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Can the galactic rotation curves be explained in brane world models?
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We consider solutions with conformal symmetry of the static, spherically symmetric gravitational field
equations in the vacuum in the brane world scenario. By assuming that the vector field generating the sym-
metry is nonstatic, the general solution of the field equations on the brane can be obtained in an exact
parametric form, with the conformal factor taken as parameter. As a physical application of the obtained
solutions we consider the behavior of the angular velocity of a test particle moving in a stable circular orbit. In
this case the tangential velocity can be expressed as a function of the conformal factor and some integration
constants only. For a specific range of integration constants, the tangential velocity of the test particle tends, in
the limit of large radial distances, to a constant value. This behavior is specific to galactic rotation curves and
is explained usually by invoking the hypothesis of dark matter. The limiting value of the angular velocity of the
test particle can be obtained as a function of the baryonic mass and radius of the galaxy. The behavior of the
dark radiation and dark pressure terms is also considered in detail, and it is shown that they can be expressed
in terms of the rotational velocity of a test particle. Hence all the predictions of the present model can be tested
observationally. Therefore the existence of the nonlocal effects, generated by the free gravitational field of the
bulk in a conformally symmetric brane, may provide an explanation for the dynamics of the neutral hydrogen
clouds at large distances from the galactic center.
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. INTRODUCTION at a value obg..~200 km/s[2]. This leads to a mass profile
M(r)zrvfgm/G. Consequently, the mass within a distance
Einstein’s theory of general relativity, and some of its from the center of the galaxy increases linearly witteven
generalizations, proved to be in excellent agreement withat large distances where very little luminous matter can be
observational or experimental results in the solar system, bidetected. This behavior of the galactic rotation curves is ex-
nary star systems, or laboratof§]. However, it has long plained by postulating the existence of some damkisible)
been known that Newtonian or general relativistic mechanicenatter, distributed in a spherical halo around the galaxies.
applied to the visible matter in galaxies and clusters does nothe dark matter is assumed to be a cold, pressureless me-
correctly describe the dynamics of those systems. The rotalium. There are many possible candidates for dark matter,
tion curves of spiral galaxigg] are one of the best pieces of the most popular ones being weakly interacting massive par-
evidence showing the problems Newtonian mechanics and/dicles (WIMPs). Their interaction cross sections with normal
standard general relativity has to face on the galactic or inbaryonic matter, while extremely small, are expected to be
tergalactic scale. In these galaxies neutral hydrogen cloud¥nzero and we may expect to detect them directly. It has
are observed at large distances from the center, much beyoRtf° been suggested that the dark matter in the Universe

the extent of the luminous matter. Assuming anonrelativistidzigcr)'lt0 be composgd of _supelrheavly pa;]rticlesr,], Wi:]h rdnais
Doppler effect and emission from stable circular orbits in a/1 GeV. But observational results show that the dar

Newtonian gravitational field, the frequency shifts in the p1.matter can be composed of superheavy particles only if these

. RN interact weakly with normal matter or if their mass is above
cm-line hydrogen emission lines allows measurement of th(i015 GeV[3]
velocity of the clouds. Since the clouds move in circular )

bits with velocit th bit intained by th From a general relativistic point of view the space-time
orbits with velocityvy(r), € Orbits are maintained by the geometries associated with dark matter halos were consid-
balance between the centrifugal acceleramxfgr and the

HvE . ered in[4], where several properties of this space-time and
gravitational attraction forc&M(r)/r? of the total mass the characteristics of the possible energy-momentum tensors
M(r) contained within the orbit. This allows an expressionwhich could produce such geometries have been discussed.
of the mass profile of the galaxy in the forM(r)  The form of the galactic potentials can be obtained, within a
=rvg/G. general relativistic framework, from the observed rotation
Observations show that the rotational velocities increaseurves, without specific reference to any metric theory of
near the center of the galaxy and then remain nearly constagtavity. Given the potential, the gravitational mass can be
determined by way of an anisotropy function of the static,
spherically symmetric gravitational galactic fiel&]. The
*Electronic address: mkmak@vtc.edu.hk possibility that dark matter has a substantial amounts of pres-
"Electronic address: harko@hkucc.hku.hk sure, comparable in magnitude to the energy density, has
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been investigated if6]. Galaxy halo models, consistent with Shaposhniko\f16] have suggested that we may live on a
observations of flat rotation curves, are possible for a varietglomain wall in a higher dimensional space. Earlier refer-
of equations of state with anisotropic pressures. ences to these topics can also be found in Bandos and Kum-
However, despite more than 20 years of intense experimer [17]. In this paper a generalization of the embedding
mental and observational effort, up to now nongravita-  approach fod-dimensional gravity based up@Abrane theo-
tional evidence for dark matter has ever been found: no diries is considered.
rect evidence of it and no annihilation radiation from it.  Recently, as a result of the proposal by Randall and Sun-
Moreover, accelerator and reactor experiments do not sugtrum [18] that our four-dimensional space-time is a three-
port the physicgbeyond the standard modien which the  prane, embedded in a five-dimensional space-tiime bulk),
dark matter hypothesis is based. the idea of the embedding of our Universe in a higher dimen-
Therefore, it seems that the possibility that Einste{aisd  sjonal space had attracted again a considerable interest. Ac-
the Newtoniaj gravity breaks down at the scale of galaxies cording to the brane world scenario, the physical figtlsc-
cannot be excludec priori. Several theoretical models, tromagnetic, Yang-Mills, etg. in our four-dimensional
based on a modification of Newton’s law or of general rela-Unijverse are confined to the three-brane. These fields are
tivity, have been proposed to explain the behavior of theassumed to arise as fluctuations of branes in string theories.
galactic rotation curves. A modified gravitational potential Only gravity can freely propagate in both the brane and bulk
of the form ¢=—-GM[1+aexp(-rirgl(1+a)r, with  space-times, with the gravitational self-couplings not signifi-
a=—0.9 andry~30 kpc, can explain flat rotational curves cantly modified. This model originated from the study of a
for most of the galaxief7]. single three-brane embedded in five dimensions, with the 5D
In another model, called Modified Orbital Newtonian Dy- metric given byds?=e~f¥) 7,,dx4dx” + dy?, which, due to
namics(MOND), and proposed by Milgrorf8], the Poisson the appearance of the warp factor, could produce a large
equation for the gravitational potenti&l’¢=47Gp is re-  hijerarchy between the scale of particle physics and gravity.
placed by an equation of the for@[u(x)(|Vé|/ag)]  Even if the fifth dimension is uncompactified, standard 4D
=4mGp, wherea, is a fixed constant angi(x) a function  gravity is reproduced on the brane. Hence this model allows
satisfying the conditiong.(x) =x for x<1 andu(x)=1 for  the presence of large or even infinite noncompact extra di-
x>1. The force law, giving the accelerati@nof a test par- mensions. Our brane is identified as a domain wall in a five-
ticle, becomesa=ay for ay>a, and a=+aya, for ay dimensional anti—de Sitter space-time. For a review of dy-
<ay, whereay is the usual Newtonian acceleration. The namics and geometry of brane universes [d€8.
rotation curves of the galaxies are predicted to be flat, and As a result of the correction terms coming from the extra
they can be calculated once the distribution of baryonic matedimensions, significant deviations from the Einstein theory
ter is known. Alternative theoretical models to explain theoccur in brane world models at very high energj@§].
galactic rotation curves have been elaborated recently bravity is largely modified at the electroweak scale 1 TeV.
Mannheim[9] and Moffat and Sokoloy10]. The cosmological implications of the brane world theories
A general analysis of the possibility of an alternative have been extensively investigated in the physical literature
gravity theory explaining the dynamics of galactic systemq21]. Gravitational collapse can also produce high energies,
without dark matter was performed by Zhytnikov and Nestemwith five-dimensional effects playing an important role in the
[11]. From very general assumptions about the structure of éormation of black hole$22].
relativistic gravity theory(the theory is metric and invariant For standard general relativistic spherical compact objects
under general coordinates transformation, has a good lineéine exterior space-time is described by the Schwarzschild
approximation, it does not possess any unusual gauge freaetric. In the five-dimensional brane world models, the high
dom, and it is not a higher derivative gravityx general ex- energy corrections to the energy density, together with the
pression for the metric to ordev{c)? has been derived. This Weyl stresses from bulk gravitons, imply that on the brane
allows us to compare the predictions of the theory with vari-the exterior metric of a static star is no longer the Schwarzs-
ous experimental data: the Newtonian limit, light deflectionchild metric[23]. The presence of Weyl stresses also means
and retardation, rotation of galaxies, and gravitational lensthat the matching conditions do not have a unique solution
ing. The general conclusion of this study is that the possibil-on the brane; knowledge of the five-dimensional Weyl tensor
ity for any gravity theory to explain the behavior of galaxiesis needed as a minimum condition for uniqueness. Static,
without dark matter is rather improbable. spherically symmetric exterior vacuum solutions of the brane
The idea that our four-dimensional Universe might be aworld models have been proposed first by Dadlgthl.[23]
four-dimensional space-time, embedded in a higher dimenand Germani and Maarteri24]. The solution obtained in
sional space-time, had been proposed and studied, from bof3] has the mathematical form of the Reissner-Norawstro
mathematical and physical points of view, for a long timesolution, in which a tidal Weyl parameter plays the role of
(for a full account of the existing results on the subject andthe electric charge of the general relativistic solution. A sec-
on the early references sgi2]). The embedding approach to ond exterior solution, which also matches a constant density
gravity has its origins in the book by Eisenhait3]. The interior, has been derived i24]. Other classes of exact or
mathematical problems of the embeddings in higher dimenapproximatdg using the multipole (X)) expansion solutions
sional space-times, with applications to general relativityof vacuum field equations on the brane have been obtained in
have been discussed in detail as early as 1285 By using  [25].
a more physical approach Akanja5] and Rubakov and The vacuum field equations on the brane have been re-
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duced to a system of two ordinary differential equations, The present paper is organized as follows. The basic equa-
which describe all the geometric properties of the vacuum ations describing the spherically symmetric gravitational field
functions of the dark pressure and dark radiation tefiine  equations in the vacuum on the brane are derived in Sec. Il.
projections of the Weyl curvature of the bulk, generatingThe general solution of the vacuum brane space-times admit-
nonlocal brane stresseis [26]. Several classes of exact so- ting a one-parameter group of conformal motions, with non-
lutions of the vacuum gravitational field equations on theStatic conformal symmetry, is obtained in Sec. Ill. The be-
brane have been derived, and vacuums with particular synflavior of the angular velocity of a test particle in stable
metries have been investigated by using Lie group techcircular motion is considered in Sec. IV. We conclude and
niques. A homology theorem for the static, spherically sym-discuss our results in Sec. V.
metric gravitational field equations in the vacuum on the
brane has also been proved. Il. FIELD EQUATIONS FOR A STATIC, SPHERICALLY

It is the purpose of the present paper to extend the ap- SYMMETRIC VACUUM BRANE
proach initiated in26] by considering vacuum space-times

on the brane that are related to some more general Lie groups On. the five-dimensional sdpf;ce-tmﬁthe bulk, with the
of transformations and to investigate their possible physicajl€92tive vacuum energys and brane energy momentum as

relevance for the explanation of the dynamics of galaxies. A& source of the gravitational field, the Einstein field equations

a group of admissible transformations we chose the oned® 9iven by
arameter group of conformal motions. More exactly, we
gonsider spgherigally symmetric and static solutions Zf the Gy=ksTiy,  Tiy= = AsGis+ SY)[ = NoGuy+ T,
gravitational field equations for which the metric tensgy, (@)
has the property..g,,,= #(r)g,,, where the left-hand side
is the Lie derivative of the metric tensor, describing the
gravitational field in vacuum on the brane, with respect to th
vector fieldé#, andy, the conformal factor, is an arbitrary
function of the radial coordinate As for the vector fields* Assumin a metric of the form ds?=(nn
we assume that it isonstatic With these assumptions the q |dXJg ith ndxX—dv th . | hl J
gravitational field equations, describing the static vacuum+g”) xaxs, with nidx'=dy the unit normal to they

brane, can be integrated in Schwarzschild coordinates, and const hypersurfaces ang, thg mduced_ metr_lc o
= const hypersurfaces, the effective four-dimensional gravi-

an exact solution, corresponding to a brane admitting a one- tional i the b G tiomake th
parameter group of motions, can be obtained. The gener%"folr'r?]n[got]a_qua lons on the brafthe Gauss equatigrake the

solution of the field equations depends on three arbitrary
integration constants. The conformal symmetry also uniquely
fixes the mathematical form of the dark radiation and dark
pressure terms, respectively, which describe the nonlocal ef- . .
fects induced by the gravitational field of the bulk. v_vhereSW is the local quadratic energy-momentum correc-
As a physical application of the conformally symmetric tion

vacuum brane model we consider the behavior of the angular 1 1
velocity of a test particle moving in a stable circular orbit. It S,,==TT,,— =T,T,,+=—0,,
turns out that for this case the tangential velocity can be ' 12 %" 4% 247%
expressed as a function of the conformal fagtoand some ©)
constants of integration only, the velocity being inversely
proportional to the conformal factaf. For a specific range

with A, the vacuum energy on the brane agd=87Gs. In
this space-time a brane is a fixed point&f symmetry. In
e[he following capital Latin indices run in the range.0. ,4,
while Greek indices take the values.0. ,3.

Gu=—AQ,,+KiT,,+kiS,,—E,,, 2

(3T*T 5~ T3,

andE,, is the nonlocal effect from the free bulk gravita-

of the integration constants the tangential velocity of the tesfonal field, the transm|tteg Q“Olec.“o” of the bulk Weyl ten-
particle tends, in the limit of large radial distances, to a con>Or C";JBV’ Eiy=Ciagen™n®, with the property FT'J
stant value. This behavior is specific to the galactic rotatior” Ex»di 0 asx—0. We have also'de.notdd=87rG, with
curves and is explained usually by invoking the hypothesid> the usual four-dimensional gravitational constant.

of dark matter. However, in the present approach the constant "€ four-dimensional cosmological constaktand the
velocity in the larger limit of a test particle moving in the fourz-dlmenszloznal COUP“”% co4nstark4 are given by A
gravitational field of a galaxy is due to the existence of non-=Ks(As+ks\y/6)/2 and ki =ks\ /6, respectively. In the
local effects from the bulk, transmitted via the nonzero comJimit A, *—0 we recover standard general relativity.
ponents of the bulk Weyl tensor and of the conformally sym-  The Einstein equation in the bulk and the Codazzi equa-
metric geometrical structure of the static gravitational fieldtion also imply conservation of the energy-momentum tensor
on the brane. The existence of the dark radiation term geref the matter on the bran®,, T,"=0, whereD, denotes the
erates an equivalent mass term, which is linearly increasingrane covariant derivative. Moreover, from the contracted
with distance and is proportional to the baryonic mass of thdianchi identities on the brane it follows that the projected
galaxy. All the relevant physical parametdmetric tensor Weyl tensor should obey the constradiE "= kéDVSMV.

components, dark radiation, and dark pressgan be ob- The symmetry properties &, , imply that in general we
tained as functions of the tangential velocity, and hence thegan decompose it irreducibly with respect to a chosen four-
can be determined observationally. velocity field u* as[19]
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1 ll. GENERAL SOLUTION OF THE VACUUM BRANE
E.v=— K4 U(uMuVJr §hw) +PL,+2Quu, |, (@) FIELD EQUATIONS WITH NONSTATIC CONFORMAL
SYMMETRY

where k=ks/k4, h,,=g,,+u,u, projects orthogonal to The system of the field equations for the vacuum on the
u#, the “dark radiation” termU = —k4EM,,u“uV is a scalar, brane is underdetermined. A functional relation between the
Q :k4thaﬁ a spatial vector, andP,,= —k4[hfuhf) dark energyU and the dark pressu® must be specified in
—%hwh“ﬁ]Eaﬁ a spatial, symmetric, and trace-free tensor. ord<_ar to solve the _e_quz%mons: An alternative method, whlqh
In the case of the vacuum state we hawvep=0, T,, avoidsad hocspecifications, is to assume that the brane is

=0, and consequentl$,,= 0. Therefore, by neglecting the mapped conformally onto itself along the directignso that
effect of the cosmological constant, the field equations de-

— N N
scribing a static brane take the form Le9ur=0umn &+ 00 €t 0méV=v0,,, (12
R —_E 5) where ¢ is the conformal factor. As for the choice d&f
S Herrera and Ponce de LepR7] assumed that

with the traceR of the Ricci tensoR,, satisfying the con- o, 0 0

dition R=R:=E%=0. =8 () o+ (13
In the vacuum cas&,, satisfies the constraird E "

=0. In an inertial frame at any point on the brane we have Using this form of the conformal vector in Eq$l2)

u#=¢84 andh,,=diag(0,1,1,1). In a static vacuu@,=0  one obtains ¢=A, &=(B/2)r exp(—N2), ¥(r)

and the constraint foE ,, takes the fornj24] =Bexp(—\2), and expf)=C*? whereA, B, C are con-
stants.A may be set to zero sino&d/dt is a Killing vector

1 4 andB may be set to 1 by a rescalidg-B ¢, y—B 1y,
3D U+ 3UA+D"P,,+AP,,=0, (6)  which leaves Eq(12) invariant. This form of¢ gives the

most genera€ invariant under the Killing symmetries—that
is, [dlat,&E]=0=[X,,&], whereX, generateSO(3). This
form of the metric, obtained by imposing static conformal
symmetry, has been used|i?8] to investigate the properties

of strange stars. The general solution of the vacuum brane
gravitational field equations for this choice gfhas been
obtained in[26].

A more general conformal symmetry has been proposed
eoy Maartens and MaharajdB9], which generalizes the iso-
tropic conformal vectortd/dt+radlor of the Minkowski
space-time, but weakens the static symmetry iof Eq. (13):

whereD , is the projection(orthogonal tou”) of the covari-
ant derivative andh\,=u”D,u,, is the four-acceleration. In
the static spherically symmetric case we may choAge
=A(r)r, and P,,= P(r)(rﬂry—%h,w), where A(r) and
P(r) (the “dark pressure) are some scalar functions of the
radial distance, andr , is a unit radial vectof23].

We chose the static spherically symmetric metric on th
brane in the form

ds?=—e"Ndt?+ e dr2+r2(d 62 +sirted¢?).  (7)

J
_ 0 1
Then the gravitational field equations and the effective §=¢ (t,r)ﬁ+§ (t,r)a—r. (14)
energy-momentum tensor conservation equation in the
vacuum take the form26] Moreover, we assume that the conformal faetads static,
= i(r). With this form of &, Eq. (12) gives, immediately
1 N 1 487G (we denote’ =d/dr),
—eM=——|+== U, (8)

r2 )2 Kk 9£0
v E42—=y, (15

ot

A( v/ 1) L_161G | ;) . )

e — —_— —_— y a

A w§1+2§= v, (16)

v'2 oy =N\ v’)\’) 327G L T
-\ noo_ _ — _ = (17)

e <v+2+ . > I(4)\b(u P), £=7

(10 . .
By solving Eqgs.(15—(17) we obtain[29]
_U'+2p’ 6P 1 0 1k

V=T 2U+P  r2u+P) (D E=At+5 gt (18)
In the following we shall denoter=167G/k*\,, . y=Be M2, (19
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whereR, is an arbitrary constant of integration:

wherek is a separation constant aAdB, andC are integra- F(y)=exp _3EJ dy (27
tion constants. Without any loss of generality we can choose B 302 3k k? B2
A=0. Thus for the vector field we obtain Y= §¢+ B2
1k 9 ryg(r) o
Satat T2 (2D and
while the metric tensor components of the static vacuum ly— |\ ™
brane can be expressed as a function of the conformal F(¢)=( 2) , ke(—2B?2B?), (28)
factor in the form exp()=B%/ 2 and exp() |4l
=Cxr%exp(—2kB~1fdr/ry), respectively.
Substitution of these forms of the metric functions in the +2B
field equationg8)—(10) gives F(zp)=exr< z/x:B)’ k==2B?, (29
2f1 2y 1
—é(r—z F% +r—2=3aU, (22) Kk Kk
F(z/;)zex;{ - En arctam| ¢ — ﬁ”
V(3 2k ! L U+2P (23
g2\ 2 B2yl 2 “UFER) ke(—=,~2B)U(28%+%).  (30)
k1 k1 1 —
v 2‘/’__ K=K + == aUu=-P). (29 In Egs.(28)—(30) we have also denoted
rg "By B2r2y2 2
2
By multiplying Eq. (24) by 2, adding the equation thus 35+ A /1282_3k_
obtained to Eq(23), and equating the resulting equation with B B2
Eq. (22) gives the following differential equation satisfied by 1= 6 ,
the functiony:
3rp’ +3 2—3E +k—2—|32—o 25 3k 6
o+ 397 = 3g gt 5 —B?=0, (25 M2
2 k2 k2 2
For k# = B? the general solution of Eq25) is given by B/ 18 _3§ 35_128
(31
F
r’=R3 () . , (26)
32— 3=+ k__Bz For the dark radiation and dark pressure we obtain the
B B2 general expressions
|
323k k2 52 22k 2 k? 1BZ
o= gll”rg— / §¢+§§+§
U(y)= (32
W 3aB2R3F ()
and
323k < 32422k LK B2|-2
b= gdﬁLE— Y2g¥—3 g2 o~
P(y)= : (33

respectively.

3aR3F ()

Generally,iy cannot be expressed in an exact analytical form as a functionténce the functions exp(=B2} 2,
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(39

M. K. MAK AND T. HARKO
2p2
C2R2
k2 ’

expv)= "
F(y)| 3¢2-35y+

I - V4
B? B

U(#) andP(¢) can be obtained, as functions of the radial distanamnly in a parametric form, with taken as parameter.
(35

However, because of the arbitrariness in the choice of the reference system in the general theory of relativity, we can subject
the coordinates to any transformation which does not violate the central symmetry of the line element. Therefore, by intro-

ducing a new radial coordinate= {s(r), so that
RoVF(r)

2

r=r(r)=
\/ 3r2—3—r+——B2
B B2
we obtain the line element of the static, spherically symmetric metric admitting a conformal symmetry with a nonstatic vector
field on the vacuum brane in the form
R 9B2F2(r)dr? —
= —c2dt+ ( )2 ,+F2(NdQ?|, k#+B? (36)
- 2 o N p2
3r SBr - B

ds’= "
Nlarz_abr . 8 R2
F(r)|3r SBr+ 5 B

wheredQ?=d#?+ sirféd¢? is the metric of a unit sphere.
Therefore, by using the new variabtethe three classes of conformally symmetric solutions of the gravitational field
dﬂzl, ke (—2B?2B?), (37

|1 — g 2m2 — [r = g™

equations on the brane take the form
Ir =g 2™

—C2dt2+ B2 =
|1 — gy 22

dszzR_(z) |r__ (pl'm_l
3 [r—ynpmt
2B +4B
R2 exp = B ex __—B
r r _
ds2=2 C2dt2+B2——— L dr2texg —— |dQ?|, k=+2B? (39)
3  (r¥B)? (r¥B)* r¥
) k — k ) k — k|| =
Rgex " arctam Ty 9B“ex —Zgn arctam T dr
ds’= —C%dt?+
T < B2 T < B2 2
r=— EI’ E— r=— Er E—
k _
+exp —2gnarctam| r— o d0?l, ke(—o,—2B?)U(2B? +x). (39
The general solution of the field equations can be obtained in an exact analytical form for some particular vilues of
Hence by takingc= = B? we immediately obtain
Ro
lﬂ: T + B, (40)

with the corresponding line element given by
024010-6
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1 .
ds’=————(—C?dt?+B2dr?)+r2(d#?+sirfd¢?), k=+B2 (41

=9

For the dark radiation and the dark pressure we find

u L (Ro)* P 2 [2Ro, g Ro)’ k== B2 42
= —| — = —— *+ _ = +
|
IV. STABLE CIRCULAR ORBITS IN CONFORMALLY On the other hand, the line element, given by &, can
SYMMETRIC SPACE-TIMES ON THE BRANE be rewritten in terms of the spatial components of the veloc-

We shall consider now the problem of constructing stab|é[g’| g%rsrgi:gfga:\/fl:gnah?thseoeﬂco; Ig:;’:nleéitszlae_dvgg ET] ner-

circular timelike geodesic orbits in a static spherically,
; o L where
spherically symmetric field on the brane, with line element

given in a general form by Eq.7). The motion of a test dr\2 d0\ 2
particle in the gravitational field can be described by the vi=e""’ e*(d— +r2 d_> } (47)
Lagrangian 4] t t
ds)\?2 0 dt)? ) dr)?2 ,(dQ 2 For a stable circular orbit,=0, and the tangential veloc-
2l=\g7 = ¢"lg; ¢ \q; g ity of the test particle can be expressed as
43
“3 , r?[da)?
where we denoted by the affine parameter along the geo- vtg:; at (48

desics. In the timelike casecorresponds to the proper time.

In the following we denote by an overdot the differentiation | terms of the conserved quantities the angular velocity
with respect tor. From the Lagrangian given by E@3) it g given by

follows that the energyE=e’t and the¢ componentl,

=r2sirfhp of the angular momentum of the particle are con- , € 2
served quantitiess = const and ,= const. Thef component Utg:r_z E (49)
of the angular momentunh,=r2¢, is not a constant of mo-
tion, but the total angular momentuﬁplﬁ+(l¢/sin 0)?is a With the use of Eqs(46) we obtain
conserved quantity>=const. The total angular momentum
. ’
can be expressed in terms of the solid angl&?as 42 [4]. 2 v 50
o X ! . Vig= . (50)
In the timelike case the equation of the geodesic orbits 2

can be written in the form
Thus, the rotational velocity of the test body is determined

r2+V(r)=0, (44) by the metric coefficient expf only.
_ o In the case of the motion of a test particle in a confor-
where the potentiaV/(r) is given by mally symmetric, static spherically symmetric space-time,
5 with a nonstatic vector field generating the symmetry, the
Y S, | metric coefficient expf) is given by Eq.(20). Therefore for
V(r)=—e M Ee’"——=-1]. (45) . . d .
r2 the angular velocity we find the simple expression
Restricting the radial motion to stable circular orbits im- b2 =1 k1 (51)
plies imposing the conditions=0 and#V/ar=0, so that tg By

the potential describes an extremum of the motion. In order

that this extremum be a minimum the conditi@AV/ar? Equation(51) gives a simple physical interpretation of the
>0 is also required. These three conditions imply that theconformal factory in terms of the tangential velocityy
circular motion is stable. They also lead to the following :(k/B)[(l_vtzg)_l]' On the other hand, the metric coeffi-
expressions of the energy and total angular momentum of theient exp{) can also be expressed as a function of the tan-
particle[4,5]: gential velocity only:

o 2 o (46) = S (1022 (52
= y = . ex = — — .
2—rv’ 2—rv’ k2 Vtg
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FIG. 1. Variation, as a function of the parametéR,, of the FIG. 2. Variation, as a function of the parametéR,, of the
tangential velocity, of a test particle in a stable circular orbitina Metric coefficient expf/C RS for a static, conformally symmetric
vacuum space-time on the brane, B 1.00001 and different val-

conformally symmetric vacuum space-time on the brane, Bor )
=1.00001 and different values o k=0.9999 (solid curve, k ues ofk: k=0.9999(solid curve, k=0.99985(dotted curve, and
k=0.9998(dashed curve

=0.99985(dotted curve andk=0.9998(dashed curve

From Eq.(51) it follows that the_ general, physically ac- In the case of a conformally symmetric static vacuum
ceptable, range of the parametgris y<[k/B,), corre- space-time on the brane, the general dependence of the tan-

sponding to a variation of the tangential velocity between ! . _ . o .
ential velocityvy4 on the radial coordinateis given, with

zero and the speed of light. However, in the caseJ . : :
ke (—2B2,2B?), the limiting value of the radial coordinate, "€ Use of Eq(26), in a parametric form, with) taken as

r o, is obtained, as one can see from E2§), in the limits ~ Parameter. In this model it is not possible to express the
y— iy OF — i, (the corresponding limit depends on the t@ngential velocity as an analytical functionof _
numerical values of the parametdrandB). Assuming that The variation ofv,4 as a function of the radial distance is
r—oo for ¢— sy, it follows that in the larger limit the represented, for some particular valuekaindB, in Fig. 1.
tangential velocity of a test particle in stable circular motion  In the limit of larger, r—<, and for this choice of the
in a conformally symmetric static vacuum space-time on thenumerical values of the arbitrary parametérand B, the
brane tends to a limiting, nonzero valug.., v—vg., I tangential velocity tends to a constant value. The numerical
—oo, given by value of the limiting velocity is extremely sensitive to the
values ofk and B.

\/1 6k 53 The variations of the metric coefficients exp(and
Utgee = B [1or4_ 212" exp(\) are represented in Figs. 2 and 3, respectively.

Skt V1287 3k The metric components satisfy the conditions e¥g(l

For B=1.00000034 andk=0.9999999 the limiting tan- and exp{)=1, respectively.
gential velocity is given byvy,,~0.00072-216.3 km/s, The dark radiation and dark pressure terms can also be
which is of the order of the observed galactic rotational vetepresented, as a function of the tangential velocity of a test
locities. body, in the form

{B(1—vi) K 2v8(1+viy) — 1K 1+vi(1+vi)]-BY(1-vf)? -

U(Utg)=

k
9aR§BG(1—u$g)4F[E(1—vfg)—l
and

{B2(B2—6)(1+vfy) +K5+viy(8—vi) HK [ 1+vi(1+vi)]-B4(1-v{)? =5

P(Utg):

K
9aR§B4F[E(1—vt29)1
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FIG. 5. Variation, as a function of the parametéR,, of the
FIG. 3. Variation, as a function of the parametéR,, of the  dark pressure term @R3P for a static, conformally symmetric
metric coefficient exp\) for a static, conformally symmetric vacuum space-time on the brane, Bx1.00001 and different val-
vacuum space-time on the brane, B 1.00001 and different val-  ues ofk: k=0.9999(solid curvg, k=0.99985(dotted curvg and
ues ofk: k=0.9999(solid curve, k=0.99985(dotted curvig and  k=0.9998(dashed curve

k=0.9998(dashed cure For space-times which are the product of 2 two-

dimensional spaces, one Lorentzian and one Riemannian,
subject to a separability condition on the function which
couples the two-spaces, it has been suggestgDirthat the

o ) . set C={R,r,r,,w,} forms an independent set of scalar
The dark radiation term is positive for all values of the yolynomial invariants, satisfying the number of degrees of
radial coordinater, U(r)=0, Vre(0). In the limit of  freedom in the curvaturR=g"'g/R;, is the Ricci scalar

larger, U tends to zero, lim...U(r)=0. The variation of  and the quantities,, r,, andw, are defined according to
the dark pressure as a functionrois represented in Fig. 5. [31]

In the present model the dark pressure is negative, satis-
fying the conditionP(r)<0, Vr e (0,~). In the large time
limit, similar to the dark radiation term, the dark pressure
also tends to zero, lim,.,P(r)=0.

respectively.
The variation of the dark radiatiod is represented, as a
function of r/R,, in Fig. 4.

1
ry= ¢ABAB¢ABAB:ZSgng

: .. 1
BB
ro= bapas bt =~ 5523332, (56)
V. DISCUSSIONS AND FINAL REMARKS
In order to obtain a manifestly coordinate invariant char- szq’ABCD‘I’(E:FD‘I’EFAB
acterization of certain geometrical properties of geometries, 1
like, for example, curvature singularities, Petrov type of the =—(3EﬁH‘C’Hg— E‘B‘EEEQ)
Weyl tensor, etc., the scalar invariants of the Riemann tensor 32
have been extensively used. Two scalars, which have been i
considered in the physi_%al literature, are the Kretschmann + 3—2(H3H2Hg—3E§EEHg), (57)
scalars, RiemSgR;; R"" and RicciSg=R;;R", where
Rij« is the Riemann curvature tensor. where SE=R2— 1R4" is the trace-free Ricci tensofiag g
denotes the spinor equivalent 8f,, V¥ agcp denotes the
12 _ _ -
6X10 T spinor equivalent of the Weyl tens@,p,.4, and Cgpcq de-
\ .
Sx10-12 \ notes the complex conjugate of the self-dual Weyl tensor,
+ 1 ; — b,,d
\‘\ Cabcd_ E(Cabcd_ i* Cabcd)- Eac_ Cabcuu u and Hac
_ 4x1072 W =C¥,.uPul are the “electric” and “magnetic” parts of the
B 11012 ‘\‘\ Weyl tensor, respectively, wher€ is a timelike unit vector
g ot ‘\ andC¥, .=  7ae(CE} is the dual tensor. The expressions of
” ox1071? KRN the invariants for some particular values of the integration
Y N constantk andB are presented in the Appendix. As a result
1x10 of their complicated form, we shall not present the values of
------- 4 the invariants for other values &fandB. For theB=1, k

5000 30000

10000 15000

r/Ro

20000 25000

=2 case the invariants diverge a1, while for the B
=1, k==*1 case they diverge far—0.

In the present paper we have obtained all the conformally
symmetric solutions of the vacuum field equations in the
brane world model, under the assumption of a nonstatic con-
formal symmetry, and we have discussed some of their
physical properties. In particular we have considered the be-

FIG. 4. Variation, as a function of the parametéR,, of the
dark radiation term @B2R3U for a static, conformally symmetric
vacuum space-time on the brane, By 1.00001 and different val-
ues ofk: k=0.9999(solid curve, k=0.99985(dotted curvg and
k=0.9998(dashed curve
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havior of the angular velocity of a test particle in a stablegalaxy, the nonlocal effects of the Weyl tensor can be ne-
circular orbit on the brane. The conformal faciartogether  glected. We define the vacuum boundagy of the galaxy
with two constants of integration, uniquely determines the(which for simplicity is assumed to have spherical symme-
rotational velocity of the particle. In the limit of large radial try) by the conditionpg(ro)~0. Therefore at the vacuum
distances and for a particular set of values of the integratioboundary the metric coefficient ex)&1—-2GMg/ro, where
constants the angular velocity tends to a constant value. Thi$IB=4qrf[)°pB(r)r2dr is the total baryonic mass inside the
behavior is typical for massive particlébydrogen clouds  ragiusr,. The continuity of expy) through the surface
outside galaxies. Thus the rotational galactic curves can bgro gives

naturally explained in brane world models. The galaxy is

embedded in a modified, spherically symmetric geometry, 2GMg YAy K2 1

generated by the nonzero contribution of the Weyl tensor - = > = > > (58
from the bulk. The extra terms, which can be described in To B B* [1-viy(ro)]

terms of a dark radiation tertd and a dark pressure ter®) ,

act as a “matter” distribution outside the galaxy. The par-1€2ding to

ticles moving in this geometry feel the gravitational effects )

of U and P, which can also be described, equivalently, by k_=(1_ 2GMg [1-02(ro)]2 (59)
means of a mass term. B4 ro tght ol

The behavior of the metric coefficients and of the angular
velocity in the solutions we have obtained depend on two Therefore the rati&?/B* can be determined observation-
arbitrary constants of integratiok and B. Their numerical ally. With the help of Eq(59) the limiting angular velocity
value can be obtained by assuming the continuity of the metef the test particle rotating in the conformally symmetric
ric coefficient exp{) across the vacuum boundary of the gravitational field on the brane, given by E&3), can be
galaxy. For simplicity we assume that inside the “normal” expressed, as a function of the total baryonic mass of the
(baryonig luminous matter, with densitgg, which form a  galaxy only, in the form

0 o
v tgoo = l - 1 (60)

2GMB/ GMg 2GMg GMg\?
1 +\/12-3| 1— 1-
o )

o

where we have also used the Newtonian approximatiothe energy-momentum tensor on the brane. By using the con-
vtzg(ro)zGMB/ro to eliminate the angular velocity of a test formal symmetry and the expression of the rekidB* we
particle at the vacuum boundary of the galaxy. obtain forM the expression

Since for a galaxycMg/ry has a very small value, we

can expand 4., in a power series 06Mg/r, thus obtain- r 2GMg 1—Ut2g(fo) 2
ing MU(I'):% 1-(1—- 5 . (62)
lo 1-viy(r)
2 [GMs 1 [GMg\3? GMg) 572 Sincev{y(ro) andvfy(r) are much smaller than 1, it fol-
U tgoo ™ ﬁ r + 12\/5( p ) +O[( ; ) } lows that the dark radiation mass can be approximated by the
0 0 0

very simple scaling relation
61) y p g

r
For a galaxy with baryonic mass of the ordeP¥Q, and My(r)~M BE' (63)

radius of the order ofr;=70 kpc, Eq.(61) gives vg.
~287 km/s, which is of the same order of magnitude as the My is linearly increasing with distance and is propor-
observed value of the angular velocity of the galactic rotatiortional to the baryonic mass of the galaxy. In the Newtonian
curves. limit, from the equality between the centrifugal force and the
From the field equatioi8) it follows that in the vacuum gravitational force it follows thaMB/rozutzg(ro)/G, lead-
outside the galaxy the metric tensor component ex)(can  ing to
be expressed in terms of the dark radiation only as exp
(=N)=1-2GMyr, whereMU=3af[0U(r)r2dr represents

Utzg(ro) r
the “mass” associated with the dark radiation component of

My(n)~ =%

(64)

024010-10
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In conclusion, in the present paper we have investigated R=0, RicciSc= 18R54e‘4’(r‘1)(r—1)4(9—8r+12rz
conformally symmetric vacuum solutions of the gravitational 5 .
field equations on the brane and analyzed the motion of test —16r°+6r7), (A1)
particles in stable circular orbits in this geometry. By using _. 4 —alr—1) 4 9 =.31 ad
the continuity of the metric coefficients a complete descrip-RIEMSA=72R, "€ (r=1)%(6—4r+6r°—8r°+3r"),
tion of the motion of the particles outside a galaxy can be (A2)
obtained. In the large distance limit the angular velocity of 81
thg particles ten(_js to a constant valqe, which can be deter- r1=ZRicciSq, r2:_6e76/(r71)(r_1)6(r2_2)
mined as a function of the baryonilwminous mass and the 4R,
radius of the galaxy. All the relevant physical quantities, in-

cluding the dark energy and the dark pressure terms, which X(1—4r+2r2), (A3)
describe the nonlocal effects due to the gravitational field of 81
the bulk, are expressed in terms of observable parameters. Re(W,)=— —e 8=y —1)8, (A4)
More general conformally symmetric solutions on the brane, 8

and their physical properties, will be considered in detail in a

future publication. ForB=1 andk==*=1 we obtain

~ 4R3(6r2+8Ryr+3R3)
APPENDIX R=0, RicciS = . (AB)

In this appendix we present the values of the
Kretschmann scalars RiemS®;; R’ and RicciSq RiemSa= 2RicciSq, (AB)
=R;;R" and some values of the independent set of the scalar
polynomial invariants{R,r,,r,,w,} for the exact static, RicciSq 3R3(2r3+5Ror2+4R3r = R3)
spherically symmetric vacuum brane with conformal sym- 1= 4 F2= r12 '
metry for some particular values of the integration constants (A7)
k andB.

Fork=2 andB=1 the expressions of the invariants are Rew,)=0. (A8)
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