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Parametric electron pumping through a quantum dot in the Kondo regime
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We report a theoretical analysis of parametric electron pump through a quantum dot in the Kondo regime. In
the adiabatic regime, we have derived the expression for pumped current in the Kondo regime using nonequi-
librium Green'’s function. The pumped current versus different system parameters such as gate voltage, pump-
ing amplitude, as well as the phase difference between two pumping forces are calculated and interesting
physics are revealed.
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The general physics of parametric electron pump has bedpad, the constrictions act like a double barrier whose height
the subject of recent studiés'® It is in particular inspired by ~can be tuned by two gate voltages. The cyclic variation of
the recent experiment of Switkes al. In this experimenf,  these two pumping gate voltages allow the parametric elec-
the pumped current through an open quantum dot is drivetron pumping through the quantum dot. To simplify the cal-
by two gates with oscillating voltages controlling the defor- culation, we use the one-dimensional double barrier potential
mation of theshapeof the dot. The pumped dc voltagk,;  to model the quantum dot.
is measured to vary with the phase differercbetween the To analyze parametric quantum pumping, we make use of
two gate voltages, and is antisymmetric abgut . At low  the nonequilibrium Green’'s-function method. Using the dis-
pumping amplitude the experimental data gayg,~sin¢.  tribution function, the total charge in the system during the
In the strong pumping regime, the dependenc¥ gf, on ¢  pumping is  given by Q(x,t)=—ief(dE/m)
becomes nonsinusoidal showilg,(0)# 0, whereas keep- X[G~(E,{X(t)})]xx Wwhere G~ is the lesser Green's func-
ing Vgoi(7) =0 for all pumping strength. Many of these ex- tion in real spacex labels the position, anfiX(t)} describes
perimental findings have been explained theoretically. Howa set of external parameters which facilitates the pumping
ever, apart from Refs. 9 and 10, to date most of theprocessG = is related to the retarded and advanced Green’s
theoretical investigations of parametric pumping have asfunctions G and G*® G=(E,{X})=—f(E)[G'(E.{X})
sumed single electron approximation. It would be interesting— G*(E,{X})] where the retarded Green’s function in real
to see how the strong electron-electron interaction modifiespace is given by
the pumped current. For this purpose, we report in this paper
a theoretical analysis of the parametric electron pump
through the quantum dot in the Kondo regime using adia-
batic theory. Our results indicate, in the Kondo regime, that
the general behavior of the pumped current is similar to that
of the conductance. Above the Kondo temperature, as on
scans the gate voltagg, we found two peaks in the pumped
current corresponding to the resonant tunneling peak an . )
Coulomb charging peak. When the temperature is below thgxternal pumping parametef. In order for a parametric

Kondo temperature, a new peak in the pumped current S,[arfgectron pump to function, we need simultaneous variation of

_ : : Wwo system parameterk; (t) = X;g+ Xy,Sin(wt) and X,(t)
to emerge abq U/2 in the middle of the resonant peak Yoo+ XppSin(wt-+¢t). Hence, in our case, the potential due

and Coulomb charging peak. At zero temperature, th . a )
pumped current has a broad peak gt —U/2 which is the o the gates can be written 83=X,A; + X,A,, whereA, is
potentlal profile for each gate. If the time variation of these

superposition of these three peaks. This is very differen " | oL foli( 1) = X4 SXsin(wh). then th
from the noninteracting case where there is only one peak jRarameters are siow, 1.€., m( )=Xo sin(wt), then the
harge of the system coming from all contacts due to the

the pumped current. In the Kondo regime, we found that a§harge )

one varies the pumping amplitude, the pumped current in"finitesimal change of the system paramet@X ¢ 0) is

creases quadratically for small amplitude and then scales lin-

early with the pumping amplitude. Our result also shows that

the pumped current is antisymmetric ababits = and is a dQ(t)=2>, ax THQ(X,1)] 6Xi(t), 2

nonsinusoidal function oty for large pumping amplitude. '

Our result suggests that the Kondo signature can also be

found in the pumped current which can be checked experiwhere Tf - - -] is over the positions. It is easily seen that the

mentally. total charge in the system in a period is zero which is re-
We consider a two-dimension&2D) quantum dot with quired for the charge conservation. To calculate the pumped

leads connected to the dot through narrow constrictions corsurrent, we have to find the chargiQ, passing through

trolled by gate voltages. Since the threshold of electrorcontacte due to the change of the system parameters. Using

propagation in the constriction may be lower than that in thehe Dyson equatioﬁxiGr=GrAiG', Eq. (2) becomes

G'(E.{X})= (€Y

E-H-V,—3"

IEr31 Eq. (1), 2" is the self-energy anWl,, is a diagonal matrix
escribing the variation of the potential landscape due to the
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ie
dQ(t)=— > f dETI[G'A;G" —c.c]f(E) 8X(t)
J

=%f dE(é'Ef)}j: TGTGA16X;(1), (3

where we have used the fact tHatl’'G?=i(G"'—G?) and
r=x,I, is the linewidth function. So we obtain

an(t)=;f dE(ﬁEf)zj: T G'T ,G*A;16X;(1). (4)

Furthermore, the current flowing through contaatiue to
the variation of parameteb$; andX,, in one period of time,
is given by

1 (7
|a=—J dt dQ,/dt, (5)
TJo

wherer=2m/w is the period of cyclic variation. In terms of

injectivity!” given by'®

—dN“—de f)TG'T,G3A 6
ax, 5(05 )TIG'T ,G%Aj] (6)
Eq. (5) reduces to the familiar formula
ew (7 [dN, dX, dN, dX,
lo=—| A 5o~ ——+ 59 = |- ()
a Jo Xm dt dX2 dt
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whereX |, ,q is the self-energy due to the coupling between
the scattering region and leads. The effect of strongly
electron-electron interaction is included in the self-energy

Er 19,20,24
S
ASH(E)

SHE)=Un+ —,
1-BX4(E)

(12

wherelj is the self-energy due to the second order contri-
bution in U,

. iy?
Eo(E)—S—f

71_3

dE,dE,dE;,
E+ E3_ El_ E2+ | 5

X[Gq (E1)Gq (E2)Gg (E3)
— G5 (E1) Gy (E»)Gq (Ea)], (13

where Gu=1/(E—Ho—3.,9 and Gg=—f(Gj—Gj).
Here for simplicity, we have only considered a particular
energy levelE, and used the wideband linff. The coeffi-
cientsA andB in Eq. (12) are determined by the solutions in
two limiting cases: large energy limit and atomic lirfft,
from which we haveA=[n(1-n)]/[ng(1—ng)] and B
=[(1-2n)]/[ng(1—np)U] with n=—[dETF(E)ImG'/ = is
the physical particle number amg= — [dE f(E)ImGg/ is
the fictitious particle number. This scheme gives a good de-
scription for the case of half filling. Away from that, one
must replaceH, in Gy and G' by a self-consistent Hamil-

Note that Eq.(7) is a general expression applicable to thetonianH,; and use the Friedel sum rife®
case of interacting and noninteracting systems as long as the

retarded Green'’s function is known.

For the transport in the Kondo regime, we consider the n=s- —arcta

following HamiltonianH=Hy+H,+H+ with

Ho=>

kao

€aCraoChaot 24 [Emtvgldsndom, ()

H.=U§ N Ny » 9)

and
HT=kEm TkamChaodomTC.C., (10)
whereC[_, is the creation operator of leadandd’ , is the

creation operator of the scattering regime at energy level
We have applied the gate voltagg to control the energy
level in the scattering region. For this Hamiltoni&n, de-
fined in Eq.(4) is given by €.)mn=272kTxamT kand(E

—€x,)- There are many approaches to treat the scatterin

problem in the Kondo regim&-23We find it is convenient

to use the perturbation scheme proposed by Levy Yeyattl

et al!® and Kajueter and Kotli#° In this approach, the re-
tarded Green’s function is given by

. 1
E_H_Elread_zg,

(11)

(14)

w

1 1 E+3i4+ R |oaq
Imzlread .

The self-consistent solution of Egdll), (12), and(14) de-
termines the self-energy which will be used in the calcu-
lation of pumped current. We now apply E&) to calculate
the pumped current in the Kondo regime. The double barrier
structure is modeled by potential(x)=X;d(x+a/2)
+X,8(x—al2) whereX,; and X, are barrier heights which
vary in a cyclic fashion to allow the charge pumping. In
particular, we setXj=vy+uvSin(wt+¢) with ¢,=0 and
b= ¢. We will fix the units by settingh=2m=1 in the
following analysis. For the GaAs system wigt+1000 A,
the energy uint i€E=56 weV. We will also fix the on site
potentialU =5 which is much smaller than the level spacing
in the quantum dot, frequenay=1, the barrier height
=79.2, and phase differene= 7/2 (unless specified other-
wise). Finally, the energy of incoming electron is chosen to
be in line with a resonant levé, whenvy=0. In Fig. 1 we
resent the transmission coefficient versus gate voltage
hich controls the levels in the quantum datt different
.emperaturesT. When the temperature is higher than the
Kondo temperaturd,=0.02 (dashed line in Fig. 1 we see
two peaks: resonant tunneling peakwgt=0 (for E=E,)
and the Coulomb charging peakigt=—U (E=Ey+U). At
low temperatures below,, the co-tunneling process leads
to a new peak, the Kondo peak, at the Fermi level. As the
temperature is lowered, the peak height of Kondo peak in-
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FIG. 1. The transmission coefficient versus gate voltage at dif- FIG. 3. The pumped current versus relative pumping am-
ferent temperatures. plitude at different gate voltages. Main figureg=—2.5; inset:

vg=—0.48.

creases and the dip between resonant peak and charging peak
diminishes. At zero temperature, the broad peakvgt than that of the Kondo peak and whep=0.1v, they have
=—U/2 in Fig. 1 is the superposition of these three peaksalmost the same height. In Fig. 3 we plot the pumped current
Forv,>0 orvy<—U, the transmission coefficient is almost Versus relative pumping amplitude, /v, at two different
temperature independent. Note that the peak heigigar ~ gate voltages: one afy=—U/2 and the other near the reso-
vy=0 andvy=—U) are asymmetric about thg,=—U/2.  nant level whenvy=—0.5. At thevy,=—U/2, the depen-
This is because the linewidth functidh depends on energy dence on the relative pumping amplitude shows the expected
or in our case depends on the gate voltage. Figure 2 depic@/adratic behavior for small amplitude since the pumped
the pumped current as a function of gate voltage at different
temperatures and for different pumping amplitudes. Gener-  0.0010 —
ally speaking, the pumped current follows similar pattern of

the transmission coefficient at different temperatures due tc 0.0006
the fact that the pumped current is proportional to the density
of states of the system which also manifests in the transmis-g

sion coefficient. We see that as the pumping amplitude be-3 000021 .
comes larger, the ratio |,(T=0pg=—U/R2)/1(T g
=1.5Ty,vq=—U/2) becomes smalldgsee Fig. 3 for further § -0.0002 - ,

discussioly at T# 0 two resonant peaks become broader and
move away from each other; the Kondo peakTatO be- -0.0006 |
comes broader and flattened. We also notice that the pumpe
current increases as the pumping amplitude increases. In pal

. . . i ! -0.0010 = ‘ : ‘ : ‘
ticular, as the pumping amplitude increases, the peak heigh 0 1 2 3 4 5 6 7
of resonant states &, and E,+ U increases much faster 4
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FIG. 4. The pumped current versus phase difference at different
FIG. 2. The pumped current versus gate voltage for differentemperatures(a). Main figure: vy=—2.5 andv,=0.0lv,; inset:
pumping amplitudesw,. Main figure: v,=0.1v,; left inset: v, vg=—2.5 andv,=0.1v,. (b). Main figure: v =—0.48 anduv,
=0.01vg; right inset:v ,=0.0%,,. =0.0Ivg; inset:vg=—0.48 andv,=0.1v.
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current is bilinear in pumping amplitude in the weak pump-nonlinear behavior is also seen experimentadighough the
ing regime” For larger amplitudes ,/v,>0.03 it is almost ~ physical origin may be different. .

linear with different slopes depending on temperatures. The [N summary, we have studied the parametric electron

slope is smaller at higher temperature. For the gate voltaggumping through a quantum dot in the Kondo regime using a

near the resonant level, the pumped current has similar b 1onequilibrium Green’s-function theory. We found that the

havior except that it is not sensitive to the change of tem- ehavior of the pumped current is closely related to the con-

t Fi 4 displ th d i functi ductance. As one varies the pumping amplitude, the pumped
perature. Figure 4 displays the pumped currént as a Iuncliofy, ent increases guadratically for small amplitude and then
of phase difference) between two pumping forces for dif- gcaes linearly with the pumping amplitude. Because of the

ferent pumping amplitudes. The pumped current is antisymresonant nature of the pumping, the pumped current shows
metric about the phase differenge= 7. In the weak pump- nonsinusoidal dependence on the phase difference of the
ing regime ¢,=0.0lv), the pumped current shows the pumping parameters. In this paper, we have used the adia-
sinusoidal behavior and peaked @t /2. This is because batic theory to calculate the pumped current. This theory is
in the weak pumping regime, the pumped current is bilineakalid in the low-frequency regime and cannot account for the
in the pumping amplitude and proportional to giA In the anomaly atp= 7 found experimentall§.At finite frequency,
strong pumping regimeuv(,=0.1v,), we start to see nonsi- one must use the real-space nonequilibrium Green’s-function
nusoidal behavior as higher-order terms of pumping amplimethod* to calculate the pumped current.

tude come into play. The maximum pumped current occurs We gratefully acknowledge the support by RGC of Hong

approximately aip=0.67 [see Figs. &) and 4b)]. Similar

Kong SAR under grant number HKU 7091/01P.
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