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Dynamic and nonlinear magnetoconductance: Numerical analysis in two dimensions
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We report theoretical investigations on the magnetoconductance of a two-probe two-dimensional mesos-
copic conductor in the dynamic and weakly nonlinear transport regimes. Crucial to the investigation is the
development of a viable numerical scheme for evaluating functional derivatives of a scattering matrix with
respect to the scattering potential landscape in the presence of a magnetic field. The physical behavior of the
local partial density of states, the sensitivity, the dynamic conductance, and the second order nonlinear dc
conductance as functions of an external uniform magnetic field is revealed at two dimensions. Due to sym-
metry breaking the magnetic field adds very important effects to these physical quantities.
[S0163-18299)07401-9

I. INTRODUCTION variance at the nonlinear ord&rHence it is crucial for
practical calculations to evaluate the contribution of internal
Quantum transport properties of mesoscopic conductorpotential to the dynamic and nonlinear conductance.
under the influence of an external magnetic figldave been Within the scattering matrix formalisfhthe internal po-
intensively investigated for a variety of reasons, both theotential response of the conductor alters the scattering matrix
retically and experimentally. The theoretical studies have s6,z in essential ways. Let us consider the dynamic conduc-
far concentrated on the behavior of linear dc magnetocontanceG,z(w) to first order in ac frequency, as given by
ductance as motivated by the quantum Hall effeatsd uni- G, (@) =G,5(0)—iwe’E,z+O(w?), whereG,4(0) is the
versal conductance fluctuation phenomefdn. this paper linear dc conductance ar, ; is the emittanceE,, ; has two
we will move forward to investigate the magnetoconduc-terms.3 an external contribution given by the global partial
tance in linear ac and nonlinear dc transport regimes of a twdensity of stateGPDOS and an internal contribution de-
dimensional2D) mesoscopic conductor. The ac and nonlin-termined by the local partial density of statdsPDOS.
ear dc transport involve new physitg?! namely, dynamic  While the GPDOS can be calculated straightforwardly using
induction and gauge invariance. They are very important fonumerical derivative$; the LPDOS is given by quantities
practical applications as many electronic devices operate ursuch asss,g/8U(r), where the functional derivative of the
der ac and nonlinear conditions. When there is an externacattering matrixs,; is taken with respect to the internal
magnetic field, some important symmetry properties of conpotential landscapt(r). Clearly, this functional derivative
ductance may be brok&f?and it is interesting to investigate is extremely difficult to evaluate for mesoscopic conductors
these symmetry properties. ac and nonlinear dc transpowtith complicated scattering boundaries. This is the reason
properties depend on several physical quantities which dthat so far the only known results about these quantities are
not play a role in the familiar linear dc situations: the variousfor a few very simple cas&s® even without a magnetic
local partial density of stated PDOS,® the sensitivity**  field. Hence quantum transport in mesoscopic systems under
the functional derivatives of the scattering matrix, and quanac and nonlinear dc conditions have not been investigated
tities related to them. These physical quantities depend oaxtensively although the theoretical formalism has been well
magnetic field in an essential way and we reveal this relaestablished.In addition, it has been demonstrated that LP-
tionship. DOS also plays an important role in the physics associated
It has now been well established that the quantum transwith weakly nonlinear dc conductance coefficiéhfThere,
port formalism which maintains electric current conservationthe above functional derivative enters through the so-called
under ac fields must include effects of the internal potentiabensitivity* which measures the local electric current re-
response of a conductdrThis internal potential response sponse. So far only two reports have appeared in the
comes due to electron-electron interactions and it generatdiserature®8 concerning nonlinear conductances which dealt
such effect as a displacement current. In addition to the conwith systems without a magnetic field. Finally, there are in-
servation law, a correct theory must also guarantee gaugeresting magnetic field dependences of the functional de-
invariance: the outcome of a theory should not change wherivative which leads to the interesting symmetry properties
potential everywhere is raised by the same constant amourtif the LPDOS!®
The gauge invariance must be carefully taken into account Without a magnetic field, there is now a way to numeri-
when dealing withnonlinear effects where powers of volt- cally computé® the functional derivativeds(E) .5/ SU(r).
ages appear in a theory. It has been confirmed that the intefhe first part of this paper reports the necessary extensions of
nal potential plays the essential role in providing gauge inthe method of Ref. 18 to include a magnetic field. In the
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S=S,8S,®---®Sy_1, (1)

where S, is the scattering matrix associated with théh
section,® is the operator and stands for the composition of
2 two scattering matrice¥, andM is the total number of sec-
tions.

The scattering matrixS, describes two scattering pro-
FIG. 1. Schematic view of a T-shaped quantum wire. The wirecesses associated with th#éh section, free propagation from
width, the side-stub width and height\. The shaded area stands the left end to its right end and interface scattering due to the

for the scattering region. potential discontinuity at the interface between tith and
(n+1)th section. Therefore it can be expressed as the com-
main section we report the magneto conductance propertigdpsition of two individual scattering matrices
of a 2D conductor, shown in Fig. 1, in the ac and second
order weakly nonlinear dc regimes. This conductor behaves 5n=5f1®§n- @)
as a quantum interference transiéfand has been the sub-
ject of extensive studies in the linear dc situations. We [Z?la)HereSI1 describes the free propagation and is given by
special attention to the symmetry breaking properties of the
magnetic field on various physical quantities. _
Before presenting the details of the calculation, we sum- " 0 P

marize the main results of this workl) A general and Sk =|p+ 0| (©)
widely applicable numerical scheme is developed for ac and
nonlinear dc transport within a finite magnetic fie(@) An
interesting spatial symmetry is found for conductors which

ossesses the property that its potential is symmetrical alon A !
Fhe transport di?ec?ior(.é) The establishmentyof edge chan- ght(leﬂ?-gomg transyerse mgdes, abdis the Igngth of the
nels due to magnetic field suppresses transport resonancal) section.S, describes the interface scattering and can be
and leads to a largely inductive ac respor@gThe electric  SOlved using the mode-matching teCh”'qae- o
current response as measured by sensitivity shows another /N the presence of a perpendicular uniform magnetic field
interesting spatial symmetry for geometrically symmetricalB: it iS convenient to choose the vector potential fs
conductors along the transport directiab) A finite mag- ~ (—BY.0,0). For thenth section, the longitudinal wave num-
netic field leads to a finite second order nonlinear dc conduc?€r and transverse wave function satisfy
tance for a geometrically symmetrical conductor which

where P, =exp(*iK, L,), K. (K,) is a diagonal matrix
hose diagonal elements are the wave numbers of the

would be zero without the field6) By tuning the strength of 22 d2 m*e?
the magnetic field, a large and negative second order nonlin- | — —— —+ 5 S (y—13Knm) 2+ Va(Y) | dnm(y)
ear conductance result: this has important implications to the 2m* dy

nonlinearl-V curves.
! urv =Erdnm(Y), (4)

wherew.=eB/m* is the cyclotron frequencyg=\A/eBis

the magnetic length, ardr the Fermi energy. According to
Throughout the discussion, we shall assume quantum cdhe group velocity which is given by

herence within the 2D conductor. To find the scattering ma-

trix in a magnetic field, there are several known methods _ * _ul12

such as mgde-matchir‘?é,finite-elemenﬁ2 and recursive O =AM (Pl K m =Y/l ). ®

Green’s functiorf® However, these methods are not particu-the transverse states can be classified into two categories: the

larly suitable for calculating the functional derivative right-going states;b,f,m with purely positive real or positive

ds,5/6U(r). For this purpose, we found that a numericalimaginaryu, ,, and left-going stateg, ,, with purely nega-

technique developed for computing scattering matrix in th&jye real or negative imaginary, . In our numerical cal-

absence of magnetic field, reported in Ref. 23, to be quitejjations, we expand the transverse wave functibﬁ}g(y)

useful. ;
t f th B=0 denoted byp, :(y),
To make the discussion of our method more specific,In erms ofthose enoted byen,i(y)

without lossing generality, we use the T-shaped 2D conduc-

tor in Fig. 1 as the example. We divide it into three uniform + _ +

sections: two for the straight probes and one for the scatter- ¢n,m(y)_; (F)imen,j(Y). (6)

ing region (the side-arm region For more complicated . .

shapes with two probes we divide it into enough sectionsThe coefficients ;) form the matriced=; . The number
such that the potential inside each section can be safely aef terms necessary for numerical convergence depends on
sumed to be independent of the coordinate along the tranghe strength oB. We shall use a dimensionless quaniity
port direction. For each section the corresponding scattering 2 w./E; to denote the strength whek is the threshold
matrix is computed by the mode-matching method. Finally, aof the first transverse energy subband in the absend& of
global scattering matrix is constructed by a composition ofFor 8=1.0, the number of terms in the expansiéh should

all the individual scattering matrices be at least 30. Finally, the coupling between the transverse

Il. NUMERICAL METHOD
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states wherB=0 in the two adjacent sections is denoted bycompute the scattering matrse S(y) and complete the nu-

the coupling coefficient€;;=(¢n i|¢n+1;) Which construct merical derivatives discussed in the last paragraph.

matrix C. To end this section, we discuss two important points in
Theglobal scattering matrixS calculated this way, which  the computation of scattering matrix. The first concerns the

connects all outgoing waves to incoming waves, included th@ormalization of transverse wave functions. In addition to

decaying modes. ThuS does not satisfy the unitary condi- the conventional normalization condition

tion. S is different from the physical scattering maffix

which only connects propagating waves. In order to obtain

the physical scattering matrix which we denote by the lower E I(F5);[2=1 (10)

cases, we first rewrite globalS in the form of 2<2 sub- i no '

blocks and obtain four submatricé®; where (,j=1,2).

Then for each submatrig; we build a new matrixg; con-  the expansion coefficis:nts should satisfy another condition,

structed by the firs, rows and columns d8; , whereNgis  i.e., for eacn andj, (Fy);; with the maximum norm should

the number of propagating channels. By writing the fourbe purely real. This condition is naturally satisfied in the case

newly constructed matrices in the form ofx2 blocks, a of B=0. The second point is the order of the wave numbers

2N,-dimensional scattering matrixis obtained which is the in K, . In the numerical calculations, we find that the order

true scattering matrix. In order to obtain a unitary scatteringof the wave numbers ip(;r should be the same as those in

matrix s, one should further take a unitary transformation: K., ie,vl,=—v, . If neither of the two conditions is

satisfied, the numer'ically calculated scattering matrix would

s=AsA™ 1, not be unitary.
V., 0 ll. RESULTS
1
Az[ 0 Vul @) Using the numerical technique developed in the last sec-

tion, we now investigate magneto conductance of the 2D

whereV; andV), is No-dimensional diagonal matrices with conductor shown in Fig. 1. This system has been studied
respective diagonal elemeRv,,, and v - beforé®*>'%in the absence of a magnetic field. The effects

To computeds,z/SU(r), we shall add as-function scat- of a finite magnetic field is to push the electron sideways
terer inside the scattering region with an infinitesimal scatand that breaks the symmetry of LPDOS which has impor-
tering strengthy, V(r)=y8(r —r). The position of the im-  tant consequences to the ac and nonlinear conductésees
purity r=r is arbitrary inside the scattering region. We thenbelow. In all the results to be presented below, the direction
calculates, s as a function ofy. Once done, we use a five- Of the magnetic field is pointing out of the page of Fig. 1.
point numerical derivative to evaluatess,z/oU(r)
=s,/97|,-o thus obtaining various LPDOS. A. Local density of states

The problem of solving scattering matrix in the presence ) i
of the extra scatterer is more complicated, but it can still be . FOr dynamic conductand®,s(w) up to the linear order
done using the above approgéhHere we give the useful of ac bias frequencw, and for second order weakly nonll_n—
expressions. Suppose thiefunction scatterer is located in €&r dc conductandg,s,, the relevant LPDOS are the emis-
the nth section at position,= (Xo,Yo), where &o,Yo) is the sivity .d.n(c_z,r)/d.E and injectivity dn(r,a)/dE. Here the
distance from the left and from the bottom boundary of tha€Missivity is defined ds
section. The scattering matrix associated with this section is

then given by dn(a,r) 1 . 85, 5sl

f o _ dE __4_wi2,3 T Sap5eU(r) ~ S8 Seu(r)
$h=Sn(X%0)®S1® S (L, —X0)® S, (8) (11)

6 . . . .
whereS; describes the scattering process associated with theng the injectivity is given bl the scattering wave functions
S-function scatterer and is given by

_ _ dn(r, V.02
—F; F: 1 é '}’):2 | yn( )| , (12)
5: - e, = S, E n hU yn
Si=| -TF, —iF K, iF'K;

wherev ,, is the electron velocity for the propagating chan-
Fr -F, nel labeled byn. The physical meaning of these quantities

X| PEF 4 KT —iFK- | (9) has peen carefully discu_s_sed in the Iiteraﬁi‘remissivity
n nn n™n describes the DOS for exiting the conductor from a particular

probe while injectivity gives the DOS of injecting into the
where the matriX" describes the mode-mixing effect due to conductor from a particular probe. WhBr=0, these two are
the &-function scatterer and its matrix elements are giveridentical to each othét at any space point. WhenB+0
by I'pq=27ysin(pmyo/W,)sin@myo/W,)/W,. With the 6  they do not equal, although from the general microreversibil-
function included this way, one can again apply Eh.to ity property of the scattering matrix, it can be shown that
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Emissivity dn(1,r)/dE

Emissivity dn(2,r)/dE =dn2(1),—x,y,—B]/dE due to this inverse symmetry. Com-
bining this with Eq.(13) we thus derive the general form of
Eq. (14).

The spatial dependence of LPDOS is related to the mag-
netic field strength. WheB is not stronde.g.. Fig. Za) with
B=0.5], the edge states have not formed and an usual picture
of wave propagation is found. The large LPDOS inside the
side-arm region is due to the scattering electron energy
which happens to be a resonance reflection point: at reso-
nance the electron dwells a long time inside the scattering
volume leading to a large LPDOS there. Due to magnetic
field, incoming from lead 1 or from 2 give very different
LPDOS as expectedtn(r,2)/dE#dn(r,1)/dE. Very differ-
ent LPDOS is obtained for a strong magnetic field as dem-
onstrated in Fig. @) with the paramete3=2.0. Due to
Lorentz force, electrons coming from probdske Fig. 1is
pushed upward while that from probe 2 downward. Figure
2(b) shows a clear “edge channel” when injecting from
probe 2, sealn(r,2)/dE of the lower-right panel. As the
edge channel propagates along the lower boundary of the
structure it is hardly scattered by the potential, therefore little
LPDOS is found in the side stub of the 2D wire. When
incident from probe 1, LPDOS#nN(r,1)/dE shows an edge
channel in the right-going direction along the upper bound-
ary, resulting to a large LPDOS in the side stub. These fea-
tures due to a finitdB leads to corresponding behavior in
dynamic as well as nonlinear conductances to be presented
next.

=

Tnjectivity dn(r,1)/dE (, W/x=1285, f=05) Tnjectivity dn(r,2)/dE

Emissivity dn(1,r)/dE

Injectivity dn(r,)/dE  (k W/x=1285, §=2.0) Injectivity dn(r,2)/dE

B. Dynamic conductance

In the scattering matrix theotythe dynamic conductance
G,p(w) to first order in ac frequency can be determined
completely from first principles:

Gp(@)=G,p5(0) —i 0€°E g+ O(w?),

(b)
_ ) _ o whereG,;(0) is the dc conductancg, is the emittancé?
FI_G_. 2._ T_hree-dmensmnal view of the emissiviiy(«,r)/dE anda (or B) labels the probe. The emittanE%ﬂ describes
and injectivity dn(r,a)/dE at keW/m=1.285.(8) $=0.5,(0) B the current response at prokedue to a variation of the
=20. electrochemical potential at proh# to leading order with
respect to frequency. It can be written a&’®

dn(a,r,B) _ dan(r,a,—B)
dE dE ' (13

E, =J'dr3dna r/dE—J dr3[dn(a,r)/dE]ug(r),
Figure 2 shows these LPDOS fBr~ 0 in the entire scat- P o1 Ldn(a.r)/dE]us(r)

tering region(the shaded area of Fig) tvhere we used mag- . . .
netic field paramete8=0.5 andB=2.0 (B is defined in Sec. whgre_thed Nep/dE is the IOC‘."" pama! density of statés
I1), the electron energy is given tgW/7=1.285, wheraV/ which is related to the scattering matrix:
is the width of the lead. Our numerical results presented in

Fig. 2 suggest the following interesting symmetry: dng 1 / R E dSL,g

dE 4| >*FesU(r) esu(r) of

) . (19

dn[1(2),x,y,B]/dE=dn[ —x,y,2(1),B]/dE, (14
_ o _ Hereug(r) is the characteristic potential which measures the

wherex is the transport direction. Thus for this conductor variation of the potential landscape of the scattering volume
there is a spatial antisymmetry along the transport directioqjue to the perturbatiohWithin the Thomas-Fermi screening
between the two LPDOS. In fact E€L4) is a general result model, it is given by
whenever the scattering potential is symmetric along the
transport direction, because we can then set the origin of the
coordinate system such that the potential has a spatial inverse Uy(r) = dn(r,) / dn(r)
symmetry. A consequence isdn[1(2)x,y,B]/dE A dE dE

(16)
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FIG. 3. The dc conductandg;;, dwell time 7, , partial transmission coefficienTs andT,, and emittancé&,; andE, as a function of
the normalized electron momentupW/ 7. HereE, = (m/W)?#%2/(2m). In the upper panel, the solid lines stand @&;, dotted lines for
71, solid-dotted lines fofl;, and solid-dash lines fdF,. In the lower panel, the solid lines stand 6y, and dotted lines stand fdt;,. (a)
B=0.2,(b) B=0.5,(c) B=1.0,(d) B=2.0.

Heredn(r)/dE= X zdn(r,B)/dE is total local partial density Because the main effect of a stroBgs to establish edge

of states. EquatioéG) is obtained by applying the quasineu- channels, such a field in general should diminish the quan-
trality approximatioﬁ which avoids the solution of the Pois- tum resonance in the dc transmission thereby alter the dy-
son equation numerically. In this approximation the chargg,gmic response. Figure 3 shows, for four field strengghs
polarization in the system is neglected. =0.2, 0.5, 1.0, and 2.0, the dc conductat&g, the dwell

__In this section we investigate emittanBe, asB is var- g0 banial transmission coefficients, and T,, and
ied. Because this physical quantity, which is experimentally

measurable, has never been obtained within a finite magnetftMitt@nceE andE;, as a function of the normalized S?Lec'
field for typical 2D conductors, we shall thus present soméron momentunkgW/ 7. Comparing with the8=0 resullts,
detailed information of it. several important differences are observed. First, the edge

The 2D conductor of Fig. 1 is in general very transmissivechannel makes dc conductance steplike instead of resonan-
from probe 1 to 2, thus the linear dc conductance is usuallgelike, thus the large peaks in emittance whgn0 seen
large (in units of 2e?/h) for the whole range of the incident previously® are suppressed. These peakkenB=0) were
electron energie¥ > The only transport anomalies arise due due to drastic changes of LPDOS at a resonance. Thus edge
to resonancereflection at which transmission coefficient channels destroy them. Hence for reasonably strong mag-
equals zeré®® The resonance behavior comes when the innetic field, our result predicts a rather smooth emittance pro-
cident electron energy matches that of a scattering state ffile as a function of scattering electron energy. Second, for
the scattering region of the conductor. In a previous investitarge B, e.g., when parameteg8=2.0, the entire emittance
gation we have fourfd that whenB=0, E.p is also domi-  profile takes negative valu@xcept at the onset of transport
nated by the same quantum resonances, and inductive as welhen energy is small Thus the electric current response is
as capacitive responses can be obtained near a resonanentirely inductive which is consistent with the establishment
WhenB#0, the current response can be drastically differenbf edge channel. For small or zeB) both capacitive and
from that of zero field case, depending on the strengtB.of inductive responses are possible. Our results thus predict a
In general for a smaB, e.g., up to8~0.5,E,z is similarto  change of ac response character as the magnetic field
the B=0 studied beforé® strength is increased. This is a reasonable result because a
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matrix theory allows the analysis of the second order nonlin-
ear conductandé provided that the LPDOS are known. In
this section we present results of the second order weak bias
nonlinear dc conductance defined by expanding the electric

FIG. 4. The emittanc&; andE,, as a function of the strength CUrrent to  second 70rder in bias:l ;=2 5G .5V
of the magnetic fieldB for two different values of the electron +E,ByGa,ByVBVy’ wherée
momentum: (&) and (b) keW/7=1.285, (¢) and (d) keW/=
=2.535. HereE, = (7/W)242/(2m).

<
—
l\)l
(=]
—
[\

e
. . o . G, =4—dE—r7de3 3
capacitive response tends to be linked with situations which By Trhf (— %) L 7apUAT)

do not conduct dc current, and the edge channels help trans-

mission leading to the inductive response. Third, while the + 7aUp(N) — Napdyp] (17)
dc conductance is already steplike in strdhgthere are still 54

some fluctuations in the emittance profileig. 3b)] espe-

cially abovekW/7>2.0. This behavior is also related to

edge channel formation. FdGW/7>2.0, there exist two 1 A 1 + OS.p 5
propagating modes for this range Bf both contribute to  7«s(")= 7 50N a7 "\ S50 T80
emittance. These modes give transmission coeffici@nts (18)

andT, which are plotted in the upper panels of Fig. 3. It is

clear thatT, has a smoother profile thaf, becausél; cor-  is the sensitivity* which measures the local electric current
responds to the mode which is spatially closer to the condudesponse to an external perturbation. In &), the first two

tor edge. The mode witfT, is further away from the edge, terms are the local contributioB},, due to the internal po-
thus is influenced more by the scattering potential. It is theential and the third term corresponds to the external re-
mode withT, which gives the fluctuations in the emittance sponseG$,,. A calculation of general-V curve has been
profile. This result suggests an interesting experimentito performed’ in 1D where approximate scattering matrix can
rectly investigate the formation of edge channels by measurhe ysed for the discussion. For a one-dimensional double
ing the dynamic current response as the magnetic field ig5rier tunneling structureG,;, has been calculated

increased. exactly’’ In the absence of magnetic fiel@,z, has been

Our magnetoconductance results are summarized in Fig. gained for the T-shaped structtf@nd a special 2D con-
ff)rlt;v805elehqtrrc])n Fermi energies. F!?uraéa_)ﬂ, 'SthfoerFxWWd ductor through the exact solutiéh Our numerical technique
o which is a resonance poin£0 in the T-shape presented here allows a general analysis within a fidite

structure whenB=0. We observe that both the dc conduc- .
tance and emittance are monotonic functions of the magnetic The nqn]mear_dc ponductance depends on LPDOS as well
s sensitivity which is calculable from the functional deriva-

field. This is because that only one conducting mode exist$ - : . .
When 8>0.7, E,; changes sign, i.e., the response changelVes 5.s/dU(r). The sensivityn, ; is an important physi-
from a capacitivelike conductor to an inductivelike conduc-c@l quantity although it is perhaps difficult to measure ex-
tor. E,, becomes constant for even largeér once a perfect Perimentally. Figure 5 plots this quantity in the scattering
edge channel is formed, the ac response cannot change aarigglon of the conductor for two values of magnetic field. For
more. This is consistent with the result of Ref. 4 where for a8=0.5 andkgW/7=1.735, which is on resonance,; be-
Corbino disk afT=0 (near resonance in our caghe emit- haves as a standing wave which is in accordance to the usual
tance is positive and for a Hall bar the emittance is negativequantum resonance picture. Thus the electric current re-
Figures 4b) is for keW/ 7= 2.535, the curves are no longer sponse is generally large inside the entire scattering region.
monotonic of the magnetic field because of the competitiorFor 8=2.0 where edge states form, the sensitivity shows
between the two conducting modes. Again, a laBgmakes oscillations only in the quantum wire region where an edge
the response inductive. state traverses, the current response is small inside the side-
stub. Our numerical results also confirms the relationship
N12= M21= — MW11= — 72 At any space point This relation-
Under a weak bias situation, the dc transport may be aneship is a consequence of the unitary condition for scattering
lyzed order by order in terms of the bias. The scatteringmatrices* For the particular 2D conductor studied here,

C. Nonlinear dc conductance
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FIG. 6. The leading order nonlinear teri@s;, as a function of FIG. 7. The leading order nonlinear teri@s,; as a function of
the normalized electron momentukgW/m for several values of the strength of the magnetic fiefél at keW/7=1.285, solid lines
the strength of the magnetic field. Helig= (/W)?%42/(2m). for GS,, and dotted lines fo6},,. HereE,= (7/W)?%2/(2m).

which is geometrically symmetrical along tixedirection, a . . _ o

more interesting result we found numerically g,5(X,y) tive differential resistance. Clearly, for such a situation to
= 1,5(—x%,y). This relation can actually be derived for any occur, higher order nonlinear coefficients may have to be
symmetric system along the propagation direction, becaussiudied as well.

one can show that the diagonal elements of the retarded

Green'’s function is also symmetric i On the other hand

the sensitivity is related to the real part of the diagonal ele- IV. DISCUSSION AND SUMMARY
ments of the retarded Green’s functith. _ . _ _ .
In Fig. 6 we plot the nonlinear coefficie®;, for several The scattering matrix theory, when applied to investigate

magnetic fields. If there were r®, G, must vanish fora ac as well as nonlinear dc magnetotransport coefficients of
symmetric system along the propagation direction, such agoherent quantum conductors, needs to calculate the func-
for our conductor. This is becaus, ., is the coefficient of tional derivatives of the scattering matrix with respect to the
the term quadratic in voltage, thus must be zero for anyscattering potential landscape. This is a difficult problem. In
symmetric system since the currentannot change when this work we presented a numerical scheme which very ef-
biasV— —V. However, a magnetic field breaks this symme-fectively solved this problem thus the theoretical formalism
try leading to a nonzer&,z,. The energy dependence of can be applied for realistic predictions for complicated 2D or
G111 is completely different fronG4, although both have a even 3D conductors in the presence of the magnetic field.
resonance behavior at smd@l For largeB, while G4 is The one point that warrants some further discussion is the
quantized in a steplike fashiog,y; still maintains a reso- applicability of this technique when the magnetic field is
nance profile with less resonance peaks and valleys. This igry high. In that case, as can be expected, any numerical
similar to the behavior of the emittance, since both quantitiegnethod may have difficulties. The key point of the present
are determined by the behavior of LPDOS. Most interestmethod is to match wave functions and their derivatives at an
ingly, Gy1; vanishes for most of the energies in a stronginterface with discontinuous confining potential. Under a
magnetic field. This behavior can be partly explained by thesery high magnetic field, to a large extent the transverse
fact' that the part ofG;,; which corresponds to the external states located on the two sides of an interface would be spa-
response, is only determined by the energy derivative of théally separated, resulting in a nearly singular behavior in the
transmission coefficierd T/dE. coupling matrix between the two slices. Under such a situa-
The plot of magnetic field dependence®{,; enables us tion numerical difficulties occur in this method, leading to a
to get a clear picture concerning nonlinear magnetotransporviolation of the unitary condition by the numerically ob-
Figure 7 summarizes this result for the present conductotained scattering matrix. For the T-shaped structure consid-
G111 vanishes foB=0 and is negative for a large range of ered in this paper, which represents a typical 2D mesoscopic
B. It reaches a negative maximum at a particular fieldconductor, the numerical method is stable when field param-
strength. For the system parameters used, this particul@ter 5<4.0, and this corresponds tB<3.1 T for W
strengthB~0.6 leads to a magnetic lengtg~1.7. Thus our =2000 A. This is, however, a reasonable field range where
result suggests tha6,,4 reaches its maximum value when most experimental studies are carried out.
the magnetic length is compatible to the size of the scat- The magnetoconductance coefficients under the ac and
tering region. Then, due to the negative value ®f;,, nonlinear conditions show important dependence on the field
one may obtain appreciatable nonlinear current-voltagetrength. Largely speaking the transport features have two
characteristic$® This outcome is very interesting as it sug- main behaviors, one being the usual wave propagation and
gests the possibility of using a magnetic field to obtain negathe other controlled by the edge states. For small field
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strength both emittance and the second order nonlinear daze able to probe the physics of edge states directly using ac
conductance follow the general behavior of the linear dc contechniques. As demonstrated beforehis is a realistic ex-
ductance. In our case this is dominanted by the resonandi&ctation indeed.

reflections. On the other hand, when edge channels are well
formed, ac and nonlinear coefficients change behavior and
are strongly determined by the edge picture. A particularly Ve gratefully acknowledge support by a RGC grant from

interesting outcome is the purely inductive dynamic respons 1e128/g$Pva§Frzng1(§ rg]]tre(t)rf1 t|-f|r(2)rr]‘r? tlggngnlijvnedrgirtfc:?nHtoﬂg.Kkélgg
in the ac case and the possibility of obtaining negative dif'the NSER’C of Canada and FCAR of (uee. We thank the ’

ferential resistance by controlling the nonlinear coefficientcomputer Center of the University of Hong Kong for com-
using a magnetic field. Our results also suggest that one mayutational facilities.
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