIC STABILITY

In relation to the Grammians defined in Definition 1 for (1), the
corresponding Lyapunov equations will be stated. The following
theorem gives properties of the Lyapunov equations in terms of
asymptotic stability and reachability.

Theorem 1:

i) P r
c satisfies

P
r
c � �0AP

r
c A

T
�
T
0 = �0BB

T
�
T
0 : (11)

ii) P r
nc satisfies

P
r
nc � ��1EP

r
ncE

T
�
T
�1 = ��1BB

T
�
T
�1: (12)

iii) P r = P r
c + P r

nc satisfies

P
r
� (�0A� ��1E)P

r(�0A� ��1E)
T

= �0BB
T
�
T
0 + ��1BB

T
�
T
�1: (13)

iv) If (1) is asymptotically stable, thenP r
c � 0; P r

nc � 0, and
P r � 0 are the unique solutions of (11)–(13), respectively.

v) If (1) is asymptotically stable, then (1) is reachable if and only
if P r > 0 is the unique solution of (13).

Proof: i) and ii) can be easily established from [1] with (9).
iii) Notice that

��1EP
r
c E

T
�
T
�1 =

1

k=0

��1E�kBB
T
�
T
kE

T
�
T
�1 = 0

�0AP
r
c E

T
�
T
�1 =

1

k=0

�0A�kBB
T
�
T
kE

T
�
T
�1 = 0

��1EP
r
c A

T
�
T
0 =

1

k=0

��1E�kBB
T
�
T
kA

T
�
T
0 = 0

follow from (8). Similarly, from (7), we have

�0AP
r
ncA

T
�
T
0 =

�1

k=��

�0A�kBB
T
�
T
kA

T
�
T
0 = 0

�0AP
r
ncE

T
�
T
�1 =

�1

k=��

�0A�kBB
T
�
T
kE

T
�
T
�1 = 0

��1EP
r
ncA

T
�
T
0 =

�1

k=��

��1E�kBB
T
�
T
kA

T
�
T
0 = 0:

Hence, we can rewrite (11) and (12) as follows:

P
r
c � (�0A� ��1E)P

r
c (A

T
�
T
0 � E

T
�
T
�1) =�0BB

T
�
T
0

P
r
nc � (�0A� ��1E)P

r
nc(A

T
�
T
0 � E

T
�
T
�1) =��1BB

T
�
T
�1:

This proves the validity of (13).
iv) From (3) and (4),

�
0
A = V �0UU

�1
AV

�1 = V �0AV
�1
:

Hence,�
0
A and�0A have the same eigenvalues. We know that

�
0
A =

I 0
0 0

J 0
0 I

=
J 0
0 0

and (1) is asymptotically stable, that is,j�i(J)j < 1 for all i.
Consequently,j�i(�0A)j < 1 for all i, and this guarantees (11) to
have a unique solution. The uniqueness of the solution of (12) follows
from the fact that��1E is nilpotent.

Notice that, in Weierstrass canonical form, we have

�
0
A� �

�1
E =V �0AV

�1 � V ��1EV
�1

=
J 0
0 0

�
0 0
0 �I

I 0
0 N

=
J 0
0 N

:

As j�i(J)j < 1 for all i andN is nilpotent, soj�i(�0A��
�1
E)j =

j�i(�0A � �
�1
E)j < 1 for all i. This implies that the solution of

(13) is also unique.
v) When (1) is in Weierstrass canonical form (3), (11), and (12)

reduce to

P r
11 0
0 0

�
JP r

11J
T 0

0 0
=

B1B
T
1 0

0 0

0 0
0 P r

22

�
0 0
0 NP r

22N
T =

0 0
0 B2B

T
2

or, equivalently,

P
r
11 � JP

r
11J

T =B1B
T
1 (14)

P
r
22 �NP

r
22N

T =B2B
T
2 : (15)

On the other hand,

P
r
c =

1

k=0

�kBB
T
�
T
k =

P r
11 0
0 0

P
r
nc =

�1

k=��

�kBB
T
�
T
k =

0 0
0 P r

22

then

P
r = P

r
c + P

r
nc =

P r
11 0
0 P r

22

: (16)

As noted in [4], (1) is reachable if and only if(J; B1) and(N; B2)
are reachable. Hence,J is asymptotically stable [as (1) is asymptot-
ically stable] if and only if (14) has a unique solutionP r

11 > 0 (see
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[6]). Equation (15) always has the unique solutionP r

22 > 0 sinceN
is nilpotent. Then from (16),P r > 0 is unique if and only if (1)
is asymptotically stable under the assumption of the reachability of
(1). Notice that

P
r = P

r

c + P
r

nc = V (P r

c + P
r

nc)V
T = V P

r
V
T
:

Then the proof is completed.
The results for the dual case concerning the observability Gram-

mian are summarized in the next theorem with the proof omitted.
Theorem 2:

i) P o

c satisfies

P
o

c � �
T

0 A
T
P
o

c A�0 = �
T

0 C
T
C�0: (17)

ii) P o

nc satisfies

P
o

nc � �
T

�1E
T
P
o

ncE��1 = �
T

�1C
T
C�

�1: (18)

iii) P o = P o

c + P o

nc satisfies

P
o
� (�T0 A

T
� �

T

�1E
T )P o(A�0 � E�

�1)

= �
T

0 C
T
C�0 + �

T

�1C
T
C�

�1: (19)

iv) If (1) is asymptotically stable, thenP o

c � 0; P o

nc � 0, and
P o

� 0 are the unique solutions of (17)–(19), respectively.
v) If (1) is asymptotically stable, then (1) is observable if and

only if P o > 0 is the unique solution of (19).

Remark 1: If E is nonsingular, then�0 = I and�
�1 = 0 (see

[1]). In this case, the reachability and observability GrammiansP r

and P o become

P
r =

1

k=0

A
k
BB

T (Ak)T ; P
o =

1

k=0

(Ak)TCCT
A
k
:

It can be seen from (13) and (19) thatP r andP o satisfy

P
r
�AP

r
A
T = BB

T
; P

o
� A

T
P
o
A = C

T
C:

Thus, normal systems and descriptor systems have a unified Gram-
mian form and Lyapunov equations.

IV. RICCATI EQUATION AND STABILIZABILITY

Consider a generalized state-feedback control

uk = �Kxk

applied to (1) such that the closed-loop system is given by

Exk+1 = (A�BK)xk: (20)

If K is such that (20) is asymptotically stable, then (1) is said to
be stabilizable. Based on Lyapunov equation (11), a corresponding
Riccati equation for descriptor system (1) is defined as

A
T
�
T

0 P�0A� P �A
T
�
T

0 P�0B(R+B
T
�
T

0 P�0B)�1

� B
T
�
T

0 P�0A = �W (21)

whereR > 0 andW > 0.
Lemma 2: Equation (1) is stabilizable if and only if normal system

(I; �0A; �0B) is stabilizable.

Proof: If (1) is stabilizable, then there exists a feedbackK1

such thatJ � B1K1 is asymptotically stable [4, Theorem 3-1.2].
This is equivalent to having

xk+1 =
J �B1K1 0

0 0
xk

asymptotically stable. Now, we consider the closed-loop system of
(I; �0A; �0B) with the feedbackK̂ = [K1 0]V :

xk+1 = (�0A� �0BK̂)xk: (22)

From

V (�0A� �0BK̂)V �1 =�0A� �0B[K1 0]

=
J �B1K1 0

0 0
;

it can be seen that (22) is asymptotically stable, and hence
(I; �0A; �0B) is stabilizable.

On the other hand, if(I; �0A; �0B) is stabilizable, then there
existsK such that�0A � �0BK is stable. If we denote

KV
�1 = [K1 K2];

then

V (�0A� �0BK)V �1 =
J �B1K1 0

0 0

is asymptotically stable. That is, (1) is stabilizable.
Lemma 3: Suppose (1) is stabilizable. For any givenW > 0, let

P be the unique solution of (21). IfP is the unique solution of the
Riccati equation of (1) in Weierstrass canonical form (3),

A
T
�
T

0 P�0A� P � A
T
�
T

0 P�0B(R+B
T
�
T

0 P�0B)�1

�B
T
�
T

0 P�0A = �(V T )�1WV
�1 (23)

then P = (V T )�1PV �1.
Proof: By substituting

�0A = V
�1
�0AV; �0B = V

�1
�0B

into (21), we have

A
T
�
T

0 (V
T )�1PV �1�0A � (V T )�1PV �1 � A

T
�
T

0 (V
T )�1

� PV
�1
�0B(R+B

T
�
T

0 (V
T )�1PV �1�0B)�1

� B
T
�
T

0 (V
T )�1PV �1�0A = �(V T )�1WV

�1
: (24)

Since(I; �0A; �0B) is stabilizable andW > 0, (21) and (23) have
unique solutionsP andP . From (23) and (24), the result follows.

Theorem 3: For any givenW > 0, if (1) is stabilizable, then the
closed-loop system (20) withK given by

K = (R+B
T
�
T

0 P�0B)�1BT
�
T

0 P�0A (25)

is asymptotically stable whereP > 0 is the unique solution of the
Riccati equation (21).

Proof: When (1) is in the Weierstrass canonical form (3),K

can be represented as

K = �0B(R+B
T
�
T

0 P�0B)�1BT
�
T

0 P�0A = [K1 0]:

With

P =
P11 P12
P T

12 P22
; (V T )�1WV

�1
�

W 11 W 12

W
T

12 W 22

;

the Riccati equation (21) becomes

JT 0
0 0

P11 P12
P T

12 P22

J 0
0 0

�
P11 P12
P T

12 P22

�
JT 0
0 0

P11 P12
P T

12 P22

I 0
0 0

B1

B2

[K1 0 ]

= �
W 11 W 12

WT

12 W 22

:
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That is,

JTP11J 0
0 0

�

P11 P12
P T
12 P22

�

JTP11B1K1 0
0 0

= �
W 11 W 12

WT
12 W 22

:

Obviously, P12 = W 12; P22 = W 22 > 0, and P11 > 0 is the
unique solution of the Riccati equation

J
T
P11J � P11 � J

T
P11B1K1 = �W 11 < 0

and (J � B1K1) is asymptotically stable (see [14]), which implies
that (E; A; B) is stabilizable by the feedbackK: Now, we prove
the stability of (20) withK given by (25). Consider an equivalent
system of (20):

U
�1
EV

�1
xk+1 =U

�1(A�BK)V �1xk )

Exk+1 =(A�BKV
�1)xk:

Since (1) is stabilizable andW > 0, then from Lemmas 2 and 3,
we have

KV
�1 = (R+B

T
�
T
0 P�0B)�1BT

�
T
0 P�0AV

�1 = K:

It follows that (1) is equivalent to

Exk+1 = (A�BK)xk

which is asymptotically stable. The uniqueness and positive definite-
ness ofP follow from Lemma 3 andW > 0.

Remark 2: It is observed thatK given by (25) is the optimal state
feedback matrix for(I; �0A; �0B) under the linear-quadratic cost
function [6]

1

k=0

x
T
kWxk + u

T
kRuk:

If the system is causal, which means��1E = 0, then the solution
of (1) is given by [see (5)]

xi = (�0A)
i
x0 +

m�1

k=0

(�0A)
i�k�1

�0Buk;

which corresponds to the solution for the system(I; �0A; �0B):
Consequently, in the causal case,K given by (25) is also the optimal
state feedback matrix of (1).

V. NUMERICAL EXAMPLE

From the given Lyapunov and Riccati equations, it is easy to obtain
their solutions after computing�0 and ��1. In [12], numerically
reliable and stable recursive algorithms were provided for calculating
�0 and ��1.

Example 1: Consider the dynamic Leontief model which describes
the time pattern of production sectors [4], [10] given by

xk = Fxk +G(xk+1 � xk) + dk: (26)

The elements ofxk 2 IRn�1 are the levels of production in the
sectors at timek. F 2 IRn�n is the input–output matrix, andFxk
is the amount required as direct input for the current production.
G 2 IRn�n is the capital coefficient matrix, andG(xk+1 � xk) is
the amount required for capacity expansion to be able to produce
xk+1 in the next period.dk is the amount of production going to
current demand. It is assumed that the amount of productiondk is, in
turn, controlled byuk such thatdk = Huk whereuk 2 IRp�1 where
1 � p < n. In multisector economic systems, bothF andG have
nonnegative elements. Typically, the capital coefficient matrixG has
nonzero elements in only a few rows, corresponding to the fact that

capital is formed from only a few sectors. Thus, (26) is a practical
discrete-time descriptor system sinceG is often singular. Here, we
consider a Leontief model described by

F =
1:25 0:5 1:5
0:75 0:5 1:1
0:25 0 1:5

; G =
1 0:5 0:75

0:25 0 0:5
0 0 0

;

H =
1
1
1

:

Then (26) can be rewritten as

1 0:5 0:75
0:25 0 0:5
0 0 0

xk+1

=
0:75 0 �0:75
�0:5 0:5 �0:6
�0:25 0 �0:5

xk �

1
1
1

uk (27)

which is a reachable, noncausal descriptor system. Its finite pole is
located atz = 1:3636, which implies that (27) is an unstable system.
The Laurent parameters�0 and��1 are

�0 =
1:2121 1:6529 �8:5349
0:4848 0:6612 �3:4140
�0:6061 �0:8264 4:2675

��1 =
0 1:2121 �4:9256
0 �1:5152 0:4298
0 �0:6061 4:4628

:

The reachability GrammianP r is then obtained from (13) as

P
r =

�22:1437 �12:7671 3:6448
�12:7671 �2:5107 4:2128

3:6448 4:2128 5:8911

which is an indefinite matrix. Since the system is reachable, this result
implies the instability of the system.

To consider the stabilization of (27) based on Theorem 3, letR = 1
andW = I in (21), thenP is obtained as

P =
1:1496 0:0558 0:1598
0:0558 1:0208 0:0596
0:1598 0:0596 1:1706

and the feedback matrixK following from (25) is

K = [0:3828 0:1427 0:4087]:

The resulting closed-loop system is

1 0:5 0:75
0:25 0 0:5
0 0 0

xk+1 =
1:1328 0:1427 �0:3413
�0:1172 0:6427 �0:1913
0:1328 0:1427 �0:0913

xk

which has one stable finite pole at 0.02832. Thus, the system is
stabilized.

VI. CONCLUSION

In this paper, Lyapunov equations have been obtained for discrete-
time descriptor systems. The Lyapunov equations are applicable to
causal and noncausal descriptor systems. Since they have the same
form as those for the normal systems, and the solutions are unique if
the systems are asymptotically stable, it is easy to obtain numerical
solutions. These features make the proposed Lyapunov equations
suitable for asymptotic stability analysis as well as control synthesis.
A Riccati equation is also considered, from which a static state
feedback can be obtained to stabilize the systems. Finally, numerical
examples are used to illustrate the results established.
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Control of Markovian Jump Discrete-Time Systems with
Norm Bounded Uncertainty and Unknown Delay

Peng Shi, El-Ḱebir Boukas, and Ramesh K. Agarwal

Abstract—This paper studies the problem of control for discrete time
delay linear systems with Markovian jump parameters. The system under
consideration is subjected to both time-varying norm-bounded parameter
uncertainty and unknown time delay in the state, and Markovian jump
parameters in all system matrices. We address the problem of robust
state feedback control in which both robust stochastic stability and a
prescribedHHH111 performance are required to be achieved irrespective of
the uncertainty and time delay. It is shown that the above problem can
be solved if a set of coupled linear matrix inequalities has a solution.

Index Terms—Discrete-time system, Markovian jump parameter, Ric-
cati inequality, time delay, uncertainty.

I. INTRODUCTION

During the past years, the study of time delay systems has received
considerable interest. Time delay is commonly encountered in various
engineering systems, and is frequently a source of instability and
poor performance [1]. In [2], nonlinear state feedback controllers
have been considered, whereas [3] has focused on memoryless linear
state feedback. Recently, memoryless stabilization andH1 control
of uncertain continuous-time delay systems have been extensively
investigated. For some representative prior work on this general
topic, we refer the reader to [4]–[6] and the references therein. More
recently, optimal quadratic guaranteed cost control for a class of
uncertain linear time delay systems with norm-bounded uncertainty
has been designed in [7]. The issue of delay-dependent robust stability
and stabilization of uncertain linear delay systems has been tackled
in [6] via a linear matrix inequality approach. On the other hand,
stochastic linear uncertain systems also have been extensively studied
for the last ten years, in particular, linear systems with Markovian
jumping parameters; see, for example, [8]–[13]. The problems of
designing state feedback controllers for uncertain Markovian jumping
systems to achieve both stochastic stability and a prescribedH1

performance, and guaranteed cost control for Markovian jumping
systems have been investigated in [12] and [13]. However, to the
best of the authors’ knowledge, the problems of robust stochastic
stability andH1 control of uncertain discrete-time delay systems
with Markovian jump parameters have not been fully investigated
yet.

In this paper, the problems of stochastic stability and control of
a class of uncertain systems with unknown time delay in the state
variables, and with Markovian jump parameters in all system matrices
are studied. We consider uncertain systems with norm-bounded time-
varying parameter uncertainty in both the state and control. We deal
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