
PHYSICAL REVIEW D 69, 064020 ~2004!
Vacuum solutions of the gravitational field equations in the brane world model

T. Harko* and M. K. Mak†

Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong
~Received 6 October 2003; published 18 March 2004!

We consider some classes of solutions of the static, spherically symmetric gravitational field equations in the
vacuum in the brane world scenario, in which our Universe is a three-brane embedded in a higher dimensional
space-time. The vacuum field equations on the brane are reduced to a system of two ordinary differential
equations, which describe all the geometric properties of the vacuum as functions of the dark pressure and dark
radiation terms~the projections of the Weyl curvature of the bulk, generating nonlocal brane stresses!. Several
classes of exact solutions of the vacuum gravitational field equations on the brane are derived. In the particular
case of a vanishing dark pressure, the integration of the field equations can be reduced to the integration of an
Abel type equation. A perturbative procedure, based on the iterative solution of an integral equation, is also
developed for this case. Brane vacuums with particular symmetries are investigated by using Lie group
techniques. In the case of a static vacuum brane admitting a one-parameter group of conformal motions, the
exact solution of the field equations can be found, with the functional form of the dark radiation and pressure
terms uniquely fixed by the symmetry. The requirement of the invariance of the field equations with respect to
the quasihomologous group of transformations also imposes a unique, linear proportionality relation between
the dark energy and dark pressure. A homology theorem for the static, spherically symmetric gravitational field
equations in the vacuum on the brane is also proven.
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I. INTRODUCTION

The idea, proposed in@1#, that our four-dimensional Uni-
verse might be a three-brane, embedded in a fi
dimensional space-time~the bulk!, has attracted considerab
interest in the past few years. According to the brane-wo
scenario, the physical fields~electromagnetic, Yang-Mills
etc.! in our four-dimensional Universe are confined to t
three-brane. These fields are assumed to arise as fluctua
of branes in string theories. Only gravity can freely prop
gate in both the brane and bulk space-times, with the gr
tational self-couplings not significantly modified. This mod
originated from the study of a single 3-brane embedded
five dimensions, with the 5D metric given byds2

5e2 f (y)hmndxmdxn1dy2, which, due to the appearance
the warp factor, could produce a large hierarchy between
scale of particle physics and gravity. Even if the fifth dime
sion is uncompactified, standard 4D gravity is reproduced
the brane. Hence this model allows the presence of large
even infinite noncompact extra dimensions. Our brane
identified to a domain wall in a 5-dimensional anti–de Sit
space-time.

The Randall-Sundrum model was inspired by superstr
theory. The ten-dimensionalE83E8 heterotic string theory,
which contains the standard model of elementary partic
could be a promising candidate for the description of the r
Universe. This theory is connected with an eleve
dimensional theory,M theory, compactified on the orbifold
R103S1/Z2 @2#. In this model we have two separated te
dimensional manifolds. For a review of dynamics and geo
etry of brane Universes see@3#.
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Due to the correction terms coming from the extra dime
sions, significant deviations from the Einstein theory occu
brane world models at very high energies@4,5#. Gravity is
largely modified at the electroweak scale 1 TeV. The cosm
logical implications of the brane world theories have be
extensively investigated in the physical literature@6#. Gravi-
tational collapse can also produce high energies, with the
dimensional effects playing an important role in the form
tion of black holes@7#.

For standard general relativistic spherical compact obje
the exterior space-time is described by the Schwarzsc
metric. In the five dimensional brane world models, the h
energy corrections to the energy density, together with
Weyl stresses from bulk gravitons, imply that on the bra
the exterior metric of a static star is no longer the Schwa
schild metric @8#. The presence of the Weyl stresses a
means that the matching conditions do not have a uni
solution on the brane; the knowledge of the five-dimensio
Weyl tensor is needed as a minimum condition for uniqu
ness. Static, spherically symmetric exterior vacuum soluti
of the brane world models have been proposed first
Dadhichet al. @8# and Germani and Maartens@9#. The first of
these solutions, obtained in@8#, has the mathematical form o
the Reissner-No¨rdstrom solution, in which a tidal Weyl pa
rameter plays the role of the electric charge of the gen
relativistic solution. The solution has been obtained by i
posing the null energy condition on the 3-brane for a b
having nonzero Weyl curvature. The solution can be matc
to the interior solution corresponding to a constant den
brane world star. A second exterior solution, which a
matches a constant density interior, has been derived in@9#.

Two families of analytic solutions of the spherically sym
metric vacuum brane world model equations~with gtt
Þ21/grr ), parametrized by the Arnowitt-Deser-Misne
~ADM ! mass and a parametrized post-Newtonian~PPN! pa-
©2004 The American Physical Society20-1
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rameterb, have been obtained by Casadio, Fabri and M
zacurati@10#. Nonsingular black-hole solutions in the bran
world model have been considered in@11#, by relaxing the
condition of the zero scalar curvature but retaining the n
energy condition. The ‘‘on brane’’ 4-dimensional Gauss a
Codazzi equations for an arbitrary static spherically symm
ric star in a Randall–Sundrum type II brane world have be
completely solved by Visser and Wiltshire@12#. The on-
brane boundary can be used to determine the
5-dimensional space-time geometry. The procedure can
generalized to solid objects such as planets. A method
extend into the bulk asymptotically flat static spherica
symmetric brane-world metrics has been proposed by C
dio and Mazzacurati@13#. The exact integration of the field
equations along the fifth coordinate was done by using
multipole (1/r ) expansion. The results show that the shape
the horizon of the brane black hole solutions is very likely
flat ‘‘pancake’’ for astrophysical sources.

Stellar structure in brane worlds is very different from th
in ordinary general relativity. An exact interior uniform
density stellar solution on the brane has been found in@9#. In
this model the general relativistic upper bound for the ma
radius ratio,M /R,4/9, is reduced by 5-dimensional high
energy effects. The existence of brane world neutron s
leads to a constraint on the brane tension, which is stron
than the big-bang nucleosynthesis constraint, but wea
than the Newton-law experimental constraints@9#.

It is the purpose of the present paper to systematic
consider spherically symmetric space-times in vacuum
the brane. As a first step we derive the two basic ordin
differential equations for the dark radiation and dark pr
sure, describing the geometry of the vacuum on the bra
By means of some appropriate transformations these e
tions take the form of an autonomous system of two ordin
differential equations. Some simple integrability cases
considered, leading to some already known or new vacu
solutions on the brane. The very important case correspo
ing to a vanishing dark pressure term is considered in de
The integration of the gravitational field equations in t
vacuum on the brane is reduced to the integration of an A
type equation. Since this equation does not satisfy the kn
integrability conditions, the solution is obtained in terms
perturbative series obtained by solving the integral equa
associated to this problem.

Next we consider vacuum space-times on the brane
are related to some particular Lie groups of transformatio
As a first group of admissible transformations for t
vacuum on the brane we shall consider spherically symm
ric and static solutions of the gravitational field equatio
that admit a one-parameter group of conformal motions,
the metric tensorgmn has the propertyLjgmn5f(r )gmn ,
where the left-hand side is the Lie derivative of the met
tensor, describing the gravitational field on the vacu
brane, with respect to the vector fieldjm, andf is an arbi-
trary function of the radial coordinater. With this assumption
the gravitational field equations describing the static vacu
brane can be integrated in Schwarzschild coordinates, an
exact simple solution, corresponding to a brane admittin
one-parameter group of motions, can be obtained.
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Suppose that from some static, spherically symmetric
lution of the vacuum gravitational field equations on t
brane we have obtained we want to construct other phys
solutions of the field equations by means of scale trans
mations. The process of constructing a new physical mo
by applying scale changes to the given initial model is
ferred to as a ‘‘homology transformation’’@14#. The homol-
ogy properties of stars have been intensively investigate
astrophysics, and families of stars constructed in such a
from a given star are called homologous stars. For Newt
ian homologous stars in equilibrium, the individual membe
are related to each other by transformations of the formr

→ r̄ 5ar, r→ r̄5br and M→M̄5cM, with a,b,c con-
stants. Chandrasekhar@14# refers to this change of scale as
‘‘homologous transformation,’’ and the homology theorem
Chandrasekhar@14# states that ifu(j) is a solution of the
stellar structure equations then so isC2/(n21)u(Cj) also,
whereC is an arbitrary constant and 1,n<5. By analyzing
the homology transformation properties of the gravitatio
field equations on the static vacuum brane, by using
group theory techniques, we shall show that the requirem
of the invariance of the field equations with respect to
infinitesimal generatorX fixes in a unique way the relation
between the dark pressure and the dark radiation terms
also prove the homology theorem for the gravitational fie
equations in vacuum on the brane.

The present paper is organized as follows. The basic eq
tions describing the spherically symmetric gravitational fie
equations in the vacuum on the brane are derived in Sec
Some particular classes of solutions for vacuum branes
obtained in Sec. III. In Sec. IV we consider vacuum bra
space-times admitting a one parameter group of confor
motions. Homology properties of the gravitational fie
equations are investigated in Sec. V. We conclude and
cuss our results in Sec. VI.

II. STATIC, SPHERICALLY SYMMETRIC VACUUM
FIELD EQUATIONS ON THE BRANE

On the 5-dimensional space-time~the bulk!, with the
negative vacuum energyL5 and brane energy-momentum a
the source of the gravitational field, the Einstein field equ
tions are given by

GIJ5k5
2TIJ ,

TIJ52L5gIJ1d~Y!@2lbgIJ1TIJ
matter#, ~1!

with lb the vacuum energy on the brane andk5
258pG5. In

this space-time a brane is a fixed point of theZ2 symmetry.
In the following, capital Latin indices run in the rang
0, . . . ,4,while Greek indices take the values 0, . . . ,3.

Assuming a metric of the form ds25(nInJ
1gIJ)dxIdxJ, with nIdxI5dx the unit normal to thex
5const hypersurfaces andgIJ the induced metric onx
5const hypersurfaces, the effective four-dimensional gra
tational equations on the brane~the Gauss equation! take the
form @4,5#
0-2
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Gmn52Lgmn1k4
2Tmn1k5

4Smn2Emn , ~2!

whereSmn is the local quadratic energy-momentum corre
tion

Smn5
1

12
TTmn2

1

4
Tm

aTna1
1

24
gmn~3TabTab2T2!,

~3!

and Emn is the nonlocal effect from the free bulk gravita
tional field, the transmitted projection of the bulk Weyl te
sor CIAJB , EIJ5CIAJBnAnB, with the property EIJ

→Emnd I
mdJ

n asx→0. We have also denotedk4
258pG, with

G the usual four-dimensional gravitational constant.
The four-dimensional cosmological constant,L, and the

four-dimensional coupling constant,k4, are given byL
5k5

2(L51k5
2lb

2/6)/2 and k4
25k5

4lb/6, respectively. In the
limit lb

21→0 we recover standard general relativity.
The Einstein equation in the bulk and the Codazzi eq

tion also imply the conservation of the energy-moment
tensor of the matter on the brane,DnTm

n50, whereDn de-
notes the brane covariant derivative. Moreover, from
contracted Bianchi identities on the brane it follows that
projected Weyl tensor should obey the constraintDnEm

n

5k5
4DnSm

n.
The symmetry properties ofEmn imply that in general we

can decompose it irreducibly with respect to a chos
4-velocity fieldum as @3#

Emn52k4FUS umun1
1

3
hmnD1Pmn12Q(mun)G , ~4!

where k5k5 /k4 , hmn5gmn1umun projects orthogonal to
um, the ‘‘dark radiation’’ termU52k4Emnumun is a scalar,
Qm5k4hm

aEab a spatial vector andPmn52k4@h(m
a hn)

b

2 1
3 hmnhab#Eab a spatial, symmetric and trace-free tenso
In the case of the vacuum state withr5p50, Tmn[0

and consequentlySmn50. Therefore, by neglecting the e
fect of the cosmological constant, the field equations desc
ing a static brane take the form

Rmn52Emn , ~5!

with Rm
m505Em

m . In the vacuum caseEmn satisfies the con-
straint DnEm

n50. In an inertial frame at any point on th
brane we haveum5d0

m and hmn5diag(0,1,1,1). In a static
vacuumQm50 and the constraint forEmn takes the form

1

3
DmU1

4

3
UAm1DnPmn1AnPmn50, ~6!

whereDm is the projection~orthogonal toum) of the covari-
ant derivative andAm5unDnum is the 4-acceleration. In the
static spherically symmetric case we may chooseAm
5A(r )r m and Pmn5P(r )(r mr n2 1

3 hmn), where A(r ) and
P(r ) ~the ‘‘dark pressure’’! are some scalar functions of th
radial distancer, andr m is a unit radial vector.

We chose the static spherically symmetric metric on
brane in the form
06402
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ds252en(r )dt21el(r )dr21r 2~du21sin2udf2!. ~7!

Then the gravitational field equations and the effect
energy-momentum tensor conservation equation in
vacuum take the form

2e2lS 1

r 2
2

l8

r D 1
1

r 2
5

48pG

k4lb

U, ~8!

e2lS n8

r
1

1

r 2D 2
1

r 2
5

16pG

k4lb

~U12P!,

~9!

e2lS n91
n82

2
1

n82l8

r
2

n8l8

2
D 5

32pG

k4lb

~U2P!,

~10!

n852
U812P8

2U1P
2

6P

r ~2U1P!
, ~11!

where 85d/dr. Equation~8! can immediately be integrate
to give

e2l512
C1

r
2

Q~r !

r
, ~12!

whereC1 is an arbitrary constant of integration, and we d
noted

Q~r !5
48pG

k4l
E r 2U~r !dr. ~13!

The functionQ is the gravitational mass corresponding
the dark radiation term~the dark mass!. For U50 the metric
coefficient given by Eq.~12! must tend to the standard gen
eral relativistic Schwarzschild metric coefficient, whic
givesC152GM, whereM5const is the mass of the grav
tating body. In the following we also denotea
516pG/k4l. By substitutingn8 given by Eq.~11! into Eq.
~9! and with the use of Eq.~12! we obtain the following
system of differential equations satisfied by the dark rad
tion term U, the dark pressureP and the dark massQ, de-
scribing the vacuum gravitational field, exterior to a mass
body, in the brane world model:

dU

dr
52

~2U1P!@2GM1Q1a~U12P!r 3#

r 2S 12
2GM

r
2

Q

r D
22

dP

dr
2

6P

r
, ~14!

dQ

dr
53ar 2U. ~15!

The system of Eqs.~14! and~15! can be transformed to a
autonomous system of differential equations by means of
transformations
0-3
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q5
2GM1Q

r
, m53ar 2U, p53ar 2P, u5 ln r .

~16!

With the use of the new variable given by Eqs.~16!, Eqs.
~14! and ~15! become

dq

du
5m2q, ~17!

dm

du
52

~2m1p!Fq1
1

3
~m12p!G

12q
22

dp

du
12m22p.

~18!

Equations~14! and ~15!, or, equivalently, Eqs.~17! and
~18!, may be called the structure equations of the vacuum
the brane.

III. CLASSES OF VACUUM SOLUTIONS ON THE BRANE

The system of structure equations~14!, ~15! is not closed
until a further condition is imposed on the functionsU andP.
By choosing some particular forms of these functions, s
eral classes of static vacuum solutions can be generate
the framework of the brane world model. As a first case
consider that the dark radiationU and the dark pressureP
satisfy the constraint

2U1P50. ~19!

Then Eq.~14! takes the form

dP

dr
524

P

r
, ~20!

with the general solution given by

P5
P0

r 4
, U52

P0

2r 4
~21!

where P0 is an arbitrary constant of integration. Equatio
~15! immediately gives the dark mass as

Q5
3aP0

2r
1Q0 , ~22!

whereQ0 is a constant of integration. Therefore the met
on the brane is

en5e2l512
2GM1Q0

r
2

3aP0

2r 2
. ~23!

This form of the metric has been first obtained
Dadhichet al. @8#.

A second class of solutions of the system of Eqs.~14!,
~15! can be obtained by assuming that

U12P50. ~24!
06402
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Then Eq.~14! is transformed into an algebraic equatio
which gives

Q5
2

3
r 22GM. ~25!

Hence the metric coefficients of the vacuum brane l
element become

en5C0r 2, e2l5
1

3
, ~26!

whereC0 is a constant of integration anden has been ob-
tained by integrating Eq.~11!. For this class of solutions the
projections of the Weyl bulk tensor are given by

U522P5
2

9ar 2
. ~27!

In the case of a vanishing dark radiation,U50, which
also implies a vanishing dark massQ50, the dark pressure
P satisfies a Bernoulli type equation, given by

dP

dr
1

3P

r
1

P~GM1ar 3P!

r 2S 12
2GM

r D 50, ~28!

with the general solution

P5
1

r 3S C1A12
2GM

r
2

a

GM
D , ~29!

where C1 is an arbitrary constant of integration. Equatio
~11! gives n8522P8/P26/r , or exp(n)5C2 /P2r6. Hence
for U50 the metric tensor components are given by

en5C2S 12
2GM

r D FC12
a

GM S 12
2GM

r D 21/2G2

,

e2l512
2GM

r
. ~30!

Sincea/GM is very small, for a zero dark radiation,U
50, the deviations from the Schwarzschild geometry
very small. The standard general relativistic result is rec
ered fora→0, which givesC1

2C251.
Next we consider the case of a vanishing dark press

P50. The dark radiation and the dark mass can be obtai
by solving the following system of coupled differential equ
tions, which immediately follows from Eqs.~17! and ~18!:

dq

du
5m2q, ~31!

dm

du
52m

326q2m

3~12q!
. ~32!
0-4



c

e

tio
he

n
on
-
in
e
m

eo

ic

ns,
the
ini-
of
-
nd

he
in

y

VACUUM SOLUTIONS OF THE GRAVITATIONAL FIELD . . . PHYSICAL REVIEW D69, 064020 ~2004!
By eliminating m between Eqs.~31! and ~32! we obtain
the following second order differential equation for the fun
tion q:

3~12q!
d2q

du2
1~13q23!

dq

du
12S dq

du D 2

12q~7q23!50.

~33!

By means of the successive transformationsdq/du
51/v, v5w(12q)22/3, Eq. ~33! can be transformed to th
following, Abel type, first order differential equation:

dw

dq
2

13q23

3
~12q!25/3w2

1
2q~327q!

3
~12q!27/3w350. ~34!

It is a matter of simple calculations to check that Eq.~34!
has a particular solution of the form

w52
1

q
~12q!2/3. ~35!

By introducing a new variableh5(12q)21/3, q51
2h23, Eq. ~34! can be further transformed to

dw

dh
2

10h3213

h2
w21

2~h321!~724h3!

h3
w350. ~36!

Therefore we have reduced the problem of the integra
of the gravitational field equations for the vacuum on t
brane in the case of a vanishing dark pressure term,P50, to
the problem of the integration of an Abel type equatio
However, Eq.~36! does not satisfy the standard integrati
conditions for Abel type equations@15#, and an exact analyti
cal solution of this equation seems to be difficult to obta
Hence, in order to find some explicit solutions for th
vacuum gravitational field on the brane, we have to use so
perturbative methods.

By using the Laplace transform and the convolution th
rem, the differential equation~33! is equivalent to the follow-
ing integral equation:

q~u!5E
u0

u

F~u2x!F3q
d2q

dx2
213q

dq

dx
22S dq

dxD
2

214q2Gdx

1q0~u!, ~37!

where

F~u2x!5
1

9
@e2(u2x)2e2(u2x)#, ~38!

q0~u!5A1e2u1A2e2u, ~39!

and we denotedA15@3q(u0)2m(u0)#exp(u0)/3 and A2
5m(u0)exp(22u0)/3. u05 ln r0 is an arbitrary point, like, for
example, the vacuum boundary of a compact astrophys
06402
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object, in which the functionsq(r ) andm(r ) take the values
q(r 0)5@2GM1Q(r 0)#/r 0 andm(r 0)53ar 0

2U(r 0), respec-
tively.

The solution of the integral equation~37! can be easily
obtained by using the method of successive approximatio
or the method of iterations. In this way we can generate
solution to any desired degree of accuracy. Taking as an
tial approximation the general solution of the linear part
the differential equation~33!, the general solution of the in
tegral equation~37! can be expressed in the first, second a
mth order approximation,mPN, as follows:

q1~u!5E
u0

u

F~u2x!F3q0

d2q0

dx2
213q0

dq0

dx

22S dq0

dx D 2

214q0
2Gdx1q0~u!, ~40!

. . .

qm~u!5E
u0

u

F~u2x!F3qm21

d2qm21

dx2
213qm21

dqm21

dx

22S dqm21

dx D 2

214qm21
2 Gdx1qm21~u!, ~41!

q~u!5 lim
m→`

qm~u!. ~42!

The zeroth order approximation to the solution of t
static spherically symmetric gravitational field equations
the vacuum on the brane is given by

en5
C0

AU
5C0A a

A2
, ~43!

e2l512
A1

r
2A2r 2, ~44!

U5
A2

a
, ~45!

whereC0 is an arbitrary constant of integration.
The first order approximation to the solution is given b

en5C0Aar 0

2 A r

A2~r 02r !@A11A2r 0
2r 1A2r 0r 2#

,

~46!

e2l511
A2r 0

2@~4/5!A2r 0
31A1#

r
23A1A2r

22A2S 2A2r 0
22

A1

r 0
D r 21

6

5
A2

2r 4, ~47!
0-5
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U5
2A2~r 02r !@A11A2r 0r ~r 01r !#

ar 0r
. ~48!

Therefore the general solution to the static gravitatio
field equations on the vacuum brane can be obtained in
order of approximation.

IV. STATIC VACUUM BRANES
ADMITTING A ONE-PARAMETER GROUP

OF CONFORMAL MOTIONS

In the present section we are going to consider a spe
class of static vacuum brane solutions, which have as a g
of admissible transformations the conformal motions.

For a spherically symmetric and static vacuum on
brane the assumption of the existence of a one-param
group of conformal motions requires that the condition

Ljgmn5jm;n1jn;m5f~r !gmn ~49!

hold for the metric tensor components, where the left-ha
side is the Lie derivative of the metric tensor, describing
vacuum brane gravitational field, with respect to the vec
field jm, andf(r ) is an arbitrary function of the radial co
ordinater. We shall further restrict the fieldjm by demanding
jmum50. Then as a consequence of the spherical symm
we havej25j350. This type of symmetry has been inte
sively used to describe the interior of neutral or charged g
eral relativistic stellar-type objects@16#. With the assumption
~49! the gravitational field equations describing the sphe
cally symmetric static vacuum brane can be integrated
Schwarzschild coordinates and an exact solution can be
tained. Moreover, the requirement of the conformal inva
ance of the static brane uniquely fixes the functional form
the projections of the bulk Weyl tensor componentsU(r )
andP(r ).

Using the line element~7!, Eq. ~49! explicitly reads

j1n85f, j05C̄5const,

j15
fr

2
, l8j112

dj1

dr
5f. ~50!

Equations~50! have the general solution given by@16#

en5A2r 2, f5Ce2l/2, jm5C̄d0
m1d1

m fr

2
, ~51!

with A andC arbitrary constants of integration.
Hence the requirement of the existence of conformal m

tions imposes strong constraints on the form of the me
tensor coefficients of the static vacuum brane. Substitu
Eqs.~51! into the field equations~8!–~10! we obtain

1

r 2 S 12
f2

C2D 2
2

C2

ff8

r
53aU, ~52!

1

r 2 S 123
f2

C2D 52a~U12P!, ~53!
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1

C2

f2

r 2
1

2

C2

ff8

r
5a~U2P!. ~54!

We can formally solve the field equations~53! and~54! to
expressU andP as

U5
1

3a F 4

C2

ff8

r
2

1

r 2 S 12
5

C2
f2D G , ~55!

P52
1

3a F 2

C2

ff8

r
1

1

r 2 S 12
2

C2
f2D G . ~56!

With the use of Eqs.~52! and ~55! it follows that the
function f satisfies the first order differential equation

3

C2
ff85

1

r S 12
3

C2
f2D , ~57!

with the general solution given by

f25
C2

3 S 11
B

r 2D , ~58!

whereB.0 is a constant of integration. Therefore the ge
eral solution of the static gravitational field equations on
brane for space-times admitting a one-parameter group
conformal motions is given by

en5A2r 2, e2l5
1

3 S 11
B

r 2D , ~59!

U5
1

9ar 2 S 21
B

r 2D , ~60!

P5
1

9ar 2 S 4B

r 2
21D . ~61!

In the caseB50 we recover the solution given by Eq
~26!, satisfying the conditionU12P50. For this case the
function f5C/A3 is a constant.

V. HOMOLOGY PROPERTIES OF THE STATIC
GRAVITATIONAL FIELD EQUATIONS

IN VACUUM ON THE BRANE

Let us assume that a solution of the field equations~8!–
~11! is known. Then it seems reasonable to require tha
family of solutions should exist, whose individual membe
are related by more general transformations of the formr

→ r̄ (r ), U→Ū(U), P→ P̄(P) andQ→Q̄(Q) @18#. We shall
call a set of solutions of the vacuum gravitational field equ
tions on the brane related by transformations of this form
homologous family of solutions.
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In order to obtain the homology properties of the struct
equations~14! and~15!, it is necessary first to close the sy
tem of equations. We shall do this by assuming that the d
pressureP and the dark radiationU terms are related by a
e

,

s

06402
e

rk

arbitrary functional relationP5P(U). Then, by denoting
g(U)5P(U)/U and dP/dU5P8(U)5cs , the basic equa-
tions describing the vacuum gravitational field on the bra
take the form
dU

dr
52

g~U !U

112cs

@112g21~U !#$2GM1Q1ar 3@112g~U !#U%16r 26~2GM1Q!

r 2S 12
2GM

r
2

Q

r D , ~62!
g a
rs,

ni-
dQ

dr
53ar 2U. ~63!

A system of ordinary differential equations

dyk

dx
5 f k~x,y!, k51,2, . . . ,m, ~64!

with y5(y1,y2, . . . ,ym) is invariant under the action of th
infinitesimal generatorX5z(x,y)(]/]x)1hk(x,y)(]/]yk)
if and only if @L ,X#5rX, where@ # denotes the Lie bracket
L5(]/]x)1 f k(]/]yk) andr 5L (z) @17#, or, in explicit form
@18#,

]hk

]x
1 f j

]hk

]yj
2 f k

]z

]x
2 f kf j

]z

]yj
5z

] f k

]x
1h j

] f k

]yj
,

k51,2, . . . ,m. ~65!

In the particular case whereX generates quasihomologou
transformations of the formx→ x̄(x), yj→ ȳ j (yj ) we have
z5z(x) andh j5h j (yj ). As a result Eq.~65! becomes

dhk~yk!

dyk
2

dz~x!

dx
5X~ lnu f ku!, ~66!

with no sum overk.
To analyze the homologous behavior of Eqs.~62! and~63!

with respect to quasihomologous transformations involvin
general functional dependence of the physical parameter

5 r̄ (r ), U5Ū(U), P5 P̄(P) andQ5Q̄(Q), we shall inves-
tigate the group of transformations generated by the infi
tesimal generator

X5z~r !
]

]r
1h1~U !

]

]U
1h2~Q!

]

]Q
. ~67!

As applied to the case of Eqs.~62! and ~63!, Eqs. ~66!
give
dh1~U !

dU
2

dz

dr
5z~r !

]

]r
lnH @112g21#@2GM1Q1ar 3~112g!U#16r 26~2GM1Q!

r 2S 12
2GM

r
2

Q

r D J
1h1~U !

]

]U
lnH gU

@112g21#@2GM1Q1ar 3~112g!U#16r 26~2GM1Q!

112cs
J

1h2~Q!
]

]Q
lnH @112g21#@2GM1Q1ar 3~112g!U#16r 26~2GM1Q!

S 12
2GM

r
2

Q

r D J , ~68!

dh2~Q!

dQ
2

dz~r !

dr
52

z~r !

r
1

h1~U !

U
. ~69!

In Eq. ~69! the variables can be easily separated, leading to general expressions for the functionsz(r ), h1(U) andh2(Q) of
the form

z~r !5
a

r 2
1br, h1~U !5~c23b!U, h2~Q!5cQ1d, ~70!

wherea,b,c,d are separation and integration constants, respectively. Substituting in Eq.~68! gives the following consistency
condition for the coefficientsa,b,c,d and for the functionsg(U) andcs :
0-7
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r 3 g 11cs r 4

12
2GM

r
2

Q

r

r
12

2GM

r
2

Q

r

1
a

r 2

3a~112g21!~112g!Ur 216

~112g21!@2GM1Q1a~112g!Ur 3#16r 26~2GM1Q!

1
~112g21!@3ab~112g!Ur 31cQ1d#16br26~cQ1d!

~112g21!@2GM1Q1a~112g!Ur 3#16r 26~2GM1Q!

1~c23b!U
22g8g22@2GM1Q1a~112g!Ur 3#1a~112g21!~112g12g8U !r 3

~112g21!@2GM1Q1a~112g!Ur 3#16r 26~2GM1Q!
. ~71!
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Equation ~71! is identically satisfied fora5b5c5d
50, corresponding toX50 ~the identity transformation!. In
the second case, in order to satisfy the identity~71!, we have
to take as a first stepa50. Then we chosed52bGM and
c5b. From the general structure of the identity~71! it fol-
lows that it cannot be identically satisfied unlessg850 and
cs850, implying g5P/U5const andg5cs5const. Then in
order for Eq.~71! to be identically satisfied we must ado
for b the valueb51 as the last compatibility condition
Therefore we have obtained the following theorem.

Theorem. The static, spherically symmetric gravitation
field equations in vacuum on the brane are invariant w
respect to the group of the quasihomologous transformat
if and only if the dark pressure is proportional to the da
radiation,P5gU, g5const.

The infinitesimal operator generating the group of qua
homologous transformations on the static brane has the f

X5r
]

]r
22U

]

]U
1~Q12GM!

]

]Q
. ~72!

The quantities (Q12GM)/r and Ur 2 ~or any two inde-
pendent functions of them! are homologous invariants
Hence the homology properties of the spherically symme
vacuum space-times on the brane are described by the
lowing homology theorem.

Homology Theorem.If U(r ) is a solution of the static
spherically symmetric gravitational field equations
vacuum on a brane with the dark pressure proportional to
dark radiation, then so also isC2U(Cr), whereC is an ar-
bitrary constant.

VI. DISCUSSIONS AND FINAL REMARKS

In the present paper we have considered some prope
of the vacuum exterior to compact astrophysical objects
the brane world model. The system of field equations can
reduced to two ordinary differential equations, in three u
knowns, whose solution gives all the geometrical proper
of the space-time. The system of basic equations descri
the vacuum gravitational field equation on the brane is
uniquely determined and its solution depends on the fu
06402
h
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ic
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tional relation between two unknown functions, the da
pressureP and the dark radiationU. The symmetry proper-
ties of the vacuum brane space-times can uniquely fix
functional relation between these two free parameters of
model. The requirement that the vacuum on the brane ad
a one-parameter group of conformal motions or a group
homologous transformations uniquely fixes the functio
dependence of the free parametersP and U. The relation
between the dark pressure and the dark radiation for
vacuum on the brane admitting a one-parameter group
conformal motions is of the form 2P1U5(B/a)r 24. On
the other hand the invariance of the field equations with
spect to the Lie group of homologous transformations
quires a linear proportionality relation betweenP and U, P
5gU. Once the relation betweenP and U is known, the
general solution of the vacuum field equations can be fo
perturbatively.

The Schwarzschild solution is no longer the uniq
vacuum solution of the gravitational field equations. Mor
over, most of the general solutions we have found are
asymptotically flat and consequently they are of a cosm
logical nature.

In order to obtain a manifestly coordinate invariant ch
acterization of certain geometrical properties of geometr
such as for example curvature singularities, the Petrov t
of the Weyl tensor, etc., the scalar invariants of the Riema
tensor have been extensively used. Two scalars, which h
been considered in the physical literature, are
Kretschmann scalars,RiemSq[Ri jkl R

i jkl and RicciSq
[Ri j R

i j , whereRi jkl is the Riemann curvature tensor.
For space-times which are the product of tw

2-dimensional spaces, one Lorentzian and one Riemann
subject to a separability condition on the function whi
couples the 2-spaces, it has been suggested@19# that the set

C5$R,r 1 ,r 2 ,w2%, ~73!

forms an independent set of scalar polynomial invarian
satisfying the number of degrees of freedom in the curvatu
In Eq. ~73! R5gil gjkRi jkl is the Ricci scalar and the quant
ties r 1 , r 2 andw2 are defined according to@20#
0-8
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r 15fABȦḂfABȦḂ5
1

4
Sa

bSb
a , ~74!

r 25fABȦḂfCĊ
BḂ

fCAĊȦ52
1

8
Sa

bSb
cSc

a , ~75!

w25CABCDCEF
CDCEFAB52

1

8
C̄abcdC̄e f

cdC̄e f ab,

~76!

whereSa
b5Ra

b2 1
4 Rda

b is the trace-free Ricci tensor,fABȦḂ

denotes the spinor equivalent ofSab , CABCD denotes the
spinor equivalent of the Weyl tensorCabcd, and C̄abcd de-
notes the complex conjugate of the self-dual Weyl tens
Cabcd

1 5 1
2 (Cabcd2 i * Cabcd).

In terms of the ‘‘electric’’ Eac5Cabcdu
bud and ‘‘mag-

netic’’ Hac5Cabcd* ubud parts of the Weyl tensor, whereua is
a timelike unit vector andCabcd* 5 1

2 habe fCcd
e f is the dual ten-

sor, the invariantw2 is given by@19#
06402
r,

w25
1

32
~3Eb

aHc
bHa

c2Eb
aEc

bEa
c!

1
i

32
~Hb

aHc
bHa

c23Eb
aEc

bHa
c!. ~77!

The values of the invariant set$R,r 1 ,r 2 ,w2% for some
static spherically symmetric vacuum brane solutions are p
sented in the Appendix.

The corrections to the Newtonian potential on the bra
have been considered by using perturbative expansions in
static weak-field regime. The leading order correction to
Newtonian potential on the brane is given byF5(GM/r )
3(112l 2/3r 2) @1#, wherel is the curvature scale of the five
dimensional anti–de Sitter spacetime (AdS5), or it can also
involve a logarithmic factor@21#. This type of weak-field
behavior cannot be recovered in the classes of solutions
have considered in the present paper. However, this coul
possible for models involving a more precise knowledge
the general behavior of the dark radiation and dark press
terms.
ic
APPENDIX

In this appendix we present the values of the Kretschmann scalarsRiemSq[Ri jkl R
i jkl and RicciSq[Ri j R

i j and some
values of the independent set of the scalar polynomial invariants$R,r 1 ,r 2 ,w2% for the exact static spherically symmetr
vacuum brane geometries discussed in the paper.

~a!

en5e2l512
2GM1Q0

r
2

3aP0

2r 2
, ~A1!

RicciSq5
9a2P0

r 8
, RiemSq5

6@21a2P0
2112aP0~2GM1Q0!r 12~2GM1Q0!2r 2#

r 8
, ~A2!

R50, r 15
9a2P0

4r 8
, r 250, ~A3!

Re~w2!5
3@27a3P0

3127a2P0
2~2GM1Q0!r 19aP0~2GM1Q0!2r 21~2GM1Q0!3r 3#

4r 12
, Im~w2!50. ~A4!

~b!

en5C2S 12
2GM

r D FC12
a

GM S 12
2GM

r D 21/2G2

, e2l512
2GM

r
, ~A5!

RicciSq5
6a2

S a

GM
2C1A12

2GM

r
D 2

r 6

, ~A6!

RiemSq5

24F24C1
2G3M31S a212C1

2G2M222aC1GMA12
2GM

r
D r G

S a

GM
2C1A12

2GM

r
D 2

r 7

, ~A7!
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R50, r 15
3a2

2S a

GM
2C1A12

2GM

r
D 2

r 6

, r 252
3a3

4S a

GM
2C1A12

2GM

r
D 3

r 9

, ~A8!

Re~w2!5
3

4

9aC1G2M2~2GM2r !F S a

GM
D 4

r 217S a

GM
D 2

C1
2r ~r 22GM!14C1

4~2GM2r !2G
S C1A12

2GM

r
2

a

GM
D 6A12

2GM

r
r 12

2
3

4

G3M3F2C1
2~2GM2r !2S a

GM
D 2

r GF S a

GM
D 4

r 2231S a

GM
D 2

C1
2r ~2GM2r !14C1

2~2GM2r !2G
S C1A12

2GM

r
2

a

GM
D 6

r 12

, ~A9!

Im~w2!50. ~A10!

~c!

en5A2r 2, e2l5
1

3 S 11
B

r 2D , ~A11!

RicciSq5
2~2B21r 4!

3r 8
, RiemSq5

8~B21r 4!

3r 8
, ~A12!

R50, r 15
2B21r 4

6r 8
, r 25

4B323Br42r 6

36r 12
, ~A13!

Re~w2!5
1

36r 6
, Im~w2!50. ~A14!
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