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Zeeman-split mesoscopic transport through a normal-metal–quantum-dot–superconductor system
with ac response
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We have investigated the Zeeman-split mesoscopic transport through the normal-metal–quantum-dot–
superconductor system applied with a microwave field. We employ BCS theory to describe the Hamiltonian of
the superconducting lead. The time-averaged tunneling current formula is derived by using the Keldysh’s
nonequilibrium Green-function technique in the Nambu representation. The multilevel quantum dot is consid-
ered for the noninteraction system in the calculations. The spin split Andreev reflection and photon-electron
pumping behaviors are investigated in the presence of a Zeeman magnetic field. The resonant structure versus
Zeeman energy and gate voltage is revealed. The Zeeman-split photon-assistedI-V characteristics are evalu-
ated for the single-channel quantum-dot system. By adjusting the Zeeman magnetic field, we can obtain a large
resonant tunneling current even if in the Andreev reflection regime. The current appears to have interesting
structures versus Zeeman energy for the multichannel quantum-dot system associated with a different gate
voltage. The negative and positive current appear in the symmetric forms by controlling the Zeeman field.
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I. INTRODUCTION

Mesoscopic systems with small samples coupled to su
conducting reservoirs play an important role in our inves
gation. There are two basic types for electrons transpor
through a two-terminal structure in the presence of superc
ductivity: the superconductor–normal-metal–supercondu
~SNS! junction with both electrodes being superconduct
and the normal-metal–superconductor~NS! junction with
one electrode a normal layer and one electrode a super
ductor. Supercurrent can flow through the SNS system w
out any applied voltage, while we must apply a voltage
electric current to flow through the NS junction. The qua
particles and electrons interact with one another and k
their phase memories during transport through the me
copic system to produce novel features. For example,
ultrasmall superconducting sample coupled with norm
leads displays parity symmetry;1 the even-odd parity asym
metry and the Coulomb blockade of Andreev reflection2 are
found in such systems. For SNS or NS systems, most of
investigations in the literature deal with ballist transport
using scattering theory.3–6 The quasiparticles are scattered
the NS junctions. If the source-drain voltage between a ju
tion is smaller than the energy gap of the superconduc
i.e., ueVu,uDu, there also exists small current due to Andre
reflection.7 The noninteracting scattering theory correspon
to the usual Landauer-Bu¨ttiker scattering theory in norma
samples. For superconducting leads coupled with junctio
the quasiparticles are dominated either by time-indepen
or by time-dependent Bogoliubov-de Gennes equations7–12

Under the influence of source-drain voltage, a quasipart
trajectory in the clean normal region of a SNS junction h
been described by an accelerated wave packet of
particle.9,13

Recently, there has been great interest to study the
tems of superconducting leads coupled with quantum-
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systems, for instance, the investigation of the tunnel
through the normal quantum dot connected with superc
ducting leads. The systems as superconductor–quan
dot–superconductor~SDS!, superconductor–quantum-dot
normal-lead ~SDN!, and superconducting quantum d
connected with normal leads possess very rich physical p
nomena. These systems can be used as the models of q
tum devices coupled with superconducting leads. Since
superconducting and normal leads are much larger than
quantum dots, they are treated as the equilibrium reserv
The quasiparticles and electrons are emitted from one of
reservoirs and then are scattered by the central region. S
the sizes of quantum dots are smaller than the pha
coherence lengths, the quasiparticles and electrons k
phase memories in the quantum-dot region. Some interes
properties arise from the coherent transports. However,
the system with superconductors coupled with the quan
dot, the transport problems are very complicated due to m
tiple scatterings of quasiparticles and electrons in the cen
quantum dot. The nonlinear transport contains many sign
cant structures which remain to be discovered. For such
brid systems, the quantum effects are distinct because
quasiparticles can keep phase memories for a consider
distance, and the electron energy of the quantum dot
comes discrete as the quantum dot is sufficiently sm
There may exist resonant structure behaviors in the tunne
currents. Analogous to the normal sample systems, we
impose microwave fields to the hybrid systems. The el
trons and quasiparticles absorb and emit photons du
transport to form split resonant structures. Obviously,
tunneling current possesses compound effects assoc
with superconducting leads and the quantum dot. For
ultrasmall quantum dot, the density of state~DOS! of quasi-
particles in the superconducting leads is obtained by mea
ing the I-V characteristics of the SDS system.14 The experi-
mental observation of a signature of phase-coherent And
reflection is reported by Lenssenet al. through studying the
©2001 The American Physical Society05-1
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system of superconducting contacts connected with t
dimensional electron gas in GaAs/AlxGa12xAs
heterostructures.15 The corresponding theoretical work co
tributing to the noninteracting systems has been perform
by Claughtonet al.16 by using the Green-function techniqu
We have investigated the photon-assisted tunneling thro
the SDN system where the Coulomb interaction is not c
sidered, and the electron-photon pumping effect has b
found. The spin split Andreev reflection andI-V characteris-
tics and the spin nondegenerated dc Josephson current
lation also have been investigated.17 The multiple discrete
level Andreev reflection is discussed in the SDN system,
different kinds of resonant peaks in the current versus g
voltage are discovered.18

As electrons in a system are exposed to an external m
netic field, the energy of an electron is split due to the Z
man effect. The tunneling current in a lead is certainly
fected by the Zeeman magnetic field, and the magn
moment of electrons plays an important role in transport. T
spin degenerated electron system becomes a spin nond
erated one. As the magnetic fieldB is small enough, the
electron energy is split by adding the Zeeman energysmB to
the original energy level, wheres is the spin value, andm is
the magnetic moment of the electron. In this paper we c
sider the normal-metal–quantum-dot–superconductor~NDS!
system with a Zeeman magnetic field applying to the qu
tum dot. Because the quantum dot is a kind of quant
device, we have several methods to control the tunne
current. We can impose a dc source-drain voltage betw
the leads and apply a voltage through the gate on the q
tum dot. The gate voltage adjusts the energy levels of
quantum dot. On the other hand, in the quantum devices
often encounter the situation in which they are irradiated
microwave fields. The tunneling current is modulated by
external signals, and the output current is sensitively rely
on it. We consider the problem with a Zeeman magnetic fi
applying to the quantum dot through the gate. The magn
field is screened so as not to affect the superconducting
normal leads. The source and drain of the system are bi
by a dc voltage and an ac microwave field. The quantum
is applied by a dc gate voltage to control the tunneling c
rent. We derive the tunneling current formula by employi
the Keldysh’s nonequilibrium Green-function~NGF! tech-
nique, and perform the numerical calculations at zero te
perature for the single-channel and multichannel quant
dot systems. The tunneling resonant structures versus
voltage and Zeeman magnetic field are obtained, and tun
ing behaviors caused by the Zeeman magnetic field are
served. TheI-V characteristics of the single-channel syste
are presented to show the Zeeman-split Andreev tunne
and photon-electron pumping behaviors. The remainde
this paper is organized as follows. Section II is devoted
derive the tunneling current by employing the Keldysh
NGF technique. Section III is arranged to perform the n
merical calculations on the tunneling current for the sing
channel and multichannel systems. The concluding rem
are given in Sec. IV.
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II. HAMILTONIAN AND FORMALISM

The system is composed of three parts: the left norm
metal lead, the right superconducting lead, and the quan
dot. We consider the circumstance where the two leads
biased by the dc voltageV which is the drop of chemica
potentials between two leadsmR2mL5eV. A magnetic field
B is applied to the quantum dot through the gate. This m
netic field is screened in order not to affect the supercond
ing and normal leads. A microwave field with frequencyv is

imposed to the system forming a potential dropeṼRLcos(vt)
between the two leads, where we have taken the potentia
the left lead as a reference for measurement. This ac po
tial drop is related to the dipole approximation. So the el
tron energy in thegth lead is described by the time
dependent one«g,ks(t)5eg,ks1eṼgLcos(vt), where eg,ks

5Eg,ks2mg , ṼgL5Ṽg2ṼL . The energy of electrons in th
quantum dot is defined byẼd,ls2smB, whereẼd,ls5Ed,ls
2evg , Ed,ls is the energy level of the quantum dot in th
presence of the gate voltagevg . The gate voltage and th
Zeeman energymB adjust the quantum-dot energy.m
5gmB/2 is the magnetic moment of electrons, wheremB is
the Bohr magneton, andmB'0.5788310215 meV/G. Theg
factor is equal to 2.003 for a free-electron system. The t
leads are in macroscopic sizes, which means that the
leads in three dimensions are larger than the cohere
lengths of quasiparticles and tunneling electrons. So the
ticles in leads can be treated by using the grand canon
ensemble theory in the equilibrium state. We employ
BCS theory to deal with the transport of electrons in t
superconducting lead. The Hamiltonian of the supercond
ing lead is approximated as the usual mean-field theory.
normal metal is described by the free-electron gas syst
The quantum dot is considered as the noninteracting mo
Therefore, the Hamiltonian of the system can be expres
by the sum of three separate sub-Hamiltonians and tunne
terms as

H5(
ks

«R,ks~ t !aR,ks
† aR,ks

2(
k

@DaR,k↑
† aR,2k↓

† 1D* aR,2k↓aR,k↑#

1(
ks

eL,ksaL,ks
† aL,ks1(

s l
~Ẽd,ls2smB!dls

† dls

1 (
klsg

~Tgkag,ks
† dls1H.c.!, ~1!

whereag,ks
† (ag,ks) anddls

† (dls) are the creation~annihila-
tion! operators of electrons in the two leads and quantum
respectively.D is the energy gap of the superconducting le
defined byD5VR(k^aR,2k↓aR,k↑&. Its conjugate is defined
by D* 5VR(k^aR,k↑

† aR,2k↓
† &. The energy gap is assumed

be known, and it is considered to be the one without c
5-2
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pling. Tgk is the interaction strength of electrons between
gth lead and quantum dot. It is complex and satisfies
relationTgk5Tg2k . We have taken the chemical potential
the left lead as the reference of energy measurement.
spin s has the values ofs511 and21 corresponding to
the notations↑ and↓, respectively, in the subscripts of equ
tions. We make gauge transformation to change the ti
dependent energy into a time-independent one. This tran
mation is settled by changing the interaction strengths to
time dependent. So the time-independent interaction stre
of the gth lead acquires a time-dependent phase factor,
Tgk→T̃gk(t) by the gauge transformation, where

T̃gk~ t !5TgkexpF2
i

\
~mg2mL!t1 iLgLsin~vt !G , ~2!

andLgL5(eṼgL)/\v. In fact, the gauge transformation on
makes the interaction strength of right lead to be a tim
dependent one.

The tunneling current in thegth lead transporting into the
quantum dot can be formulated by using the continuity eq
tion and the Heisenberg equation. As a consequence we
derive the current by
n

-
he

gt
ve
tro
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I g~ t !52
ie

\ (
ks

^@H,ag,ks
† ~ t !ag,ks~ t !#&, ~3!

where^•••& is the notation of the quantum expectation val
and ensemble average. Substituting the Hamiltonian of
system into the current formula~3!, one can find the time-
dependent current formula determined by the correlat
functions of electrons between the leads and the quan
dot. These correlation functions can be expressed by NG
of the quantum dot.

In order to perform the calculation analogous to the te
nique used by treating the system coupled with normal lea
we make the Bogoliubov transformation to diagonalize
superconducting lead.19 The Hamiltonian of the supercon
ducting lead is expressed as the diagonal formHR

5(ksjRkaR,ks
† aR,ks , where aR,ks

† and aR,ks are the cre-
ation and annihilation operators of the quasiparticle in
superconducting lead, and they satisfy the Fermi distribut
jRk is the excitation energy of the quasiparticle. We consi
the case where the energy gap is given byD5uDueif. To
proceed, we define the retarded~advanced! Green functions
in the Nambu representation as
Gl l 8s
r (a)

~ t,t8!5S ^^dls~ t !,dl 8s
†

~ t8!&& r (a), ^^dls~ t !,dl 82s~ t8!&& r (a)

^^dl 2s
† ~ t !,dl 8s

†
~ t8!&& r (a), ^^dl 2s

† ~ t !,dl 82s~ t8!&& r (a)D , ~4!
e-

in-

cles
elf-
where

^^A~ t !,B~ t8!&& r (a)57~ i /\!u~6t7t8!^@A~ t !,B~ t8!#1& .

The Keldysh Green function in the Nambu representatio
defined as

Gl l 8s
,

~ t,t8!5
i

\ S ^dl 8s
†

~ t8!dls~ t !&, ^dl 82s~ t8!dls~ t !&

^dl 8s
†

~ t8!dl 2s
† ~ t !&, ^dl 82s~ t8!dl 2s

† ~ t !&
D .

~5!

From Eq. ~3! we obtain the current formula in thegth
lead as

I g~ t !52eRe(
l l 8s

E dt1@Gl l 8s
r

~ t,t1!S̃gs
, ~ t1 ,t !

1Gl l 8s
,

~ t,t1!S̃gs
a ~ t1 ,t !#11, ~6!

where S̃gs
X (t,t8), XP$r ,a,,% denotes the self-energy ma

trix of the gth lead. This self-energy matrix describes t
free quasiparticles or electrons in thegth lead interacting
with the central quantum dot through the interaction stren
T̃gk(t). In the current formula, we have to take the sum o
k. This summation can be changed into an integral by in
ducing the linewidthGgs(E)52p(kuTgku2d(E2Eg,ks) into
is

h
r
-

the formula. In the wideband limit approximation, the lin
width is energy independent, i.e.,Ggs(E)5Ggs . Since the
energyEg,ks is a spin degenerated one, the linewidth is
dependent on the spin variables. In what follows, we ne-
glect the spin subscripts in the linewidth by lettingGgs

5Gg . The self-energy matricesS̃gs
r (a)(t,t8) and S̃gs

, (t,t8)
can be expressed by the Green functions of quasiparti
and electrons in the leads. In the wideband limit, these s
energy matrices take the following forms:

S̃gs
r ~ t,t8!52

i

h
u~ t2t8!Gg(

mn
Jm~LgL!Jn~LgL!

3E deNg~e!e2( i /\)e(t2t8)Sgs
(0)mn~ t,t8!, ~7!

S̃gs
, ~ t,t8!5

i

h
Gg(

mn
Jm~LgL!Jn~LgL!

3E deNg~e!e2( i /\)e(t2t8) f ~e!Sgs
(0)mn~ t,t8!,

~8!

where
5-3
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SLs
(0)mn~ t,t8!5S e2 i (mt2nt8)v 0

0 ei (mt2nt8)vD ,

SRs
(0)mn~ t,t8!5S ei /\[eV(t2t8)2(mt2nt8)\v] ,

D

ueu
ei /\[eV(t1t8)2(mt1nt8)\v]

D*

ueu
e2 i /\[eV(t1t8)2(mt1nt8)\v] , e2 i /\[eV(t2t8)2(mt2nt8)\v]

D .
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The advanced self-energy matrixS̃gs
a (t,t8) is taken on the

similar form as S̃gs
r (t,t8). f (e) is the Fermi distribution

function defined by

f ~e!5
1

exp~e/kBT!11
,

andNg(e) is the DOS of thegth lead. For the superconduc
ing lead we have

NR~e!5
ueu

~e22uDu2!1/2
,

which is a complex in the Andreev reflection regime, and
the normal lead, we haveNL(e)51. Jm(l) are the Besse
functions of the first kind. The momentum of a quasiparti
may possess a small imaginary value. This means that
quasiparticle can penetrate through the barrier of the
junction even if 0,ueVu,uDu by means of the Andreev re
flection. So there exists a small quantity of tunneling curr
in the leads caused by the Andreev reflection.

The current formula~6! is reduced to the form expresse
by the Green functions of the quantum dot. Since we
interested in the time-averaged transport problems wh
may be obtained by experiments, we only need to know
time-averaged tunneling current in one lead due to the
rent conservationI L1I R50. We derive the time-dependen
current formula in the left lead by takingg5L in Eq. ~6! and
deduce it to the current formula similar to the normal syst
presented by Jauho, Wingreen, and Meir in Ref. 20 as

I L~ t !52
2e

h
Im(

l l 8s
E

2`

t

dt1E deGLe2( i /\)e(t12t)

3@ f ~e!Gll 8s,11
r

~ t,t1!1Gll 8s,11
,

~ t,t1!#. ~9!

Since the system is perturbed by the microwave field,
tunneling current is characterized with the oscillating fe
tures of the external microwave field. The current evolv
with time, and the time-reversal symmetry is broken. T
Green functions of the quantum dotGll 8s,11

X (t,t8) cannot be
described by the time-difference form because of the ac
turbation. The quantum dot provides multichannels for el
trons to transport. The external microwave field splits
channels to form sidebands, and the Zeeman field splits
energy levels further. Therefore, the current is composed
09450
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infinite components of oscillating current tunneling throu
the quantum dot in the infinite channels. We derive the c
rent formula directly from Eq.~9!.

In order to find the Green functions of the quantum d
we employ the equation of motion~EOM! method. We de-
fine the Green functiongl l 8s

r (a) (t,t8) as the diagonal matrix
form in the derivation

gl l 8s
r (a)

~ t,t8!57
i

\
u~6t7t8!

3S e2 i /\(Ẽd,l2smB)(t2t8), 0

0 ei /\(Ẽd,l1smB)(t2t8)D
3d l ,l 8 . ~10!

This Green function describes the local electrons in the
lated quantum dot applied with the Zeeman field. Since
system is a coupled one, the self-energy of the quantum
is associated with leads. For the superconductor conne
quantum-dot system, the coupling becomes very complica
resulting from multiple reflections at the NS barriers. To fi
Gl l 8s

r (a) (t,t8), one has to find the self-energies of electrons
the quantum dot and then solve the equation chain s
consistently. In fact, the self-energies of the quantum dot
equal to the ones given in Eqs.~7! and~8!. The EOM can be
reduced to the following Dyson equation:

Gl l 8s
r (a)

~ t,t8!5gl l 8s
r (a)

~ t,t8!1(
l 9

E E dt1dt2gl l s
r (a)~ t,t1!

3S̃ls
r (a)~ t1 ,t2!Gl 9 l 8s

r (a)
~ t2 ,t8!. ~11!

Equation~11! has to be solved self-consistently by iteratio
In the presence of the Zeeman field, the occupation num
is spin nondegenerated. This means that the electrons oc
the quantum dot differently for the spin-up and spin-dow
states. In the similar procedure, we can derive the Keld
Green functionGl l 8s

, (t,t8) by employing the EOM and ob
tain the integral equation
5-4
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Gl l 8s
,

~ t,t8!5(
l 9

E E dt1dt2gl l s
r ~ t,t1!

3@S̃ls
r ~ t1 ,t2!Gl 9 l 8s

,
~ t2 ,t8! 1S̃ls

, ~ t1 ,t2!G
l 9l 8s

a
~ t2 ,t8!#.

~12!

For the system with a quantum dot coupled to normal lea
the integral Eq.~12! gives the same result presented in R
20. However, for the quantum dot coupled with superc
ducting and normal leads, this equation provides more in
mation originating from the scattering procedure of the
perconductor.

Equations~11! and~12! determine all the Green function
of the quantum dot. Each of the matrix equations above c
tains four equations of the Green function, and the Gr
functions are connected to each other in the equations.
requires us to solve the equations consistently. Theref
from Eqs.~11! and ~12!, we can find the Green functions o
the quantum dot and then arrive at the tunneling current fr
Eq. ~9!. Since we are interested in the time-averaged tun
ing current, we only need to calculate the Green functio
related to the Fourier transformed versions in diagonal v
able forms. We make the Fourier transformation over E
~11! and ~12! versus the two timest and t8, then obtain
algebraic equations associated with these Green functi
We define the quantityk ls

6 (E) as

k ls
6 ~E!5

1

E6Ẽd,ls1smB

and define the retarded self-energy matrices in the Fou
transformed version as

SLm
r ~E!52

i

2
GLS 1, 0

0 1D ~13!

for the left lead and

SRm
r ~E!52

i

2
GRS NR~Em

2!, DÑR~Em
2!

D* ÑR~Em
1!, NR~Em

1!
D ~14!

for the right lead, whereEm
65E6(m\v2eV),ÑR(E)

5NR(E)/uEu. In the self-energy of the right lead, the DOS
the superconductor plays an important role. The electrons
accelerated by the source-drain voltage as well as by
microwave field to form the energy sidebandE6(m\v
2eV), which causes a complicated Andreev reflection in
tunneling problems. We define the quantityQg lm,ab

(6)X (E) to
express Green functions in the derivation as

Qg lm,ab
(6)X ~E!5

Jm
2 ~LgL!k ls

6 ~E!Sgm,ab
X ~E!

12zs
(6)r~E!

,

where

zs
(1)r~E!5(

gml
Jm

2 ~LgL!k ls
1 ~E!Sgm,22

r ~E!,
09450
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zs
(2)r~E!5(

gml
Jm

2 ~LgL!k ls
2 ~E!Sgm,11

r ~E!.

Substituting the corresponding elements of Eqs.~13! and
~14! into the definition ofzs

(6)r(E), we can write them as the
concrete forms

zs
(6)r~e!52

i

2
Ls

(6)~e!t (6)~e!,

where

t (6)~e!5GL1GR(
m

Jm
2 ~LRL!NR@e6~m\v2eV!#,

and Ls
(6)(e)5( lk ls

6 (e). As ue6(m\v2eV)u.uDu,
t (6)(e) is real, and asue6(m\v2eV)u,uDu, t (6)(e) is a
complex quantity.

We define the Green functionGs,ab
X (E) by taking the

summation of the Green functionGll 8s,ab
X (E) over all the

channels of the quantum dot, i.e.,Gs,ab
X (E)

5( l l 8Gll 8s,ab
X (E). From Eq.~11! we find the retarded Gree

function Gs,11
r (E) in the Fourier transformed version as

Gs,11
r ~E!5

Ls
(2)~E!

12zs
(2)r~E!2Ps

r ~E!
, ~15!

where

Ps
r ~E!5 (

l l 8gg8m

Jm
2 ~LgL!k ls

2 ~E!Sgm,12
r ~E!

3Qg8 l 8m1[mg8g /\v],21
(1)r

~E12mgL22m\v!.

This Green function describes the resonant structure of e
trons in the quantum dot. If electron energy in the channl
is located in the normal region, the system resonates aE

5Ẽl ,d2smB. As the electron energy is in the Andreev r
flection region, the system resonates at new levels. Equa
~15! is the retarded Green function for the system in a ps
doequilibrium state. It can be used to calculate the tim
averaged tunneling current. The advanced Green func
Gs,11

a (E) can be derived similarly. For the pseudoequili
rium state, the advanced Green function is the conjugat
the retarded Green function, i.e.,Gs,11

a (E)5@Gs,11
r (E)#* .

We define the matrixSgm
, (E) associated with the Fourie

transformed Keldysh self-energy as

SLm
, ~E!5 iGLS f ~Ẽm

2!, 0

0, f ~Ẽm
1!

D ~16!

for the left lead, whereẼm
65E6m\v, and

SRm
, ~E!5 iGRS NR~Em

2! f ~Em
2!, DÑR~Em

2! f ~Em
2!

D* ÑR~Em
1! f ~Em

1!, NR~Em
1! f ~Em

1!
D
~17!
5-5
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for the right lead. The notationEm
6 has the same expressio

shown in Eq.~14!. The self-energies given in Eqs.~16! and
~17! combine the features of charge carriers in the leads
the information of the quantum dot. This signifies that t
distribution of electrons in the quantum dot is affected by
two leads. The temperature of the system influences the
neling behaviors through the Fermi distribution function.
fact, the tunneling property is quite different for the zer
and nonzero-temperature systems.

From Eq. ~12!, one obtains the normal Keldysh Gree
function Gs,11

, (E) in the pseudoequilibrium state as

Gs,11
, ~E!5Gs,11

r ~E!Ps
,~E!Gs,11

a ~E!, ~18!

where

Ps
,~E!5

1

Ls
(2)~E!

(
g lm

Jm
2 ~LgL!k ls

2 ~E!@Sgm,11
, ~E!

1Mgm~E,E12mgL22m\v!#,

Mgm~E,E8!5 (
g8 l 8

@Sgm,12
r ~E!Kgg8 l 8,m~E8!

1Sgm,12
, ~E!Qg8 l 8m1[mg8g /\v],21

(1)a
~E8!#,

Kgg8 l 8,m~E!5Qg8 l 8m1[mg8g /\v],21
(1),

~E!

1 (
g9 l 9m8

Qg8 l 8m8,22
(1),

~E!Qg9 l 9m1[mg9g /\v],21
(1)a

~E!.

This Green function has the similar factorized form as
system with a central regime coupled with normal leads.20 If
the two leads are normal metals, the energy gapD50, and
we have normal Green functions by lettingQg lm,ab

(6)X (E)50
for (aÞb) in Eqs.~15! and~18!. Up to now, we have found
the required Green functions for our system.
of
on
h
A

si

ng
t

on

m
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We can find the dc current by taking the time average o
Eq. ~9! and then obtain the formula expressed by the Fou
transformed normal Green functionGs,aa

X (E) as

I L52
2e

h
Im(

s
E deGLF f ~e!Gs,11

r ~e!1
1

2
Gs,11

, ~e!G .
~19!

Substituting the Green functions given in Eqs.~15! and~18!
into the current formula above, one immediately arrives
the time-averaged tunneling current

I 5I (1)1I (2)1I (3) , ~20!

where I (1) ,I (2) ,I (3) are the current components defined
follows. I (1) is the current given by

I (1)5
e

h (
ms

E deTm,s
(1) ~e!@ f ~e2eV!2 f ~e2m\v!#,

~21!

where

Tm,s
(1) ~e!5Jm

2 ~LRL!GLGRAs~e2eV!

3@ReNR~e2m\v!1hm
A~e!#,

hm
A~e!52 1

4 Jm
2 ~LRL!GRuWR~e2m\v!u2Bs~e1eV

22m\v!Ret (1)~e!,

Bs~e!5
Ls

(1)2~e!

@12Rezs
(1)r~e!#21@ Imzs

(1)r~e!#2
,

WR~e!5
uDu

~e22uDu2!1/2
,

As~e!5
Ls

(2)2~e!

$12Re@zs
(2)r~e!1Ps

r ~e!#%21$Im@zs
(2)r~e!1Ps

r ~e!#%2
.

In the current componentI (1) there exists two processes
reflection: the normal reflection and the Andreev reflecti
As D→0, we obtain the normal current of the system wit
out the superconducting threshold, and hence there is no
dreev reflection. The term containinghm

A(e) contributes the
Andreev tunneling current in the formula, Eq.~21!. How-
ever, since the normal tunneling current involves the den
of state ReNR(e), this normal current is zero asueV
1m\vu,uDu at zero temperature, while the term containi
hm

A(e) has a contribution in this region, but with differen
resonant behaviors. This Andreev tunneling current is n
zero asueV1m\vu.uDu, but it is much smaller than the
normal current in this region for the weakly coupled syste
.
-
n-

ty

-

.

The current componentI (2) is determined by the formula

I (2)5
e

h (
ms

E deTm,s
(2) ~e!@ f ~e2m\v!

2 f ~e1eV22m\v!#, ~22!

whereTm,s
(2) (e)5Qm,s(e)GL

2 , and

Qm,s~e!5 1
4 Jm

4 ~LRL!uGRWR~e2m\v!u2

3Bs~e1eV22m\v!As~e2eV!.
5-6
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In the tunneling current, the factorsAs(e) and Bs(e) are
involved, and they provide resonant peaks whose positione i

satisfy the equations (e i1Ẽd,ls1smB)22Re@zs
(1)r(e i)#

50, and (e i2Ẽd,ls1smB)22Re@zs
(2)r(e i)1Ps

r (e i)#50.
Equations~21! and ~22! become zero as the ac field an
source-drain dc biases are removed. This term is a part o
Andreev tunneling current induced by the Andreev refl
tion. It contributes to the Andreev current in the whole e
ergy region. In the regionueV1m\vu,uDu, the normal tun-
neling is zero, and the Andreev current takes a major eff
Equation~22! is zero as the energy gapD50, i.e., for the
system coupled with two normal leads, there is no curr
term.

The current componentI (3) is determined by

I (3)5
e

h (
mm8s

E deTmm8,s
(3)

~e!$ f ~e2m8\v!

2 f @e1~m22m8!\v#%, ~23!

where

Tmm8,s
(3)

~e!5Qm8,s~e!Jm
2 ~LRL!GLGR .

Equation~23! is a compound effect caused by the microwa
field and the Andreev reflection. This part of the Andre
current is ascribed to the photon-electron pumping behav
and it becomes zero as the ac field is removed from
system. The procedure of transport can be understood a
quasiparticles tunnel from the left lead to the right juncti
undertaking the Andreev reflection at the right barrier. T
Andreev reflection is associated with the photon absorp
and emission. Obviously, this part of the current disappe
as the two leads are normal.

From the formula~20! one sees that the current is com
posed of normal and Andreev tunnelings. As the ene
gap D→0, the Andreev current disappears, and
obtain the Landauer-Bu¨ttiker-like formula of the
normal system with the transmission probabilityTm,s

(1) (e)
5Jm

2 (LRL)GLGRAs(e). The normal tunneling possess
Breit-Wigner resonance, while for the Andreev tunneling t
resonance is broken. The Andreev current can be induce
the dc as well as ac fields. If the dc source-drain bias is z
we still have the Andreev tunneling current caused by the
field. The Andreev reflection can induce additional reson
peaks in the region where the normal tunneling is zero.
the other hand, the Zeeman field does not drive the ch
carriers to form a tunneling current. But it splits the reson
levels to form a nondegenerated system, and the curren
cillates in the split channels.

III. NUMERICAL RESULTS AND ANALYSES

In this section we perform the numerical calculations
the tunneling current at zero temperature. We take the ph
energy\v of the external ac field as the energy scale
measurement. So all the energy quantities of the system
be expressed by using the photon energy as a measure
unit, such asuDu5p\v. In the numerical calculations, w
denote the absolute value of the energy gapuDu to beD for
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convenience. At zero temperature, the Fermi distribut
function is f (e)512u(e), whereu(e) is the step function.
Therefore, the tunneling current~20! at zero temperature is
reduced to

I 5
e

h (
ms H E0

eV2m\v

@Tm,s
(1) ~e!1Tm,s

(2) ~2e!#de

2(
m8

E
0

(m2m8)\v
Tmm8,s

(3)
~e!deJ . ~24!

We deal with the special case where the linewidths of the
and right leads are equal, i.e.,GL5GR5G. We study the
single-channel and multichannel systems separately in
following two subsections. We consider the microwave fie
to be located in the frequency regimev52p31011 Hz. The
photon energy of the microwave field is about 0.4 meV.
the numerical calculations, we assume that the energy ga
the superconducting lead is comparable with the photon
ergy. The materials having such energy gaps are Ga, Tl,
In with corresponding energy gaps of 0.165 meV, 0.368 m
and 0.52 meV, for instance.

A. The single-channel system

In this subsection, we consider the single-channel sys
where the energy of electrons in the quantum dot only h
one levelEd . We show the tunneling behaviors versus ga
voltage and source-drain bias by solving the current form
~24! numerically. The diameter of the quantum dot is on t
order of 10 nm.

We present the resonant structure of the tunneling cur
versus gate voltage in Fig. 1 as the microwave field is
moved. The solid and dotted curves are associated with
situations in the absence and presence of the Zeeman
netic field, respectively. The Andreev reflection has be
taken into account in the evaluation. As the Zeeman m
netic field is removed from the quantum dot, two reson
peaks emerge, and the negative current is observed. As
magnetic field is applied to the quantum dot, the two pe
disappear and a large resonant peak appears. The neg

FIG. 1. The resonant current versus gate voltagevg for the
single-channel system in the absence of the ac field. The param
are chosen asG50.2D, Ed50.2D, eV51.2D, and for the solid
curvemB50; for the dotted curvemB50.6D.
5-7
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HONG-KANG ZHAO AND JIAN WANG PHYSICAL REVIEW B 64 094505
valley and lower resonant peak located at 2.3D are caused by
the Andreev reflection. The Zeeman magnetic field raises
negative valley to the heightI 55.0e/h, and the two resonan
peaks are suppressed. The negative valley is also suppre
and shifted by the Zeeman magnetic field.

Figure 2 displays the resonant behaviors of the tunne
current versus Zeeman energymB. The different curves in-
dicate the influence of the ac field with different magnitud
on the tunneling current. The dotted curve represents
situation whereLRL50.3, and the solid curve is forLRL
50.8. The current is sensitive to the magnitude of the
field. As the ac field is weak, a negative tunneling curren
observed aroundumBu;2.5\v. The side steps signify pho
ton absorption and emission of transporting electrons. As
magnitude of the ac field becomes large, the current r
abruptly, and a resonant structure appears. The negative
rent disappears, and the maximum height of the reson
peaks is larger than the one applied by the weak ac field.
structure is symmetric about the Zeeman energy.

We present theI-V characteristics of the system in Fig.
to show the Zeeman splitting of the photon-assisted tun
ing. In the absence of the ac field the tunneling curren
zero asueVu,D by neglecting the Andreev current. As the
field is applied, there exists a tunneling current due to
charging-discharging effect. This charging-discharging c

FIG. 2. The tunneling current versus Zeeman energymB for the
single-channel system. The parameters are chosen asG50.2\v,
D5\v, eV51.2\v, Ed50.2\v, and for the dotted curveLRL

50.3; for the solid curveLRL50.8.

FIG. 3. TheI-V characteristics of the single-channel system
the presence of a microwave field. The parameters are chose
G50.2\v, D5\v, LRL50.8, Ed50.2\v, and for the solid curve
mB50; for the dotted curvemB50.6\v.
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rent is nonzero by taking the time average. The energy ga
the superconducting lead acts as a barrier for electron
transport. As the source-drain voltageV lies in the regime
0,eV,D, the electrons are accelerated by the voltage,
a small part of them can tunnel through the barrier due to
Andreev reflection. As the ac field is applied, the electro
absorb photon energy to raise their potentials, and we m
have the relationueV1m\vu.D. So these electrons ca
overcome the thresholdD to form a normal tunneling cur-
rent. This effect is known as the photon-electron pump
effect in the NDS system. On the other hand, the electr
may lose their energy by emitting photons and drop to low
potential levels. Thus, the electrons cannot transport thro
the quantum-dot regime even if their original accelerated
ergy is larger than the energy gap. This procedure can
described as the situation where the source-drain voltage
vides energy for electrons to meetueVu.D, but some of the
energy changes into photon energy to meetueV1m\vu,D.
However, the Andreev reflection can take place in the reg
0,ueV1m\vu,D. So the tunneling current for this situa
tion contains the compound effect of photon-assisted A
dreev tunneling~PAAT!.18 The solid curve denotes PAAT
current-voltage behavior in the absence of the Zeeman m
netic field. The usual steps in the normal system are modi
by superimposing some Andreev tunneling peaks on
steps and plateau. The dotted curve represents the PAAT
rent split by the Zeeman magnetic field. The tunneling c
rent stretches up and down, and the absolute value of
saturated tunneling current becomes larger. Each step is
and the Andreev reflection peak is suppressed by the Zee
magnetic field. For the ac field applied system, the pho
energy forms sidebands of electrons, and the Zeeman
splits each sideband of electrons in the quantum dot to fo
multichannel Ed1m\v1smB for electrons to tunnel.
Therefore, we can obtain a larger current and rich phys
features for the tunneling current by applying the Zeem
magnetic field.

B. The multichannel system

In this subsection we perform the numerical calculatio
on the tunneling current through the multichannel quantu
dot system. We assume the quantum dot possesses five l
with equal energy spacing, i.e.,Edl5 lDEd , where DEd
50.5\v, and l 51, . . . ,5.

Figure 4 represents the resonant behaviors of the tun
ing current versus gate voltage for the multichannel syst
Diagram~a! denotes the situation without applying the Ze
man magnetic field. A negative valley is located in the ce
tral regime of the resonant peaks. Since the resonant p
rise erectly, the photon-assisted side peaks are not obvio
visible. The heights of the peaks are not equal, which sho
the asymmetric behavior of the tunneling current with
spect to the gate voltage. Diagram~b! indicates the Zeeman
splitting of the resonant structure in the current. Each of
resonant peaks is split to form a nondegenerated tunne
current. The negative valley is also split to form four neg
tive ones. Comparing the two cases, we observe that
magnetic field can suppress the magnitude of the tunne
current, and it provides split channels for electrons to tunn

as
5-8
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We display the current versus Zeeman energy in Figs
and 6. The tunneling current is symmetric with respect to
Zeeman energy for the system without Coulomb interacti
Positive resonant peaks and negative valleys emerge in

FIG. 4. The tunneling current versus gate voltage for the mu
channel system. The parameters are chosen asG50.2\v, LRL

50.8, D5\v, l 55, and for diagram~a! mB50; for diagram~b!
mB50.6\v.

FIG. 5. The tunneling current versus Zeeman energymB for the
multichannel system. The parameters are chosen asG50.2\v,
LRL50.8, D5\v, eV51.2\v, and for diagram~a! evg50; for
diagram~b! evg50.6\v.
09450
5
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symmetric form aboutmB50. Figure 5 shows the resonan
behavior as the source-drain biasV51.2\v/e. Diagrams~a!
and ~b! in this figure are depicted for the cases with ga
voltagevg50 andvg50.6\v/e, respectively. The resonan
structure is sensitive to gate voltage. Many resonant pe
appear as the gate voltage is applied to the quantum dot,
the magnitude of them increases due to the effect ofvg . The
tunneling current structure is quite different from the one
the source-drain bias is removed~Fig. 6!. The fine resonant
structure is observed as the gate voltage is zero, and e
peaks and valleys are restricted in the two side reson
peaks. As the gate voltage is applied, the two main posi
peaks and negative side valleys increase their magnitu
The central resonant peaks are small compared with the m
peaks and valleys. In fact, the diagrams in Fig. 6 are ass
ated with the photon-electron pumping effect, since
source-drain bias is zero. The electrons are pumped b
microwave field to overcome the superconducting bar
and to form a tunneling current. The electrons are also ac
erated by the photon energy between the source and dra
the system. So this current contains a photon-electron pu
ing current and the Andreev tunneling current.

IV. CONCLUDING REMARKS

We have investigated the tunneling current versus g
voltage, Zeeman energy, and source-drain bias in the N
system applied with the ac microwave field. The main resu
are derived from the current formula given by Eq.~20!. The
current formula contains photon-assisted tunneling and
dreev reflection effects. The Zeeman effect is also hidde
Eq. ~20!. The tunneling current is zero as the source-dr
bias and ac field are removed. This means that for the N

i-
FIG. 6. The tunneling current versus Zeeman energymB for the

multichannel system. The parameters are chosen as those in F
with respect to diagrams~a! and ~b! except in this figureeV50.
5-9
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HONG-KANG ZHAO AND JIAN WANG PHYSICAL REVIEW B 64 094505
system, the current is driven by the dc and ac fields. T
current formula in this system is dominated by the DOS
the superconductor, and the current has a resonant stru
deviating from the usual Breit-Wigner form. We have co
sidered the Andreev reflection, which provides tunneling c
rent even if the source-drain bias is zero for the phot
assisted tunneling. We have performed the numer
calculation at zero temperature by using Eq.~24!. The single-
channel and multichannel tunneling currents are evalua
separately, and the Zeeman-splitting current is discus
The Zeeman-split PAAT resonant structures are obtained
sus gate voltage and Zeeman energy. The tunneling cu
resonates in quite different ways with respect to the g
voltage and Zeeman energy. The tunneling resonant struc
is symmetric versus Zeeman energy, while it is asymme
versus gate voltage. Negative tunneling current is revea
both versus gate voltage and Zeeman energy. For the m
channel quantum-dot system we find that the tunneling st
ture versus Zeeman energy is very sensitive to gate vol
and source-drain bias. In the Andreev reflection regime,
may also obtain a large tunneling current by adjusting
09450
e
f
ure
-
r-
-

al

ed
d.
r-
nt

te
re

ic
d

lti-
c-
ge
e
e

Zeeman energy and gate voltage. The Zeeman-splitI-V char-
acteristics are presented for the single-channel system,
we observe that the Zeeman magnetic field may suppres
Andreev tunneling peaks. It splits and stretches the curren
form large saturated values and current steps. From
above investigation we conclude that the Zeeman magn
field can provide very interesting tunneling structures. Sin
we have several external parameters, such as gate vol
source-drain bias, ac microwave field, and Zeeman magn
field, we can obtain the desired tunneling current through
NDS system by adjusting the external parameters. These
tures may provide useful information for designing quant
devices.
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