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We investigate the property of the bound states with an infinite number of classical turning points in the
semiconductor superlatticéSL’s) with the double-barrier and double-well structural defects. The anomalous
parity sequence of these bound states violating the conventional parity rule is predicted. A physical mechanism
on the origin of the bound states in the structural defect SL's, different from the mechanism addressed in the
previous literature, is proposed. Based upon it, the parity anomaly can be interpreted very well. In addition, we
also study the property of the optical transition in this system, for instance, the evaluation of the optical
transition probability from the bound states to the bound states, from the bound states to the delocalized
scattering states, and from the scattering states to other scattering states, inQM&t&i8-182098)02432-1]

[. INTRODUCTION bound state because there only exists one bound state for a
given Von Neumann—-Wigner—type oscillating potential. The
It is well known that every eigenstate in the quantumparity anomaly of the von Neumann—Wigner bound states
systems with space-reverse symmetry has a definite paritgan be simply ascribed to the lack of classical turning points.
i.e., the parity of the wave function of the stationary states Recently, the Bragg reflection conditions were applied in
must be either even or odd under the space reverse trangte semiconductor superlatticé€SL’s) to form the so-called
form, as long as the eigenstate is nondegenerate. For tigragg confined stategBCS's) of electrons above the
bound states with classical turning points in a one-barrier! Shortly later, the BCS's were observed in
dimensional quantum system, according to the oscillatiorexperiment$-2° The BCS's are significantly different from
theorent the conventional parity rule is active. The parity of the Von Neumann—Wigner bound states. The former lies in
the bound states should alternate between even and odd p#ne minigaps of the SL's; by contrast, the latter is embedded
ity in sequence and the parity of the lowest bound statén the continuum. Many theoretical studies have clearly
(ground state must be even. However, in 1929, Von Neu- shown that the BCS’s can be regarded as specific structural
mann and Wigner have suggested a new type of bound statkefect state$!™'* Moreover, there exist both the above-
embedded in the continuous energy specti@ontinuun), barrier and the below-barrier bound states in the SL’s with
fundamentally violating the normal parity rideBased on a  structural defects. Apparently, the below-barrier structural
constructive method of amplitude modulation of a free-defect states not only are the bound states with classical turn-
particle wave function, they indicated that the spatially oscil-ing points but are also isolated from the continuum. One is
lating attractive potential could lead to the formation of amotivated to further reveal the parity anomaly of the bound
bound state lying above the potential barriers. More tharstates in new quantum systems and its origin. In this work,
twenty years ago, some researchers have addressed that themepresent a detailed investigation of the parity of the below-
might exist Von Neumann—Wigner bound states in somebarrier bound states in the symmetric SL’'s with structural
atomic and molecular systeffs and semiconductor defects and a physical picture, different from the physical
heterostructure® It has become a well known fact, through mechanism addressed in the previous literature, for under-
their studies, that the oscillation theorem is not applicable tstanding the origin of the parity anomaly of the related
the bound states embedded in the continuum. Although thbound states. We also give the evaluation of the optical tran-
Von Neumann—-Wigner bound states contribute an examplsition probability of the related statémcluding the bound
of the parity anomaly of the bound states, more knowledgestates and delocalized scattering stabeshis system.
about this effect cannot be further acquired from this kind of  This paper is organized as follows. In Sec. Il, we give a
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vector,L the period of the semi-infinite SL, and the longitu-
dinal wave number of the electrok,;(x=d,s), in the ujth
layer is given by
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—Z In Eq. (3), kyy is the transverse wave number of the electron,

E the total energy of the electrok} ;=0 (in the well ma-
terial) or Ug (in the barrier material Uy is the conduction-
band edge offset, anah,,; is the energy-dependent effective

mass of the electron in thejth layer, incorporating the ef-
fect of the band nonparabolicity, it is given By
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FIG. 1. () Schematic diagrams of the SL’s with the symmetric 0 0 0N .
double-barrier structure defedtsample No. 1 (b) the correspond- Wherem,,;(=m,, or my) is the electron effective mass at
ing STQWS to sample No. r) schematic diagrams of the SL's the conduction-band edge, amd,;(= a,, or a;) the non-
with the symmetric double-well structure defe¢tmmple No. 2 parabolicity parameter of the barith the well or barrier
(d) the corresponding SQQWS to sample No. 2. The structural demateria). In terms of Ref. 15, we can infer the relationship

fect regions are plotted with the dotted lines. betweena,, and ¢, as
brief description of the model structures and present the nec- _ mf,’v
essary formulas used in calculations of levels of the bound ab_?gaw- ®)

states. Then, the parity anomaly of the bound states is stud-
ied in detail. In Sec. Ill, we present the expressions of the oy the structural defect states lying in the minigaps of the
normalized envelope wave functions for the bound states angL, the Bloch wave numbék, should take a complex value
the delocalized scattering states. Based upon them, the opfj; the form adé
cal transition characteristics of the system are investigated.
Finally, a brief summary is reserved in Sec. IV. nm

kZ=T+iq (q>0,n=0,1,2...). (6)

Il. PROPERTIES OF BOUND STATES . . .
By using the Bastard boundary conditions at the interfaces of

A. Model and calculation of bound levels Z=Wgo/2Wgo/2+ Wg1 ,Weo/2+Wgs +Wg, and wge/2+ Wy,

We consider two typical samples of the symmetric SL's T Ws1tWsz (W,; is the width of theujth laye), we can
with structural defectsi) symmetric double-barrier structure derive the following equations

defect SL's(sample No. 1 in which two identical semi- A A

infinite SL's are coupled by a “distorted” double-barrier ( do :Q( 51) 7
structure with different structural unit from the semi-infinite Bdo B/’

SL’s, as shown in Fig. @®); (ii) symmetric double-well struc-

ture defect SL's(sample No. 2 in which a “distorted” . . [ Ags

double-well structure is embedded in a SL, as shown in Fig. [1-(=1)"e”"P] le) =0, 8

1(c). We also draw the schematic diagrams of the related
triple- and quadruple-quantum-well structures in order to diSwherei is a unit matrix. The matrice® and P are defined
cuss the origin of the structural defect states, as shown ipy

Figs. 1b) and 1d). We choose the growth direction of the

SL’s as theZ axis and the center of the defect structure as they=T-1(my,,kyg,Wao) M (Mg1 ,Kg1 . War) T(Msg . Keg , — We1),

coordinate origin. For the half-space %0, the longitudi- 9
nal envelope wave function of an electron can be expressed
as P:Til(mslvksl7Wsl)M(mSkaSZ!WSZ)T(mstsla_Ws(l)(v))
1
— ikqi(Z—24i —ikgi(Z—2Zy;
Dyj(Z)=Agjel el )4 Byje Nalem ()L
for thedjth (dj=d0,d1) layer in the defect region, and . . .
M(mk,x)=T(m,k,—x)T~*(m,k,x), (11
q)(sT)(Z):[Asjeiij(z_zg}>+ ste‘iksﬁz‘zg})]eikz(m_1)"(2) ) aikx2 e ikxi2
Tme0= Gmyeion — (ik/mye o) (12
for thesjth (sj=s1,s2) layer in themth period of the right
semi-infinite SL. HereZy; and zg} designate the center co- It is evident from Eq.(1) that the even and odd parity

ordinates of the corresponding layeks,is the Bloch wave bound states correspond to the conditiohg=Bgyo and



PRB 58 PARITY ANOMALY OF BOUND STATES AND OPTICAL ... 4631

220 ‘ ' ' ] F ' ' ‘ 7 these bound states exhibit anomalous parity behavior, sub-
" Gt | oo stantially violating the conventional parity rule of the bound
) “ states. For instance, wh@B<24 A, the parity of both the
1ol T TR T E e ground stateE; and the first excited stat&, is even,
Band2 [ e ] whereas the second and the third excited stafgsadE,)

IR | SN SR have the odd parity. For 24DB<35 A, only one even par-
ity stateE; and one odd parity staté; survive. Their parity
sequence accords with the conventional parity rule. When
Gap2 35<DB<38 A, only one odd parity staté; (as the lowest
bound stateis survived. These results evidently show that
the conventional parity rule is no longer applicable to the
bound states in the SL’s with the structural defects.
. . . ‘ In the previous literaturé! it has been addressed that the
10 20 3 40 50 1020 30 40 50 hoynd states in the structural defect SL stem from the reso-
(@) DB (A) ® DB (A) nant states or bound states in the separate defect region from
FIG. 2. (a) Dependence of the below-barrier structural defectthe SL. Apparentl_y, the existence of four below-barrler de—.
states on the widtlDB of two identical defect barriers in sample [€Ct bound states in sample No. 1 does not match this physi-
No. 1; (b) variations of the bound levels wiiB in the correspond- €@l picture in which only two below-barrier resonant states
ing STQWS[as shown in Fig. ()] to sample No. 2. Soliddotted survive for an isolated double-barrier-defect structure with a
curves correspond to the evéadd parity states. Four horizontal defect well of 85 A width. So, we have to search a new
dashed lines divide the below-barrier energy spectrum into twgphysical mechanism for understanding the parity anomaly of
minibands and three minigaps. the structural defect states in sample No. 1.
As is well known, besides the bound states, there are the
Ago=—Byo, respectively. From Eqs7) and(8), we deduce scattering states lying within the minibands in the structural
the equations for determining the structural defect states aslefect SL's™* It is worthy to pointing out that these scatter-
ing states do not posses definite parity owing to their double
degeneracy. The formation of the minibands is attributed to

E (meV)
8

cosiqL)=0.5—1)"(P1y+ P2, (13 the splitting of levels due to the periodicity coupling between

the adjacent quantum wells in the perfect SL's. When intro-

[17(—1)"e PO~ Qu) T (—1)"e P, ducing the structural defects into the ideal SL, this periodic-
ity coupling is locally broken down around the structural

X (007 Q1) =0, (14) defect layers. As a result, the periodicity broken coupling

between the adjacent quantum wells occurs within the region

where the signstt” correspond to the even and odd parity including the structural defects and two nearest quantum
states, respectively. wells to them in the left and right semi-infinite SL’s. This
periodicity-broken coupling leads to the appearance of new
splitting levels, different from the splitting levels stemmed
from the periodicity coupling. Some of them may lie within

We now employ Eqs(13) and (14) to perform the nu- the minibands of the SL’s and turn into the delocalized scat-
merical calculations for both Samples No. 1 and No. 2 comiering states without definite parity. On the other hand, the
posed of GaAs/AJ{Ga As material. The well and barrier other part of them resides in the minigaps of the SL’s and
widths of the semi-infinite SL in two samples are fixed at 80becomes the bound states. Therefore, one may reasonably
and 30 A, respectively. The related physical parameters fogonjecture that the below-barrier structural defect states in
two samples can be evaluated as fo||o"\K/$JO=225 meV, Sample No. 1 originate from some of the bound states in the
m9,=0.067n,, andmJ=0.092n,, wherem, is the mass of related symmetric-triple-quantum-well structu@TQWS
the free electron. The nonparabolicity parametgris taken ~ as shown in Fig. (b). To confirm this conjecture, we exam-
to be 0.642 eV 1.8 The first and second allowed minibands ine the dependence of the bound levels on the wiziBof
of SL expand over the energy rangeq85.03, 47.2meV) WO _|dent|cal barriers in the STQWS. The resglts are shown
and[131.46, 177.38meV), respectively. For simplicity, all in Fig. 2b). It can be seen that the first excited state
the calculations were limited to the casekgf=0. marked dotted line betweds; andE; stateg with odd par-

The dependence of the bound-state leg&lsn the width ity and the fourth excited stateo marked solid line between
DB(=wy,) of two identical defect barriers in sample No. 1 E3 and E, state$ with even parity just respectively fall
[as shown in Fig. ()] is displayed in Fig. @), fixed the  within the first and second minibands of the SL when 10
defect well width at 85 A. Soliddotted curves correspond <DB=50 A. Consequently, when the left and right semi-
to the even(odd) parity states. It is clearly seen that the level infinite barrier regions in the STQWS are replaced by two
intervals AE,;=E,—E,; and AE,;=E,—E; of the bound semi-infinite SL’s, these two bound states tend to turn into
states gradually reduce BSB increases. This result seems to the delocalized scattering states without definite parity as
be similar to the level splitting effect in a coupled-double-they merge with the minibands of the SL. On the other hand,
quantum-well structure when the width of the coupling bar-it is noted that the structural defect stakgsin sample No. 1
rier is broadened. However, the fact is more interesting thatnd its analogous onds' in the STQWS exhibit quite simi-

B. Parity anomaly of bound states
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220 f (betweenE; and E; state$ completely falls within the first
miniband of the SL. It tends to turn into a delocalized scat-
tering state without definite parity when the semi-infinite
barrier regions in the SQQWS are replaced by two semi-
infinite SL’s. Comparing Figs. (@) with 3(b), we can find the
same similarities between the defect bound sEtand its
analogous on&; as that seen in Figs.(® and 2b). This
brings us a suggestion once again that the bound Etaite
sample No. 2 doubtless is the development of the corre-
sponding statde{ when the semi-infinite barrier regions in
the SQQWS are replaced by two identical semi-infinite SL’s.
It is worth pointing out that during this evolution as soon as
the relatedE; state are merged into the minibands, the cor-
201 o 20 p 70 10 30 50 70 respondingEi s.tate.toEi’ state disappears from the bound
@ DW (&) ®) DW (&) state series. It is this reason that leads to the parity anomaly
of the survival bound states in sample No. 2.
FIG. 3. (a) Dependence of the below-barrier structural defect

170

Gap?2

70

states on the widtDW of two identical defect wells in sample No. IIl. OPTICAL TRANSITION CHARACTERISTICS
2; (b) variations of the bound levels withB in the corresponding ) _ _ )
SQQWS([as shown in Fig. ()] to sample No. 2. Soliddotted Since the famous optical-absorption experiment on the

curves correspond to the evéadd) parity states. Four horizontal multiwell structures done by Dingl€,the measurements of
dashed lines divide the below-barrier energy spectrum into twdhe optical-transition spectra, such as the absorption and
minibands and three minigaps. emission spectra, and the photoluminescence and photolumi-
nescence excited spectra, etc., have become a powerful tool

lar varying tendency. Moreover, tHaB value forE; state  to explore the quantum properties in the quantum wells and
disappearing at the miniband edge is very close to the one fag| 's. The optical-transition spectra in these structures are
E; state being truncated by the miniband edge. Hence, it igetermined by the transition probabilities between the related
believed with certainty that the structural defect stdgsn  electronic states. It can be expected that the existence of the
sample No. 1 are the development of the bound stBfes bound states and their anomalous parity sequence in the
when the semi-infinite barrier regions in the STQWS arestructural defect SL's leads to some new optical-transition
replaced by two semi-infinite SL’s. The parity anomalouscharacteristics, different from that in the complete SL’s. We
sequence of the bound states in the sample No. 1 arises froanre now in a position to investigate the optical transition
the fact that during this evolution two of the above- characteristics in the SL’'s with structural defects. For sim-
mentioned bound states in the STQWS turn into the delocalplicity, we ignore the dependence of the sublevels and mini-
ized scattering states without definite parity. bands on the transverse wave numkgy. So, the optical

To further support the above-mentioned conclusion weransition probability from an initial statg; to a final state
present another evidence by envisaging sample Nfas2 E; in the approximation of an isotropic conduction band can
shown Fig. 1c)] with the fixed defect barrier width of 20 A. be expressed as
The variation of the bound levels with the width
DW (DW=wy;) of two identical defect wells in sample 2w eA 2 .
No. 2 is illustrated in Fig. @). The even(odd) parity state Wit == — KP(Z)|p|Pi(2))PS(Es—Ei~ho),
levels are plotted with soliddotted lines. It is evident that m 15
all the structural defect state level§ monotonically de- (19
crease and lastly merge into the minibands asDM& in-  where the functiorS(E;— E;,— % w) reflects the conservation
creases. When broadeni@W from 10 up to 66 A, the of energy;m* is the effective mass of the electroky andw
number of below-barrier bound states increase from 1 up tare respectively the amplitude and frequency of the optical
4. The parity of these bound states obeys the conventionaixcitation wave®; ((Z) are the envelope wave function of
parity rule. However, when 66DW=69 A, there are three the electron along th& direction. In order to calculate the
bound states, i.eE3, Eg, andE-. Their parity is in turn odd, transition probabilityW;; , we have to take into account the
even, and odd. When 69DW=75 A, only two odd parity normalization of the related envelope wave functions.
states are survived owing to the disappearancEqoétate.
When 75<DW=80 A, we can find three bound states due to A. Normalization of envelope wave functions
the emergence dE; state, and their parity is in turn even, for bound and delocalized states
odd, and odd. Apparently, when €®W=80 A, the parity
of the bound states in sample No. 2 completely violates th?
conventional parity rule. To get better insight into the ongln u
of the parity anomaly, we examine the behaviors of the
bound states in the related symmetric quadruple-quantum- ~ ~
well structure(SQQWS as shown in Fig. (). The depen- Zyo=Z—Zygy (0=ZgosWyol2), (16)
dence of these bound levels B'(W is displayed in Fig. ®). _ ~
It is noted that the first excited state with the odd parity Zyn=Z—2Zy1 (—Wg1l2<Zy1<Wq1/2), 17

First, we discuss the normalization of the envelope wave-
nction of the bound states. We introduce the relative coor-
dinate in each layer for the half-space®&0 as follows:
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Z3=2-27 (—w2<ZJ=<wy/2). (18  where the matrid is given in Eq.(10) and the matrix’ is
defined as
So, according to Eg9l), (2), and (6), the envelope wave

function of the bound states f@=0 can be reexpressed as p- :-’I\—(mSkaSZ-WSZ)M(mslvkslrwsl):i—(mSZaksb_Wsz)-

. 5 (29)
AqoF (1,21 K40,Zd0), _ _
. - ~ Out of the defect region, the wave functions of the delocal-
Pe, (2)=19 AdoF(Ad1.Bar.Ka1.Za1), ized scattering states should be the superpositiok, @id

* na—g.Lim-1 * pt >m —k, states Bloch wave functions. Considering the structural
Adol (= 1)"e 52" TR (Ag, Bj ks ’ZSj()ig) syrﬁmetry, the two linearly independent wavegfuncti()fw
the half space oZ=0) of the delocalized scattering states
whereAy, is the normalized constant; the signs™ corre-  with an energyE(k,) =E(—k,) lying within the minibands
spond to even and odd parity stat&,; andq. are deter- can be expressed in terms of the even and odd parity states as
mined by Eqs.(13) and (14). The functionF(A,B,k,Z) is

defined as CaoF (1,% 1 Kgo,Zd0),
F(A,B,k,Z)=Aek2+Be k2, (20) @i (2)= CaoF(Ca1.Dar ka1, Zar),
By using Bastard boundary conditions at interfaces, we ob- Cgol Cs;Gsi(K,, Z3) + D4 Gsj(—k,.Z0)1,
tain (30)
AL 1 where Cy, is a normalization constant. The function
d1l ~ Smy .
L= 27 Gsi(k,,Zg) is defined as
( B(ﬂ) Sdl,dO( + 1) ) ( ) S]( z sl)
. . Gej(ky . Z8) =F(104(k,) ksj, ZT koMt (31)
As és Ad1 (22 ith
+ | =Os1d1| o+ |1 wi
le Bdl
AL : Ok, Pael (32)
s2 2, sl 1 = — -
( + ) :Ssz,sl( + ) ) (23 o 1- PZZEIKZL
BSZ le
. and
with
" R R ﬁ)éleikZL
S,U,,V:Til(mp,ak,u,r_WM)T(mvakvaV)' (24) ®52(kz): ﬁ (33)

In terms of the normalized condition of the bound-state wave _ N .
functions with a definite paritf|®g (Z)|?=1/2, we have Applying the Bastarg boundary conditions at interfaces to
- the wave functionsblzz(kz,Z), we can obtain the equations

AL — 1 (25) for determining the coefficientﬁg‘?} and{gi} as follows:
do * * di sj
V2015 +13)
. Ci 1
with di| =
(Dgl) _Sdl,do( il)’ (34)
+ Wd0/2
|d—=J |F(1,£1Kkg0,2)|?dZ . .
0 Ca| .~ ;. Cat
+ |7 Rsa1 Ssl,dl + | (35)
Wqp/2 e ) Da Dy
+ /2|F(Ad_1'Bal1kdle)| dz, (26)
—W, + +
" C2\ -~ 4o o [Ca
and D :Rsz SsZ,issl D=’ (36)
s2 sl
2
+ 1 WeilZ e o here the matrix;; is defined
2= —— f IF(AL B2 kg,2)|?dZ. where the matr>Rg; is defined as
1—e “H=Hi=1 J-wg/2

(27) =

. o . S ®sj(kz) ®sj(_kz) .
We now consider the normalization of the wave functions
of the delocalized states with double degeneracy. The energhhe wave function in the continuurfminiband spectrum
dispersion relatiorE(k,) of the scattering states is deter- can be normalized according to
mined by

| Tei@ep@rdz-akok). @

codk,L)=3(Py1+Pop)=3(PL+P3y), (28)
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After considering the definite parity of wave functions, the — X0*————— 10+
normalization condition can be rewritten as A
Wgol/2+Wgg - e . & sx109 & sxwo) . 7 ‘
2 @, (2)[P,(2)]*dZ+2 Qi (2) = / 2 :
0 z z Wd0/2+Wd1 z s ._.‘
+ % . _ , '.': . ) T.._. ‘ : | | | .
X[(I)ké(Z)] dZ=d(k,~ky). (38) %0 05 1.0 %0 0s 1.0
] ) o _ _ {a) K, (/L) (v) K. (R/L)
The first term in Eq(38) has a finite value, and its contribu- 2x10° . 8104
tion can be neglected with respect to the second term. By
using the relation
N S w0 1 Saxaos|
) i 5 40 5
lim X etk b= 5k,—k)), (39 ;
N—oo M=1 Se. .‘..“><100
] ] o o & e, 0 Rt
we can obtain the normalized coefficient 00 05 1.0 0.0 05 1.0
(@) K (R/L) (e) K. (R/L)
Ct— 1 (40) FIG. 4. Transition probabilities from the bound states to the
do™— ek delocalized states in the double-barrier structure defect SL stated in

the text.(a), (b), (c), and(d) correspond to the transitions from the
where levelsEq, E,, E3, andE, to two minibands, respectively. The dot-
ted and the solid lines represent the transition probabilities from the

. 2 +12 Wsif2 ) levelsE; to the first and second minibands, respectively.
=2, |1Cs]| F(104i(ky) kei,2)|2dZ
= W

Wi

w2 The.transition charac(j:.ter:stiCTj el_mang ;’33 4l:;((;)un'ci.states and
<12 e 2 scattering states are displayed in Fig . Figures
DSl f - IFLOsi(—ko) ki, 2)["dZ]. (4D 4(a), 4(b), 4(c), and 4d) demonstrate the variation of the
transition probability from thée,, E,, E3, andE, levels to
two minibands of the SL with the Bloch wave numier.
Dotted (solid) lines correspond to the transitions from the
Substitutin_g the normalized wave fgnctions given in Eqs-bound levels to the firgsecond miniband. From Figs. @)—
(19 and(30) into Eq.(15), we can easily calculate the opti- 4(d), it is evident that the transition spectra from the bound
cal transition probability. As an example, we perform thestates to the delocalized states exhibit the interesting fea-
numerical calculation for the double-barrier structure defectyres:(i) The transition probabilities from the bound states to
SL [as shown in Fig. @] with the barrier width of 15 A, the delocalized states located at the center and edge of the
Because the dipole transition between two bound states WitBjllouin zone are quite small(ii) there always exists a
identical parity is forbidden, thu_s the transition probability maximum in every transition probability plotiii) the posi-
between thée; andE, states vanishes, and so does the trantions of these maxima depend on the odd/even property of
sition probability between theE; and E, states. The the indexn of the bound states. As the indexof the bound
permitted transition probabilities between two bound stategtates is even number, the peak position closes the center of
are respectively W13=0.2369< 10" °(Co), W14=0.1339  the Brillouin zone, otherwise the peak appears to be close to
X1073(Cq), Wp3=0.7717x10"%(Co), and W»=0.1172  the edge of the Brillouin zonejv) the transition probabili-

WSI

B. Numerical results and discussions

X107%(Cy), here the uniC, is defined as ties from the bound states with even parity to two minibands
ehA 2
CO=27-rﬁ(—> . (42) 1.7x10%
m*

These numerical results show that the transition probabilities
from E; to E, states and fronf, to E; states are the same
order of magnitude, but they are approximately one or two
orders of magnitude larger than the probability frémy to

E; states or fronE, to E, states. Note thaf,; andE, states 7x10°4}
lie within the first and third minigaps, and the values of their
corresponding index [given by in Eq.(6)] are an even

number =0 and 2), however, both thE, and E; states 2x10™ .
are located at the second minigap, and the values of their 0.0 05 Lo
corresponding inder are odd number(=1 and 3. That is Ka (/L)

to say, the transition probability between two bound states FiG. 5. Transition probabilities between two minibands for the
with identical odd/even property of their indexis larger  same double-barrier structure defect SL as in Fig. 4 and for the
than that between two bound states with different odd/eve@orresponding complete SL. The solid and dotted lines correspond
property of their indexn. to the cases of the defect SL and complete SL, respectively.

12x107F

W (Co)

SNy
Fevensrassnssmsmarvere ™
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are of the same order of magnitude, while the ones from thstructural defects. The anomalous parity sequence of the
bound states with odd parity to two minibands possess quitstructural defect states is predicted. This parity anomaly
different order of magnitude. arises from the following source: The structural defect states
The transition probability between two minibands as astem from splitting of levels caused by the periodicity-
function of the Bloch wave numbek, of the SL for the broken coupling between the adjacent quantum wells in the
double-barrier structure defect SL and the correspondingegion composed of the structural defects and two nearest
complete SL is displayed in Fig. 5. The solid line and dottedquantum wells to them in the left and right semi-infinite
line correspond to the defect SL and the complete SL. ComSL’s. The parity sequence of these splitting levels obeys the
paring the solid line and the dotted line, it is found thatconventional parity rule. When some of these splitting levels
except for the values in the defect SL being larger than thosare merged into the minibands of the SL’'s and become the
in the complete SL, they both exhibit a similarly varying delocalized scattering states without definite parity, the par-
tendency: the transition probability in the whole Brillouin ity sequence of the final survival structural defect states ex-
zone possesses the same order of magnitude, which is corhibits anomalous. In addition, we evaluate various transition
pletely different from the transition from the bound states toprobabilities, for instance, from the bound states to the bound
the delocalized states; and the transition probability betweestates, from the bound states to the delocalized states, and
two delocalized states at the edge of the Brillouin zone ifrom the delocalized states to other delocalized states in the
larger than that at the center of the Brillouin zone. structural defect SL. It is found that the transition probability
All of the above optical-transition characteristics in the strongly depends on the properties of the states involving the
structural defect SI may be measured by the infrared absorgransition process, for instance, their localization status, the
tion and emission spectra. Apparently, the optical absorptiostate parity, and the odd/even parity of the indexf the
between theE; and E, states and the optical emission be- bound states. Finally, we suggest that the anomalous parity
tween theE, andE; states cannot be observed in the infraredsequence in the structural defect SL’s can be identified by
absorption and emission spectra. It arises from the reasameasurements of the related infrared absorption and emis-
that the optical transition between two bound states withsion spectra.
identical parity is forbidden. So, we suggest that the anoma-
lous parity sequence in the structural defect SL's can be
identified by measurements of the related infrared absorption ACKNOWLEDGMENTS
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