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Electrochemical capacitance of a leaky nanocapacitor
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We report a detailed theoretical investigation on electrochemical capacitance of a nanoscale capacitor where
there is a dc coupling between the two conductors. For this ‘‘leaky’’ quantum capacitor, we have derived
general analytic expressions of the linear and second-order nonlinear electrochemical capacitance within a
first-principles quantum theory in the discrete potential approximation. Linear and nonlinear capacitance co-
efficients are also derived in a self-consistent manner without the latter approximation and the self-consistent
analysis is suitable for numerical calculations. At linear order, the full quantum formula improves the semi-
classical analysis in the tunneling regime. At nonlinear order that has not been studied before for leaky
capacitors, the nonlinear capacitance and nonlinear nonequilibrium charge show interesting behavior. Our
theory allows the investigation of crossover of capacitance from a full quantum to classical regimes as the
distance between the two conductors is changed.@S0163-1829~99!03548-1#
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I. INTRODUCTION

The most significant development in electronic devic
has been the progressive miniaturization of them: it is n
common to fabricate electron device structures with dim
sions at mesoscopic scale and even at nanoscale. One o
important directions in nanoelectronics research is to un
stand device properties that relate to the existence of s
dimensions. In this work, we investigate the notion of ele
trochemical capacitance for conductors in the mesoscopi
nanoscale and the nonequilibrium charge distribution at
nonlinear level. Using a full first-principles quantum theo
a semiclassical theory, as well as a direct numerical solut
we construct an overall physical picture on the effects
quantum tunneling to the nanoscale capacitance. We
investigate the density of state correction to capacitanc
nonlinear orders of the external bias. For a pair of very sm
conductors, it has been known that the capacitance ma
quite different from the usual parallel plate capacitance f
mula given byCo;1/W, whereW is the distance betwee
the two plates. Apart from the usual electrostatic fringe
fect, there are quantum corrections to the classical form
Quantum corrections come from several sources: a fi
density of states of the plates, a finite screening length to
electron-electron interactions, and quantum tunneling.

The quantum correction to classical formula due to d
sity of states ~DOS! has been theoretically1,2 and
experimentally3 investigated in the literature by a number
authors. For semiconductor heterojunctions they found
DOS contributes a factor to the capacitance given byCDOS
5e2(dN/dE) wheredN/dE is the total density of states o
the system. Thus, the total capacitanceC is a result of a
series connection ofCo and CDOS: 1/C51/Co11/CDOS.
This formula has been theoretically studied from a dynam
point of view and was derived in the low-frequency limit
an ac theory.4,5 Significantly, these investigations on DO
effects focused on thelinear capacitance coefficientC,
PRB 600163-1829/99/60~24!/16730~11!/$15.00
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namelyC is the linear coefficient of the charge pile up on
capacitor plate as a function of the external bias volta
Recently some attention6 has been paid to the nonlinear r
gime: due to the nonlinear bias dependence of local D
there is also a nonlinear bias dependence of the nonequ
rium charge. The nonlinear capacitance coefficients is on
the topics that will be further investigated below.

Mesoscopic electrochemical capacitance has been fo7

to obey, within a magnetic field, weaker Onsager-Casi
symmetry relations. For example it is no longer a symme
function of magnetic field.7 The asymmetry of electrochem
cal capacitance has been observed for a gate close to
edge of a quantum Hall bar.8 The magneto-electrochemica
capacitance of a three-dimensional quantum dot with th
probes has been studied numerically in detail in Ref. 9. I
found that at low-magnetic fields the magnetocapacita
shows a large asymmetry under a magnetic field reversa
higher fields the capacitance is dominated by Aharon
Bohm-type oscillations and the fluctuations of the asymm
try is somewhat reduced. For the III-V tunneling heterostru
tures, the contribution of the density of states on t
magnetocapacitance is also studied.10 The investigation of
the frequency dependent electrochemical capacitance f
parallel plate capacitor within the nonequilibrium Green
function formalism show interesting oscillatory behavio
which is related to the retardation effect of the Maxw
equations.11

As mentioned above, quantum tunneling effect chan
the capacitance value as predicted by the classical form
This effect was recently addressed using numerical anal
of atomic junctions.12 Numerical calculations12 of aluminum
atomic junctions with tiny DOS showed that at small d
tancesW, the electrochemical capacitanceC5C(W) actu-
ally increaseswith W, which is due to tunneling effect. On
expects that at largerW when tunneling effects is dimin
ished, the capacitance would follow a crossover to the c
sical prediction. However, due to the very small DOS of t
16 730 ©1999 The American Physical Society
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atomic junction,12 no crossover to the classical formula w
found in these atomic systems.

The correction to classical capacitance formula due t
finite screening length was most clearly demonstrated fro
dynamic point of view on the electrochemical capacitan
due to the work of Christen and Bu¨ttiker13 where a conduct-
ing quantum-point contact~QPC! was found to establish a
nonequilibrium charge resulting to a finite electrochemi
capacitance. In particular they have derived a formula fo
QPC with a semiclassical method,13

R

C
5

1

Co
1

1

e2
dN1

dE

1
1

e2
dN2

dE

, ~1!

whereR is essentially a reflection probability of the QPC,Co
is geometric capacitance,dN1 /dE anddN2 /dE are the total
DOS in the regions to the left and to the right of the QP
Qualitatively, the numerical data of the aluminum tunn
junction12 were consistent with Eq.~1! in that C is propor-
tional to R. Formula~1! is termed ‘‘semiclassical’’ becaus
not all the relevant scattering local partial density of sta
~LPDOS! were included in its derivation. The notion of sca
tering LPDOS was proposed by Bu¨ttiker4 and subsequently
by Gasparian, Christen and Bu¨ttiker,14 and it plays a very
important role in low frequency ac transport as well as n
linear dc transport. LPDOS describes the probability of va
ous scattering processes.14 Consider a tunnel barrier a
shown in Fig. 1. An example of a LPDOS is denoted
ds22(r )/dE which is the contribution of carriers at positionr
to the DOS, and these carriers come from region 2 and
mately return to region 2. Although region 2 is on the righ
hand side of the tunnel barrier~see Fig. 1!, ds22(r )/dEÞ0
even whenr is on the left-hand side of the barrier due
tunneling. In deriving13 Eq. ~1! for a QPC, contributions such
asds22(r )/dE with positionr on the other side of the QPC
has been neglected.

In this paper, we will further investigate nanoscale capa
tors where the two conductors have a dc coupling, nam
there is a dc ‘‘leakage’’ from one conductor to the other. F
the linear electrochemical capacitance of a tunnel barrier,
improve formula~1! by including the tunneling contribution
of various LPDOS. This way a full quantum capacitan

FIG. 1. The energy band configuration for a model barrier. N
the barrier the band bottom is different from that away the barr
The inset is an ideal experimental setup of which the energy ban
schematically shown in the figure.
a
a
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formula is derived and will be compared with Eq.~1!. For a
single tunnel barrier there is a quantitative difference
tween these results in the quantum regime, and the differe
diminishes as the classical limit is approached. The quan
formula and Eq.~1! allow investigations of a crossover from
tunneling dominated regime to the classical regime, by va
ing the barrier widthW. Our derivation as well as the der
vation of Eq. ~1! are within the discrete potential model15

that used an approximation where the space is coarse gra
into a few regions. For the tunnel barrier they are regions
the left of the barrier~denoted byV1), to the right of the
barrier (V2), and the barrier region. To confirm that th
approximation does not affect the predictions qualitative
we have carried out extensive numerical calculations of
LPDOS by directly solving them without the approximatio

Recently, the theory of non-linear electrochemical capa
tance has been formulated using the response theory.16 The
electrochemical capacitance of a parallel plate capacitor
nonlinear function of the bias voltage due to the finite DO
near the plates as mentioned above. In this paper, we
study effect of screening on the nonlinear electrochem
capacitance for the ‘‘leaky’’ capacitor, which is an importa
problem not investigated before and is relevant for exp
ments of scanning capacitance microscopy17 applied to nano-
systems. We will derive a general expression of the sec
and third-order nonlinear quantum electrochemical cap
tance using the discrete potential model.15 Our analysis natu-
rally deduces, in appropriate approximations, a semiclass
expression of thesecond-ordernonlinear electrochemical ca
pacitance for QPC. Finally, to compare with results of t
discrete potential model and semiclassical result, we h
directly solved the Poisson equation and calculated num
cally the linear and the second-order nonlinear electroche
cal capacitance as a function of barrier width of a sin
tunneling barrier.

The main results of our investigation are summarized
the following sections. In the next section, we present
theory of the nonlinear electrochemical capacitance wh
full quantum tunneling effect is taken into account. At th
linear order, we compare the quantum formula with t
semiclassical formula; and using scattering Green’s fu
tions we derive second and third-order nonlinear results
Sec. III, we present numerical calculations which is co
pared with the theoretical analysis. Finally, the last sect
summarizes the main findings.

II. THEORY

In general a two-probe system can be considered as
ing three regions, a scattering region and two electrod
This is illustrated in Fig. 1 where the scattering region
cludes the scattering potential barrier, and two electrodes
the regions to the left (V1) and to the right (V2) of the
barrier. We are interested in the electrochemical capacita
of this system by including the full quantum effects. If w
refer regionsV1 andV2 as the two conductors of a capac
tor, we are dealing with a ‘‘leaky’’ capacitor since the p
tential barrier provides a dc coupling between the cond
tors. Far away from the the regions, the system is conne
to contacts which are viewed as large thermodynamic re
voirs, hence in the contacts the electron distributions

r
r.
is
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Fermi Dirac. When a voltageV1 is applied at contact 1 an
V2 at contact 2, assumeV1,0, the electron energy band a
contact 1 is changed bydm15eV1 and at contact 2 by
dm25eV2. The relative electrochemical potential differen
is thusdm5dm12dm2: due todm electrons are injected into
the system. The force acting on electrons comes from a c
bination of external and internal fields. In principle, motio
of electrons in the total field can be solved by Schro¨dinger
equation. In particular, we will adopt the scattering mat
approach formulated by Landauer,18 Imry,19 and Büttiker20,21

to solve the single-electron transport problem which giv
the necessary LPDOS needed for the calculation of elec
chemical capacitance.

Study of electrochemical capacitance is closely related
the calculation of changes of the local bandeU(r ). It is clear
that this local band change near the tunnel barrier is diffe
from the shiftdmk, which occurs at the contacts far awa
from the barrier. At equilibrium conditions the electron e
ergy near the barrier is given byEt5E1dmk2eU(r ) where
E is the electron energy at Fermi level without the appl
voltage.dmk denotes the electrochemical potential change
reservoirk. Near the barrier electrons accumulate for regio
whereEt.E and deplete for regions whereEt,E. It is these
accumulated charges which we must evaluate. The inte
potential build-upeU(r ) can be solved by a self-consiste
Poisson equation. For simplicity of discussion, in the follo
ing, we useU1(r ) andU2(r ) to denote this potential in re
gionsV1 andV2, respectively. Furthermore, analytical de
vation of capacitance formula in terms of microscop
quantities is possible if we use a space-averaged potentiaUk
to replace the space-dependent potentialUk(r ), as was done
in Ref. 13. This corresponds to the discrete potential mo
proposed by Christen and Buttiker.15

We represent the number of electrons in the regionVk
(k51,2) incident from contacta (a51,2) byska , which is
a function of electron energyEt . Hence ska5ska(E
1dma2eUk). The number of electrons without extern
bias ~at equilibrium! is thusska(E), becauseUk→0 when
dm→0. By definition, the electrostatic~geometrical! capaci-
tanceCo between the two regionsV1 and V2 is given by
Co5DQ1 /(U12U2) @or by Co5DQ2 /(U22U1)] where
DQk (k51,2) is the charge measured from the equilibriu
value in regionVk regardless where they have come fro
i.e., DQk5(a@ska(Et)2ska(E)#, where, to avoid confu-
sion we usek5I,II to denote the regions from now on. Sinc
there are two electrodes, i.e.,a51,2, DQk thus consists of
two parts. For example, in regionV I ~i.e., k5I), a part of
DQI is due to electrons incident from electrodea51, which
are scattered back to regionk5I. We denote this part ofDQI
by DN1(V I)5s I1(E1dm12eU1)2s I1(E). The second
part of DQI comes from electrons launched at electrodea
52 but ended up in regionk5I, this part is expressed b
DN2(V I)5s I2(E1dm22eU1)2s I2(E). Hence, DQI
5DN1(V I)1DN2(V I).

The above partition of local charge according to where
comes from can be equally applied to the scattering lo
partial density of states.14 Hence, for example,ds12(V I)/dE
is the LPDOS, which is the DOS for an electron incide
from electrode 2 passing through regionV I and reaching
electrode 1. Similarly,ds22(V I)/dE is the LPDOS, which is
-
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the DOS for an electron incident from electrode 2 pass
through regionV I and eventually returning to electrode 2.22

Both of these LPDOS describe the tunneling process. T
latter term is neglected for a semiclassical calculations an
nonzero for a quantum analysis, as emphasized in Ref.
They both contribute to the electrochemical capacitanc23

which is the experimentally measured capacitance define

Cm5
eQ1

dm12dm2
. ~2!

The rest of the paper is devoted to calculateCm including all
the quantum effects discussed above.

Based on the above discussions, we can write down
following two equations6 for the classical geometrical ca
pacitance. Using charges of regionV I ,

Co3~U12U2!5s I1~E1dm12U1!2s I1~E!

1s I2~E1dm22U1!2s I2~E!. ~3!

Using charges of regionV II ,

Co3~U22U1!5s II 1~E1dm12U2!2s II 1~E!

1s II 2~E1dm22U2!2s II 2~E!. ~4!

Because the same charge defines electrochemical capaci
Cm as given by Eq.~2!, we have

Co3~U12U2!5Cm3~dm12dm2!. ~5!

Finally, it is important to remember that the internal electr
static potentialUk is a function of the electrochemical poten
tial at the reservoirs,

U15U1~m1 ,m2!, U25U2~m1 ,m2!. ~6!

In above equations we have set electron chargee51 so that
dma5Va , which is the bias voltage at reservoira.

Equations~3!, ~4!, and~5! are the fundamental equation
that we will use to derive quantum corrections toCo at the
linear and nonlinear orders. Because our theory is gauge
variant, without loss of generality we setV15V andV250
throughout the following analysis.

A. Linear electrochemical capacitance formula

As discussed above, a semiclassical formula of the lin
electrochemical capacitance has been derived in Ref. 1
the form of Eq.~1!. In this section, we derive a full quantum
formula.

Taking derivatives of Eqs.~3!, ~4!, and~5! with respect to
V, we obtain

CoS dU1

dV
2

dU2

dV D5
ds I1

dE1
S 12

dU1

dV D2
ds I2

dE2

dU1

dV
~7!

CoS dU2

dV
2

dU1

dV D5
ds II 1

dE3
S 12

dU2

dV D2
ds II 2

dE4

dU2

dV
~8!

CoS dU1

dV
2

dU2

dV D5Cm , ~9!
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where E1[E1V12U1 , E2[E1V22U1 , E35E1V1
2U2, andE45E1V22U2. In deriving the last equation, w
have assumed thatCm has no bias voltage dependence.24 In
general the above derivatives should be done at a finite
voltageV, but experimentally one can control this parame
and use very small voltages3 V!E. Hence, we will evaluate
the derivatives at theV→0 limit. In the above equations, th
quantity dska /dEi is just the LPDOS in the correspondin
regions as discussed above~where we used the notation suc
asds I1 /dE).

From Eqs. ~7!, ~8!, and ~9!, eliminating dU1 /dV and
dU2 /dV, we obtain

ds I1

dE1

ds I1

dE1
1

ds I2

dE2

2

ds II 1

dE3

ds II 1

dE3
1

ds II 2

dE4

Cm

5
1

Co
1

1

ds II 1

dE1
1

ds I2

dE2

1
1

ds II 1

dE3
1

ds II 2

dE4

. ~10!

The electrochemical capacitanceCm calculated from this for-
mula is fully quantum: all the tunneling effects are taken in
account through the appropriate LPDOS, which can
evaluated from quantum scattering calculations~see below!.

The general result~10! can be reduced to the semiclas
cal form Eq.~1! if we apply the semiclassical version of th
LPDOS. In the semiclassical limit, Ref. 13 showed that
LPDOS is given by

dska

dE
5(

b
DkFT

2
1dbaS Rdbk2

T

2D G ~11!

whereT is the transmission coefficient,R is related to the
reflection coefficient,DI[ds I1 /dE11ds I2 /dE2 and DII
[ds II 1 /dE11ds II 2 /dE2 are essentially total local DOS i
regionsV I andV II . Substituting Eq.~11! into Eq.~10!, it is
straightforward to prove that Eq.~10! reduces to the result o
Ref. 13

R

C11
5

1

Co
1

1

DI
1

1

DII
, ~12!

where we used notationC11 to denote thelinear electro-
chemical capacitanceCm . If we further setR51, i.e., no dc
coupling is allowed between the two regions, formula~12!
reduces to the familiar electrochemical capacitance of
plates where there is no dc current flowing through.5

In Sec. III, we will provide numerical plots of the ful
quantum and semiclassical formula, and compare them
direct numerical solution of the same problem, which do
not employ the discrete potential model.

B. Nonlinear electrochemical capacitance formula

We now derive the second-order nonlinear electroche
cal capacitance from the fundamental Eqs.~3!, ~4!, and~5!.
A similar procedure leads to higher-order results. To obt
nonlinear results we expand Eqs.~3! and ~4! order by order
as
r

e

e

o

th
s

i-

n

in terms of the bias voltageVb and internal potentialUb .
The expansion coefficients are energy derivatives of
spectral functionska , where the first derivative is the linea
LPDOS used in the last section, while the second deriva
is the second-order nonlinear LPDOS, which is analyzed
the Appendix A. Similarly higher-order derivatives are th
corresponding higher-order nonlinear LPDOS. To simpl
notation in the following we denoteDka[dska /dE and

D̄ka[d2ska /dE.2

To second order in bias voltage, Eqs.~3! and~4! become

C0~U12U2!5(
b

DIbVb2DIU11(
b

1

2
D̄Ib~Vb2U1!2

~13!

2C0~U12U2!5(
b

DII bVb2DII U2

1
1

2 (
b

D̄II b~Vb2U2!2. ~14!

Using Eq.~11! and expression~A10! of Appendix A, in the
semiclassical limit the above two equations become

C0~U12U2!5DI S T

2
1RDV11DI

T

2
V22DIU1

1
1

2
RD̄I~V12U1!21

1

2
TD̄I~V22U1!2

~15!

and

2C0~U12U2!5DII

T

2
V11DII S T

2
1RDV22DII U2

1
1

2
TD̄II ~V12U2!21

1

2
RD̄II ~V22U2!2.

~16!

In terms ofC11 of Eq. ~12!, we obtain internal potentia
U1 andU2 to first order in voltage,

U15RV11
T

2
~V11V2!2

C11

DI
~V12V2! ~17!

and

U25RV21
T

2
~V11V2!1

C11

DII
~V12V2!. ~18!

Substituting Eqs.~17! and ~18! into the quadratic terms o
Eqs.~15! and ~16!, we obtain
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C0~U12U2!5DI S T

2
1RDV11DI

T

2
V22DIU1

1
1

2
RD̄I S T

2
1

C11

DI
D 2

~V12V2!2

1
1

2
TD̄I S R1

T

2
2

C11

DI
D 2

~V12V2!2

~19!

and

2C0~U12U2!5DII

T

2
V11DII S T

2
1RDV22DII U2

1
1

2
TD̄II S R1

T

2
2

C11

DII
D 2

~V12V2!2

1
1

2
RD̄II S T

2
1

C11

DII
D 2

~V12V2!2. ~20!

Combining the above two equations, we finally arrive

C0~U12U2!5C11~V12V2!1 1
2 C111~V12V2!2 ~21!

with the nonlinear capacitance

C1115C11F D̄I

DI
S T

2
1

C11

DI
D 2

2
D̄II

DII
S T

2
1

C11

DII
D 2G

1
T

R
C11F D̄I

DI
S R1

T

2
2

C11

DI
D 2

2
D̄II

DII
S R1

T

2
2

C11

DII
D 2G .

~22!

This result indicates that the second order nonlinear elec
chemical capacitance can be expressed in terms of m
scopic quantities such as the various LPDOS as well as tr
mission and reflection coefficients. All of these a
calculable and have been studied before. Hence this res
very useful in practical predictions of nonlinear capacitan
coefficient, and it is valid even if there is a dc couplin
between the two polarization regions of the conductor.

The general expression~22! is reduced in certain limiting
situations. First, for a spatially symmetric system whereDI

5DII andD̄I5D̄II , Eq.~22! givesC11150. This is expected
due to symmetry: sinceC111 is the coefficient of the charg
distribution expanded in second order of bias voltage@e.g.,
Eq. ~21!#, it must vanish as chargeQ→2Q for symmetrical
systems whenV→2V. Second, for a capacitor without d
coupling between the two conductors, i.e., for casesT50
identically, Eq.~22! becomes

C1115C11
3 S D̄I

DI
3

2
D̄II

DII
3 D , ~23!

which was first derived in a response theory.16 Finally, a
point worthy some discussion is the ‘‘resonant transmiss
point’’ by setting T51 and R50. For this case from Eq
~12! the linear electrochemical capacitanceC1150. But from
Eq. ~22! C111Þ0 and is given by
o-
o-
s-

t is
e

n

C1115
1

4
S D̄I

DI
2

D̄II

DII
D 1

C0
211DI

211DII
21

, ~24!

which is generally nonzero. Apparently, we would expect
charge accumulation whenT51 henceC111 and all other
capacitance coefficients would vanish. However, theT51
limit in the above formula only states the fact thatinjected
charges are going through from one capacitor plate to
other at thelinear order, and it does not implicate the beha
ior of the charges at nonlinear order where in generaT
5T(E,U). Thus in settingT(E)51 in Eq. ~22! is not the
true resonant transmission point: at nonlinear order the re
nance occurs atT(E,U)51.

C. Analysis beyond discrete potential model

So far, we have derived the linear and nonlinear elec
chemical capacitance coefficients within the discrete pot
tial model, in which the internal potentialUk is parametrized
in terms of a geometrical capacitanceCo . This parametriza-
tion is necessary in order to carried out analytical deri
tions, and it is adequate to reveal qualitative features of
physics. On the other hand, if one is willing to perform n
merical calculations, it is possible to go beyond the discr
potential approximation. In this case, we can solve the in
nal potentialU5U(r ) from a self-consistent Poisson equ
tion. In this section, we derive capacitance expressions
are suitable beyond the discrete potential model.

We start from the charge pile up written as a thre
dimensional spatial integral of the charge density16

Qa5E
Va

r~x!d3x[(
b

CabVb1
1

2 (
bg

CabgVbVg1•••.

~25!

Reference 6 has shown that charge densityr(x) is given in
terms of the linear and nonlinear LPDOS, as

r~x!5(
a

dsa~x!

dE
@Va2U~x!#

1
1

2 (
a

d2sa~x!

dE2
@Va2U~x!#21•••. ~26!

To proceed further we must solve the internal Coulom
potentialU(x) by the Poisson equation

2¹2U~x!54pr~x!. ~27!

As done previously,5,16 for perturbative analysis of the elec
trochemical capacitance we introduce the characteristic
tential u(x)

U~x!5(
a

ua~x!Va1
1

2 (
ab

uabVaVb1•••. ~28!

Hence, instead of solvingU(x) we solve foru(x) order by
order. From Eqs.~26! to ~28!, we find Poisson like equation
for the characteristic potentials26

2¹2ua14p
ds

dE
ua54p

dsa

dE
~29!
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and

2¹2uab14p
ds

dE
uab54p

ds̃ab

dE
, ~30!

where16

ds̃ab

dE
5

d2sa

dE2
dab2

d2sa

dE2
ub2

d2sb

dE2
ua1

d2s

dE2
uaub .

~31!

With the help of Eqs.~29! and ~30!, the electrochemica
capacitance can be calculated from the following expr
sions,

Cab[E
Va

Qb~x!d3x5E
Va

S dsb

dE
2

ds

dE
ubDd3x ~32!

Cabg[E
Va

Qbg~x!d3x5E
Va

S ds̃bg

dE
2

ds

dE
ubgD d3x

~33!

whereQb(x) andQbg(x) are linear and nonlinear nonequ
librium charge distributions. These results are useful for
merical calculations where all the quantities on the rig
hand side can be obtained accurately. For instance Eq.~32!
has been used in the analysis of atomic junctions.12 Equation
~33! is derived here.

To end this section we note that in a numerical calcu
tion, the LPDOSdsa /dE can be calculated using the sca
tering wave function27

dsa~x!

dE
5

1

hv
uc~x!u2, ~34!

wherev is the velocity of the carrier andc(x) is the scat-
tering wave function for incident wave coming from leada.
Equations~29! and ~30! can be numerically solved on
three-dimensional grid, for instance a multigrid techniq
was employed in Ref. 12 for such a purpose.

III. NUMERICAL RESULTS

In this section, we present numerical plots for elect
chemical capacitance of the tunnel barrier in Fig. 1. T
numerical curves were obtained along two lines: by plott
the analytical expressions~10!, ~12!, and ~22!, which are
within the discrete potential model; and by direct numeri
solution of the self-consistent internal potentialU(r ) and
then applying expressions~32! and ~33!.28

To be specific, we choose a numerical calculation b
with size xL2xR512lF wherelF is Fermi wavelength of
the scattering electron. Here,xL,R are the positions of left
and right boundary of the calculation box. We fix the tunn
barrier of widthW symmetrically in the center of the calcu
lation box. This way the regionsV I andV II discussed above
are given by the space between the calculation box and
barrier walls. The quantum scattering problem by this sin
barrier is easily solved, from which we obtain various L
DOS using the scattering wavefunction according to E
~34!. To apply expressions~10!, ~12!, and ~22!, which are
appropriate for the discrete potential model, we spatially
-

-
-

-

e

-
e
g

l

x

l

he
e
-
.

-

erage these LPDOS in the respective regions which give
the corresponding quantities in these expressions. On
other hand, in applying expressions~32! and ~33!, which
uses the full spatial dependent internal potential, the spa
integration range should be the Thomas-Fermi screen
length5 as discussed in Appendix B. The screening length
determined5 by solving the Poisson-like Eqs.~29! @and Eq.
~30! in the nonlinear case#. From now on, we will use atomic
units such that\52m5e51. In typical nanoscale systems29

with charge density 1015, Fermi wavelengthlF;47 nm. In
the following, we uselF to set the unit for length and choos
Fermi energyEF50.31.

Figure 2 plots the linear electrochemical capacitance
tained from different approaches as a function of the bar
width W for the fixed barrier heightH050.8: ~a!. the elec-
trochemical capacitanceC calculated numerically from Eq
~32! ~solid line!; ~b!. the analytic quantum electrochemic
capacitance formula in the discrete potential approximat
Cq from Eq.~10! ~dotted line!; ~c!. the semiclassical electro
chemical capacitance13 Cs of Eq. ~12! ~dashed line!; ~d!. the
effective classical geometric capacitanceCo;1/W ~dot-
dashed line!. For very large the barrier width, it is clearl
shown that all curves approach to the classical beha
;1/W since quantum tunneling effect is negligible. For th
barriers where tunneling effect is significant, the behavior
electrochemical capacitancesC, Cq , andCs are completely
different from the classical regime. In this quantum regim
as one increases the barrier width, the electrochemical
pacitance increases rather than decreases. This increasin
havior at very smallW is expected since tunneling tends
diminish charge polarization, thusC;0 whenW;0. Hence,
C(W) should indeed start from small values and increas
bit before it goes down whenW is large enough.

To examine the DOS correction that is another quant
effect, we note that one can only separate out the geomet
effect from the DOS effect in the semiclassical limit@as in
Eq. ~12!#, and in general these effects are mixed. Furth
more, in a discrete potential model all the quantities~both in
quantum and semiclassical calculations! are spatially aver-
aged, hence capacitances are underestimated. This is
both Cq and Cs curves are consistently below the full nu
merical solutionC. Figure 2 shows some difference betwe
the quantum resultCq and semiclassical resultCs . To un-
derstand this difference we have plotted the partial D
dn11(V II )/dE ~solid line! anddn12(V II )/dE ~dotted line! in
the inset of Fig. 2. As expected,dn11(V II )/dE goes to zero
for large barrier widthes where the semiclassical theory
good approximation. It is nonzero in the quantum tunnel
regime for small barrier width.dn11(V II )/dE is also numeri-
cally much less thandn12(V II )/dE. Hence, neglecting
dn11(V II )/dE in the semiclassical analysis gives a small d
ference betweenCs andCq in the tunneling regime~see Fig.
2!. To further compare with the semiclassical result of QP
of Ref. 13, we have also examined the behavior of cap
tance by varying the barrier heightH0 for a fixed barrier
width W: the results using Eqs.~32!, ~10!, and ~12! are,
again, similar in the quantum regime and the same in
classical regime. When the barrier heightH0 is relatively
small, the appearance of quantum mechanism leads to a
rection for semiclassical electrochemical capacitance.

The physical behavior of second-order nonlinear elec
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FIG. 2. The linear electrochemical capac
tance as a function of barrier widthW for a
square barrier with the barrier heightH050.8.
The solid line is the full quantum numerical ca
culation C, the dashed line and dotted line a
from the quantum resultCq and the semiclassica
resultCs in the discrete potential approximation
respectively. The dot-dashed line is the classi
resultC;1/W. The inset: the corresponding pa
tial density of states versus the barrier widthW.
The solid line isdN11(V II )/dE and the dotted
line is dN12(V II )/dE.
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chemical capacitance coefficientC111 can be studied for an
asymmetric barrier: as discussed aboveC11150 for symmet-
ric systems@see Eq.~22!#. For the asymmetric barrier wher
the barrier heights areH150.2 andH251.0, shown in the
inset of Fig. 3~a!, Fig. 3~a! plots C11 versusW and Fig. 3~b!
plots C111. The linear coefficientC11 is very similar to that
of Fig. 2 of a symmetric barrier. For the full quantum n
merical result~solid line!, C111 starts from zero and become
negativefor very thin barrier, reaches minimum at aroun
W51.0, and then oscillates around zero. The oscillatory

havior can be traced to oscillations in second-order DOSD̄
5d2N/dE2 of Eq. ~22!. In the inset of Fig. 3~b!, we plot

PDOS DI and D̄I . Correlating the behavior ofC111 and

PDOS, it is clear that the negative values ofC111 is due toD̄.
In Fig. 4, the linear and nonlinear nonequilibrium char

distribution for this asymmetric barrier,Q1(x) and Q11(x),
are plotted. These quantities, especiallyQ11(x), have not
been studied carefully before. It is thus interesting to of
several observations.~a! The linear charge distribution
Q1(x) is in the form of a resistance dipole,25 whereas the
nonlinear chargeQ11(x) is more like a quadrupole.~b!. The
linear charge distribution is numerically much larger than
nonlinear charge distribution. The total charges are c
served, i.e.,*Q1(x)dx5*Q11(x)dx50. ~c!. In the discrete
potential model, the average nonlinear chargeQ11 is numeri-
cally even smaller. Because of this spatial average, the n
linear charge distribution becomes a dipole in the discr
potential model. This is responsible for the difference b
tween full quantum calculation and that of the discrete
tential model.

IV. DISCUSSION AND SUMMARY

In this paper, we have investigated the quantum versio
a ‘‘leaky capacitor’’ in the coherent nanoscale regime in b
linear and nonlinear order in terms of the external bias v
age. We have derived an analytic formula of electrochem
capacitance where the two plates have a dc coupling,
tunneling effects between the two plates are fully includ
by explicitly using partial local density of state
-

r

e
-

n-
te
-
-

of
h
t-
al
nd
d

dnaa(Vk)/dE. Within the discrete potential model where a
quantities are averaged over the polarization regions, a
lytic expressions for the linear and second-order nonlin
electrochemical capacitance have been derived. In addi
linear and nonlinear capacitance coefficients formula are
rived in terms of the self-consistent potential, and these
mula are suitable for numerical calculations in the full qua
tum regime. Our calculation showed that the analytic res
using the discrete potential model are consistent with the
numerical solution, for the single tunnel barrier structu
The electrochemical capacitance formula derived in this
per are suitable for analyzing ac transport at relatively l
frequency. At very high frequency, one has to consider
diation effect thus the quantum equation must be solved
consistently with the full Maxwell equation instead of th
Poisson equation used here.

Quantum behavior of the electrochemical capacitance
found in the tunneling regime that the capacitance increa
with the barrier widthW. This is in clear contrast to the
classical behavior of 1/W. What is the condition that this
nonclassical phenomenon be observed? Let’s consider
question using the semiclassical formula13 Eq. ~12!, which
can be rewritten as

C'
R

1

Co
1

1

D

. ~35!

For tunneling,R'@12exp(2W/l)# wherel is a characteristic
length depending on system details such as the ba
heights. When C5C(W) increases with W, we have
]C/]W.0, which gives to a condition for the range ofW
that allows the nonclassical behavior. Using Eq.~35!, for
tiny capacitor platesD!Co , one can have a reasonable a
experimentally accessible range of orderl. On other hand,
for large platesD@Co , one can not observe the nonclassic
effect unlessW is several orders smaller thanl, which is not
experimentally accessible. Hence, the condition to obse
the non-classical behavior is tunneling and also small DO
Systems which satisfy these conditions are nanoscale ca
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FIG. 3. ~a! The linear electrochemical capac
tance as a function of barrier widthW for the
asymmetric barrier~see inset!. The system pa-
rameters areW15W2 , H150.2, H251.0. ~b!.
The second-order nonlinear electrochemical c
pacitance versusW. In ~a! and ~b!, the solid,
dashed, and dotted lines correspond toC, Cq ,
andCs , respectively. In~b!, we have multiplied
Cq andCs by a factor of 5. The inset of~b!: the

corresponding partial DOSDI ~solid line! andD̄I

~dotted line! as a function ofW. For illustrating

purpose, we have dividedD̄I by a factor of 30.
h

d
el

ical
full
tors, whereas capacitors with large plates such as Josep
junctions~macroscopic! do not satisfy the DOS condition.

The nonlinear theory developed here can be pushe
higher order analytically within the discrete potential mod
son

to
.

At linear order the full quantum formula~10! and the semi-
classical formula~12! give certain numerical difference in
the quantum regime. There is a more substantial numer
difference between the discrete potential model and the
-

m-
FIG. 4. The linear~solid line! and nonlinear
~dashed line! charge distribution for the asym
metric barrier, whereW520, H150.2, andH2

51.0. The dotted line shows the shape of asy
metric barrier.
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self-consistent numerical calculation using expressions~32!
and ~33!, although all these results are qualitatively cons
tent. At second nonlinear order, the nonequilibrium cha
distribution behaves as a quadrupole, this is compared to
resistance dipole when linear order charge is considered.
interesting to note that the nonlinear charge can be non
when linear charge is zero: this happens at the linear r
nance point. The nonlinear capacitance coefficient also
haves quite differently from the its linear counterpart,
shown by its oscillatory behavior linked to the nonline
LPDOS.
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APPENDIX A

The nonlinear electrochemical capacitance depends on
nonlinear LPDOS, as shown in Sec. II. In this appendix,
derive the nonlinear~2nd order! LPDOS using Green’s func
tions. In particular, we have to relate the second-or
LPDOSd2sab /dE2 to the total LDOSd2s/dE2, where in-
dicesa, b label the leads.

We start from the definition of LPDOS expressed in ter
of the Green’s function,29

ds12~x!

dE
5Re@2p i ~GrG2GaG1Gr !xx# ~A1!

where Gr is the retarded Green’s function,Ga is the line-
width function, and Re@ . . . # denotes the real part of@ . . . #.
Using relation14

Gxx1

r Gx2x
r 5Gxx

r Gx2x1

r , ~A2!

we have

~GrMGr !xx5 (
x1x2

Gxx1

r Mx1x2
Gx2x

r

5Gxx
r (

x1x2

Gx2x1

r Mx1x2
5Gxx

r Tr@GrM #

~A3!

whereM is a matrix. Equation~A1! becomes,

ds12

dE
522p Im@Gxx

r Tr~G2GaG1Gr !#

5
i

2p
~Gxx

r 2Gxx
a !T5

T

2

ds

dE
, ~A4!
-
e
he
is
ro
o-
e-
s

r

e

e

he
e

r

s

where T5Tr(G2GaG1Gr)/(4p2) is the transmission
coefficient,25 which is a real quantity;ds/dE is the total
local DOS.

Taking energy derivative of Eq.~A1!, we obtain

d2s12

dE2
52p Im@~GrGrG2GaG1Gr !xx1~GrG2GaGaG1Gr !xx

1~GrG2GaG1GrGr !xx#. ~A5!

The first term of Eq.~A5! can be simplified using Eq.~A3!
as follows,

~GrGrG2GaG1Gr !xx5Gxx
r Tr~GrG2GaG1Gr !

5Gxx
r Tr~Gr !Tr~G2GaG1Gr !

5
T

4p2
~GrGr !xx . ~A6!

The other two terms of Eq.~A5! can be simplified in a simi-
lar fashion. We thus have

d2s12

dE2
5

T

2p
Im@2~GrGr !xx1~GrGa!xx#

52
iT

p
@~GrGr !xx2~GaGa!xx#5T

d2s

dE2
. ~A7!

In deriving the last equation we used the fact thatGrGa is a
real quantity. Using Eq.~A7! we find

d2s11

dE2
1

d2s22

dE2
5

d2s

dE2
2

d2s12

dE2
2

d2s21

dE2
5~122T!

d2s

dE2
.

~A8!

Now we consider a system with a dc current pass
through. Due to polarization we again divide the system i
two regions V I and V II . In the semiclassical treatmen
where the tunneling is neglected, the partial DO
d2s22/dE250 in region I, and similarlyd2s11/dE250 in
region II. These relations and Eqs.~A7! and ~A8! lead to

d2skab

dE2
5

d2s

dE2
$T1dab@~122T!dak2T#% ~A9!

where k labels the polarization regionVk . For two probe
system, it gives

d2ska

dE2
5

d2s

dE2
@T1~122T!dak#. ~A10!

This expression is the semiclassical second-order nonlin
LPDOS, which is in contrast to the semiclassical line
LPDOS Eq.~11! derived in Ref. 13. The nonlinear LPDO
plays a crucial role in determining the nonlinear elect
chemical capacitance, as given in Sec. II.

APPENDIX B

In this appendix, we give an example of calculating t
second-order nonlinear capacitanceC111 by directly solving



er

tw

to
is
S
o

o

In

e

im

ng

tion

PRB 60 16 739ELECTROCHEMICAL CAPACITANCE OF A LEAKY . . .
Poisson equation. This can be done analytically only for v
simple systems.

Consider a system which consists of three regions:
leads~regions I and III! and an infinite potential barrier~re-
gion II!. Since the calculation is perturbative, we have
calculate the linear characteristic potential by solving Po
son equation Eq.~29!. We assume that the partial local DO
ds1 /dE and d2s1 /dE2 are constant in region I and zer
otherwise.5 Similarly ds2 /dE andd2s2 /dE2 are constant in
region III and zero otherwise. The solution of the Poiss
equation Eq.~29! is

region I: u1512A1 expS x

l1
D

region II: u15a1x1b1

region III: u15A2 expS 2
x

l2
D , ~B1!

whereA1 , A2 , a1, andb1 are constants to be determined.
Eq. ~B1!, we have defined the screening lengthla

22

54pdsa /dE and the boundary conditions5 that u1→1 as
x→2` and u1→0 as x→` have been used. Using th
boundary condition thatu1 and du1 /dx be continuous atx
5a/2 and2a/2, it is straightforward to find

a15
1

a1l11l2
, b15

a1

2
~a12l2!

A15a1l1 expS a

2l1
D , A25a1l2 expS a

2l2
D ~B2!

The linear electrochemical capacitance can be obtained
mediately,

C11[E
V I

]r~x!

]V1
dx5

21

4p E
V I

¹2u1dx5
21

4p
¹u1u2a/2•A

5
A

4p

1

a1l11l2
, ~B3!

whereA is the cross-section area of the metallic wire. Usi
the global DOSdNa /dE5Volume dsa /dE5laAdsa /dE
5A/4pla , we arrive at the result first obtained by Bu¨ttiker,5

1

C11
5

4pa

A
1

1

dN1 /dE
1

1

dN2 /dE
. ~B4!

With the solution ofu1, the Eq.~30! becomes

region I: 2¹2u111
1

l1
2

u115
1

l̄1
2

A1
2 expS 2x

l1
D

region II: ¹2u1150

region III: 2¹2u111
1

l2
2

u115
1

l̄2
2

A2
2 expS 2x

l2
D ,

~B5!
y

o

-

n

-

where we have introduced another screening lengthl̄a
22

54pd2sa /dE2 corresponding to LPDOSd2sa /dE2 and
A1 andA2 are known from the calculation ofu1. The solu-
tion of Eq. ~B5! is

region I: u1152
l1

2

3l̄1
2

A1
2 expS 2x

l1
D1B1 expS x

l1
D

region II: u115a2x1b2

region III: u1152
l2

2

3l̄2
2

A2
2 expS 2x

l2
D1B2 expS x

l2
D .

~B6!

After matching boundary conditions atx5a/2,2a/2, we ob-
tain

B1 expS 2a

2l1
D5

l1

~a1l11l2!3 F2l1
3a1l1

412l1
3l2

3l̄1
2

1
l2

4

3l̄2
2G .

~B7!

The second-order nonlinear electrochemical capacitanceC111
is

C111[
1

2EV I

]2r~x!

]V1
2

dx

5
21

4p
¹u11u2a/2•A5

l1

6pl̄1
2

A1
2 expS 2

a

l1
D

2
B1

4pl1
expS 2

a

2l1
D

5
A

4p

1

~a1l11l2!3 F l1
4

3l̄1
2

2
l2

4

3l̄2
2G . ~B8!

From the definition of the screening length, we have

la

A
5

1

4pAladsa /dE
5

1

dNa /dE
, ~B9!

where we have used the fact that there is charge polariza
only in the regionAla . Similarly, we obtain

l̄a

A
5

1

d2Na /dE2
. ~B10!

With the help of Eqs.~B9!, ~B10!, and~B4!, we finally have

C1115
C11

3

3 F d2N1 /dE2

~dN1 /dE!3
2

d2N2 /dE2

~dN2 /dE!3G , ~B11!

which agrees with Eq.~23!.
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20M. Büttiker, Phys. Rev. Lett.57, 1761~1986!.
21M. Büttiker, IBM J. Res. Dev.32, 317 ~1988!.
22The physical meaning should be understood in the semiclas

limit. The quantum value ofdnaa /dE can be negative as show
in the inset of Fig. 2. For detailed discussion, see Ref. 14.

23Exactly the same discussion can be applied to the other two
DOS at the tunneling situation, ds11(V II )/dE and
ds21(V II )/dE.

24For nanoscale conductors with very small DOS, its electroche
cal capacitance can have a nonlinear voltage dependence d
sampling of different parts of the DOS as the bias is varied
this is the case, we should then replace Eq.~9! by the following
equation:

CoSdU1

dV
2

dU2

dV D5Cm1V
dCm

dV
.

25Here the Thomas-Fermi approximation has been assumed. Fo
discussion going beyond Thomas-Fermi approximation,
Y.D. Wei, B.G. Wang, J. Wang, and H. Guo, cond-mat/99023
~unpublished!.
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