Is ophthalmology evidence based? A clinical audit of the emergency unit of a...

TYYLai; VWYWong; GM Leung

British Journal of Ophthalmology; Apr 2003; 87, 4; ProQuest Medical Library

ng 385

385

VALUE BASED OPHTHALMOLOGY

Is ophthalmology evidence based? A clinical audit of the emergency unit of a regional eye hospital

TYY Lai, VWY Wong, GM Leung

Br J Ophthalmol 2003;87:385-390

Aim: To evaluate the proportion of interventions that are evidence based in the acute care unit of a regional eye hospital.

Methods: A prospective clinical audit was carried out at Hong Kong Eye Hospital in July 2002 to investigate the extent to which ophthalmic practices were evidence based. The major diagnosis and intervention provided were identified through chart review. A corresponding literature search using Medline and the *Cochrane Library* was performed to assess the degree to which each intervention was based on current, best evidence. Each diagnosis intervention pair was accordingly analysed and graded. The level of best, current evidence supporting each intervention was graded and analysed.

Results: A total of 274 consecutive consultation episodes were examined. 22 cases were excluded since no diagnosis or intervention was made during the consultation. 108 (42.9%) patient interventions were found to be based on evidence from systematic reviews, meta-analyses, or randomised controlled trials (RCT). Evidence from prospective or retrospective observational studies supported the interventions in 86 (34.1%) patients. In 58 (23.0%) cases, no evidence or opposing evidence was found regarding the intervention. The proportion of evidence based on RCT or systematic reviews was higher for surgical interventions compared with non-surgical interventions (p=0.007). The proportion of interventions based on RCT or systematic reviews was higher for specialist ophthalmologists than trainee ophthalmologists (p=0.021).

Conclusion: This study demonstrated that the majority of interventions in the ophthalmic unit were evidence based and comparable to the experience of other specialties.

See end of article for authors' affiliations

Correspondence to: Dr Timothy Y Y Lai, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong SAR, People's Republic of China; tyylai@netvigator.com

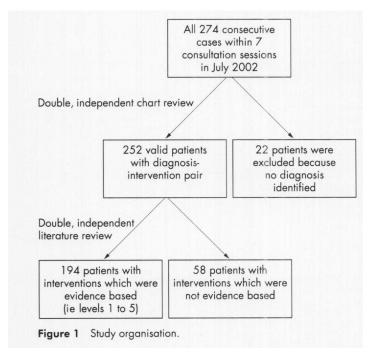
Accepted for publication 9 November 2002

vidence based medicine (EBM) is the "conscientious, explicit and judicious use of current best evidence in making decisions about the care of individual patients." The concept of EBM has gained worldwide popularity in the past decade and aims at encouraging clinical practice to be grounded in scientific inquiry. In addition to keeping physicians up to date with the most current medical knowledge, EBM also sets out to support the provision of quality care and minimisation of medical error and to facilitate a more equitable provision of services.²⁻⁴

As the quality of scientific evidence varies in the literature, examining the study design may provide clues to determine whether and to what degree the findings are valid and conclusive. The Oxford Centre for Evidence-Based Medicine has developed reviews and a "levels of evidence" scheme for classifying studies based on the epidemiologic design. Systematic reviews and randomised controlled trials (RCT) are rated as the highest level of evidence followed by cohort studies and case-control studies. Case series and expert opinion give the lowest level of evidence.

Before the 1995 study by Ellis *et al*, it has been suggested that only 10% to 20% of current medical interventions were supported by scientific evidence. Ellis and colleagues demonstrated that 53% of interventions in a general medical unit were based on evidence from RCT, while an additional 29% were based on reliable non-experimental or observational evidence. Although criticisms have been raised about the generalisability of this study, a later study by Michaud *et al* reported similar findings. Subsequent studies in various other specialties including general practice, paediatric surgery, dermatology, anaesthesia, and general surgery have evaluated the extent to which common interventions were evidence based. Together, these studies estimated the proportion of interventions that were supported by observational and/or experimental studies ranged from 71% to 97%.

To our knowledge, there has been no formal study on the proportion of evidence based interventions in ophthalmology. Furthermore, this type of study has not been performed in any specialty in Asia. The purpose of this study was to investigate the proportion of ophthalmic interventions that were evidence based in a large, regional teaching eye hospital.


PATIENTS AND METHODS

All patients presenting to the acute care unit (that is, emergency department) of Hong Kong Eye Hospital during seven consecutive sessions in July 2002 were prospectively recruited. The hospital is a tertiary ophthalmic centre serving the Kowloon East cluster with a coverage population of approximately 1.6 million out of 6.8 million in Hong Kong. Medical staff consists of four consultants, 13 specialist ophthalmologists, and 21 trainee ophthalmologists. To minimise Hawthorne's phenomenon (the potential bias associated with subjects being aware that they were being observed), none of the participating ophthalmologists involved was aware of the study during the recruitment period. After each session, all medical charts were retrieved for analysis. A predefined, standardised set of data was collected for each consultation including patients' characteristics and the rank of the ophthalmologist who performed the consultation. The primary diagnosis and primary intervention were independently determined by two of the authors (TL and VW) who were not involved in attending the consultations during the study period. The primary diagnosis was defined as the problem recorded for the consultation that was most responsible for the patient's presentation and the primary intervention as the most important attempt to manage or treat the patient in respect to the primary diagnosis.° The primary interventions were classified as medical interventions which may include

www.bjophthalmol.com

Table 1 Levels of evidence according to Kingston *et al* $^{1/2}$ (n=252)

Level	Study design	No of patients (%)
1	Systematic review	26 (10.3%)
2	Meta-analysis	2 (0.8%)
3	Randomised controlled trial	80 (31.7%)
4	Prospective study	34 (13.5%)
5	Retrospective study	52 (20.6%)
None	No evidence or evidence opposed the intervention	58 (23.0%)

conservative or expectant treatment or the use of pharmaceutical products, or as surgical interventions if procedures included open surgery or laser treatment. Cases were excluded when a primary diagnosis could not be ascertained. Patients who refused or did not consent to the prescribed interventions were also excluded. In cases where there was disagreement in assigning diagnosis or intervention, the authors resolved these by consensus.

Literature review was performed after all the diagnosis and intervention pairs were confirmed. The same two authors performed a comprehensive search through Medline (1966 to August 2002) and the *Cochrane Library*. Issue 3, 2002, independently and disagreement was again settled by consensus. Only publications in English were selected. The evidence obtained was then graded into five hierarchical categories as described by Kingston *et al* (Table 1).¹² This classification is similar to the classification by the Oxford Centre of Evidence-based Medicine, in which systematic reviews or RCT

were given the highest level of evidence.' However, expert opinion was not considered as proper scientific evidence in this classification. When there was more than one article for an intervention, the study with a higher level of evidence was chosen. For articles at the same level, the more recent article was selected.

Statistical analyses were performed using spss for Windows v 10.0. Categorical outcomes were compared using two tailed Pearson's χ^2 test.

RESULTS

During the study period, 274 consultations were performed by 16 different ophthalmologists (five specialist ophthalmologists and 11 trainee ophthalmologists). The mean number of consultations per ophthalmologist was 17.1 (range 9-36). Patients' mean age was 49.5 years (range 1-87 years). Males comprised 51.8% of the sample population. For the ascertainment of the primary diagnosis and the primary intervention, there was agreement between the two authors in 270 of 274 (98.5%) and in 251 of 252 (99.6%) patients respectively. Twenty two (8.0%) patients were excluded since no diagnosis were made during the consultation (Fig 1). In the remaining 252 cases, 26 (10.3%) and two (0.8%) of the interventions were supported by systematic reviews and meta-analyses, respectively (Table 2). Evidence from RCT supported the management of 80 (31.7%) patients (Table 3). Prospective and retrospective observational studies provided evidence for the interventions in 34 (13.5%) and 52 (20.6%) patients, respectively (Tables 4 and 5). The total number of interventions which were evidence based—that is, with level 1 to 5 evidence, was 194 (77.0%).12 For the remaining 58 (23.0%) diagnosis-intervention pairs, no evidence could be identified to substantiate or refute the intervention rendered (Table 6).

The primary intervention was classified as a medical intervention in 168 (66.7%) cases, while the remaining 84 (33.3%) cases were surgical interventions. The proportion of interventions that were evidence based was higher in the surgical group compared to the medical group but was not statistically significant (p=0.09). Among the 194 evidence based interventions, the quality of evidence was better in the surgical group with 48 of 70 (68.6%) interventions being supported by RCT or better compared to 60 of 124 (48.4%) interventions in the medical group (p=0.007).

Among all 252 interventions, 65 (25.8%) were delivered by specialist ophthalmologists and 187 (74.2%) were performed by trainee ophthalmologists. There was no difference in the proportion of evidence based interventions performed by the two groups (p=0.50). The respective proportions of medical and surgical interventions performed by each group were also similar (p=0.88). However, the quality of evidence based interventions performed by the specialist group was better compared with the trainee group, with evidence based on RCT or better supporting 36 of 52 (69.2%) interventions and 72 of 142 (50.7%) interventions in the specialist ophthalmologist and the trainee ophthalmologist groups respectively (p=0.021).

Table 2 Interventions based on systematic reviews or meta-analyses (n=28) No of patients Reference **Primary intervention** Primary diagnosis 19 13 Topical antibiotics Infective conjunctivitis 14 Phacoemulsification + implantation of intraocular lens Senile cataract 15 2 Dendritic ulcer due to herpes simplex virus Topical aciclovir Topical timolol 16 Primary open angle glaucoma Pterygium excision + conjunctival autograft Primary pterygium

Table 3 Interventions based on randomised controlled	trials	(n=80)
--	--------	--------

Primary diagnosis	Primary intervention	No of patients	Reference
External eye foreign body/rust ring	Removal of foreign body	20	18
Chalazion	Incision and curettage	19	19
Anterior uveitis	Topical steroid	7	20
Allergic conjunctivitis	Topical emedastine	4	21
Corneal abrasion	Topical chloramphenicol	4	22
Keratoconjunctivitis sicca	Topical lubricants	4	23
Acute central serous retinopathy	Observation	2	24
Blepharitis	Topical chloramphenicol	2	25
Inflamed pterygium	Topical steroid	2	26
Acute angle closure glaucoma	Nd:YAG laser iridotomy	1	27
Allergic conjunctivitis	Topical lodoxamide	1	28
Blepharitis	Topical steroid-antibiotic	1	29
Branch retinal vein occlusion with vitreous haemorrhage	Panretinal photocoagulation	1	30
Central retinal vein occlusion with neovascular glaucoma	Panretinal photocoagulation	1	31
Chlamydial conjunctivitis	Topical chlorotetracycline	1	32
Corneal abrasion	Bandage contact lens	1	33
Giant cell arteritis	Oral prednisolone	1	34
Herpes simplex virus disciform keratitis	Topical aciclovir and topical steroid	1	35
Herpes simplex virus iridocyclitis	Topical aciclovir and topical steroid	1	36
Macular oedema due to diabetic retinopathy	Argon laser focal photocoagulation	1	37
Moderate non-proliferative diabetic retinopathy	Observation	1	38
Primary open angle glaucoma	Topical betaxolol	1	39
Postoperative viscoelastics induced rise in intraocular pressure	Systemic acetazolamide + topical β blocker	1	40
Recurrent corneal erosion syndrome	Topical antibiotics	1	41
Rhegmatogenous retinal detachment	Pars plana vitrectomy + encircling + intravitreal sulfur hexafluoride gas	1	42

Table 4 Interventions based on prospective case series (n=34)

Primary diagnosis	Primary intervention	No of patients	Reference	
Subconjunctival haemorrhage	Measurement of blood pressure	13	43	
Exposed/loosened corneal sutures	Removal of corneal sutures	10	44	
Filamentary keratitis	Debridement of corneal filaments	4	45	
Posterior capsular opacity	Nd:YAG capsulotomy	2	46	
Aponeurotic ptosis	Correction of ptosis	1	47	
Blepharitis	Lid hygiene	1	48	
Chalazion	Warm massage	1	49	
Chronic angle closure glaucoma	Sequential argon/Nd:YAG laser iridotomy	1	50	
Exposure keratopathy	Topical lubricants + eyes taping	1	51	

A total of 86 different interventions could be identified. The eight most common interventions accounted for the treatment of 121 (48.0%) patients (Table 7). All but one of these interventions were evidence based.

DISCUSSION

Our study demonstrated that the majority of interventions (77.0%) in our regional ophthalmic unit were evidence based. The proportion of evidence based interventions in our study was comparable to findings from studies in other specialties, where around 80% of interventions were found to be grounded in scientific evidence.^{5 10 12} Furthermore, evidence from RCTs (level 3) or better could be identified in 108 (42.9%) patients. This was also within the range of previous studies, in which 11% to 53% of interventions were found to be based on evidence from RCT or better.^{6 12}

Ophthalmology is a unique specialty in which a mix of both medical and surgical interventions are routinely performed. It is well known that randomised controlled trials are generally harder to conduct for surgical treatments and previous studies have shown that the proportion of evidence from RCTs was lower in surgical studies compared with studies in internal medicine. In our study, we found that the proportion of interventions based on RCT or better was significantly higher

for surgical interventions compared to non-surgical ophthalmic interventions. This might have been because of the rapid advancement in ophthalmic surgical techniques and new instrumentations, thereby encouraging more RCTs being performed for surgical interventions. In addition, the nonsurgical interventions in our study were generally prescribed for less serious and self limiting conditions (for example, subconjunctival haemorrhage, acute posterior vitreous detachment), where it may be difficult or even unnecessary, to carry out RCTs to generate evidence.

Of note, the proportion of interventions with evidence based on RCTs or better was higher in the specialist ophthal-mologist group compared with the trainee ophthalmologist group. This may be due to the more experienced specialist group being more aware of the evidence available in the literature. The seniority of the specialist ophthalmologists may also allow them to be involved in the development of clinical guidelines and protocols for the unit and this process would have allowed them to be better equipped in practising EBM. Therefore, our results suggest that the more senior doctors are actually practising EBM rather than "eminence" based medicine as some have previously suggested.⁷⁵

In this study, we only considered evidence to be valid if it was published in the medical literature. We did not use any textbooks or expert panels as the source of evidence since

Table 5	Interventions	based on	retrospective	case series	In=52
Tuble 3	IIIIGI VEIIIIOII3	Daged OII	161103beclive	case selles	111-0

Primary diagnosis	Primary intervention	No of patients	Reference	
Acute posterior vitreous detachment/floaters	Subsequent reassessment	26	52	
Corneal chemical injury	Topical antibiotics	6	53	
Sectorial episcleritis	Topical steroid	4	54	
Screening for ethambutol toxic optic neuropathy	Reassessment	2	55	
Sixth nerve palsy due to microvasular disease	Observation	2	56	
Lattice degeneration	Barrier laser	2	57	
Acute angle closure glaucoma	Systemic acetazolamide	1	58	
Exposed scleral buckle	Removal of buckle	1	59	
Involutional lower lid entropion	Entropion correction	1	60	
Mooren's ulcer	Topical + systemic steroid	1	61	
Phacomorphic glaucoma	Antiglaucomatous followed by cataract extraction	1	62	
Posner-Sclossman syndrome	Systemic acetazolamide + topical β blocker	1	63	
Preseptal celluitis	Óral ampicillin	1	64	
Recurrent corneal erosion syndrome	Debridement of loosened epithelium	1	65	
Silicone oil induced glaucoma	Topical β blocker	1	66	
Toxic keratopathy	Use of non-preserved lubricants	1	67	

Table 6 Interventions in which no evidence was found or evidence found to oppose the intervention (n=58)

Primary diagnosis	Primary intervention	No of patients	Reference
Corneal abrasion	Eye patching	7	68
Chalazion	Topical steroid	5	None
Blepharitis	Topical chlortetracycline	4	None
Blepharitis	Topical lubricants	4	69
Chalazion	Topical antibiotics	3	None
Corneal abrasion	Topical levofloxacin	3	None
Subconjunctival haemorrhage	Topical lubricants	3	None
Trichiasis	Epilation of trichiasis	3	70
Conjunctival abrasion	Topical antibiotics	2	None
Eroded conjunctival concretion	Pricking of concretion	2	None
Traumatic microhyphaema	Topical steroid	2	71
Blepharitis	Topical sulfacetamide	1	72
Blepharitis	Topical antazoline + tetrahydrozoline	1	None
Chemical injury	Topical lubricants	1	None
Chlamydial conjunctivitis	Topical sulfacetamide	1	None
Conjunctiva foreign body	Irrigation	1	None
Corneal abrasion	Removal of loose epithelium	1	None
Epiphora without nasolacrimal duct obstruction	Topical zinc sulfate + naphazoline	1	None
Follicular conjunctivitis	Topical chloramphenical	1	None
Infective conjunctivitis	Topical lubricants	1	None
Limbitis with blepharitis	Topical steroid + chlortetracycline	1	None
Marginal keratitis	Topical steroid	1	None
Nasolacrimal duct obstruction	Topical sulfacetamide	1	None
Phlyctenulosis	Topical steroid + antibiotics	1	None
Pingueculitis	Topical steroid + antibiotics	1	None
Postoperative stitch infiltrate	Topical steroid + antibiotics	1	None
Recurrent corneal erosion syndrome	Lubricating ointment	1	73
Retained meibomian gland secretions	Pricking of secretions	1	None
Retrobulbar optic neuritis	Oral prednisolone	1	74
Sectorial episcleritis	Topical lubricants	1	None
Subconjunctivial haemorrhage	Topical antibiotics	1	None

these sources have been suggested not to constitute "good" evidence and therefore should be excluded from studies of this nature. ¹² Other potential limitations in our study also bear mention. During the literature review, we may not have identified all the relevant literature since not all available scientific databases were searched, although Medline and the Cochrane library have often been cited as the "gold" standard for this type of study. ^{12 76} Also, language bias may have occurred as only publications in English were assessed. The reductionist approach of having a primary diagnosis and primary intervention pairing may have led to a loss of practical reality in the actual clinical setting. Our clinical setting also made the results less generalisable since the study was conducted within the acute care unit and the proportion of evidence based intervention might differ among different subspecialty

clinics as well as between other hospitals. Future research should extend this study methodology to different hospital subspecialty clinics and other centres to increase the external validity and representativeness. Lastly, we only selected the single best study on the basis of the study design for analysis to preserve clarity and simplicity. However, one of the weaknesses of EBM is the heavy emphasis on RCT where other types of evidence may be devalued, making a poor quality RCT more influential than valid non-randomised studies." Ideally, the quality of each individual randomised controlled trials should be examined and any conflicting results from various randomised controlled trial should be resolved through systematic reviews or meta-analyses.

In summary, our study has demonstrated that most of the current ophthalmic interventions in the acute care unit of the

Table 7 The eight most common interventions accounted for the treatment of 121 patients

Primary diagnosis	Primary intervention	No of patients	Level of evidence
Acute posterior vitreous detachment/floaters	Subsequent reassessment	26	Retrospective study
External eye foreign body/rust ring	Removal of foreign body	20	RCT
Chalazion	Incision and curettage	19	RCT
Infective conjunctivitis	Topical antibiotics	19	Systematic review
Subconjunctival haemorrhage	Measurement of blood pressure	13	Prospective study
Exposed/loosened corneal sutures	Removal of corneal sutures	10	Prospective study
Anterior uveitis	Topical steroid	7	RCT
Corneal abrasion	Eye patching	7	No evidence

Hong Kong Eye Hospital were evidence based. Routine audits similar to our study may be beneficial since they can provide quality assurance to the provision of optimal patient care. Through this study, we have highlighted areas in which there was limited evidence and have identified areas of deficiency in the literature for future research.

ACKNOWLEDGEMENTS

We would like to thank Drs CC Chi and NM Lam for their support for the study and Mr John Cheng for retrieving all the medical charts.

Conflicts of interest (financial or otherwise): None.

Financial support: None.

Authors' affiliations

T Y Y Lai, V W Y Wong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong SAR, People's Republic of China G M Leung, Department of Community Medicine, University of Hong Kong, Hong Kong SAR, People's Republic of China

REFERENCES

- 1 Sackett DL, Rosenberg WC, Muir Gray JA, et al. Evidence-based medicine: what it is and what it isn't. BMJ 1996;312:71-2.
- 2 Leung GM. Evidence-based practice revisited. Asia Pac J Public Health (in press).

 Committee on Quality of Health Care in America, Institute of
- Medicine. Crossing the quality chasm: a new health system for the 21st century. Washington, DC: National Academy Press, 2001.
 Slawson DC, Shaughnessy AF. Using "medical poetry" to remove ithe inequities in health care delivery. J Fam Pract 2001;50:51-6.
 Phillips R, Ball C, Sackett D, et al. Oxford centre of evidence-based

- medicine level of evidence. November 1998. http://minerva.minervation.com/cebm/docs/levels.html.

 6 Ellis J, Mulligan I, Rowe J, et al. Inpatient general medicine is evidence based. Lancet 1995;346:407–10.
- 7 Michaud G, McGowan JL, van der Jagt, R, et al. Are therapeutic decisions supported by evidence from health care research? Arch Intern Med 1998;**158**:1665–8.
- 8 Gill P, Dowell AC, Neal RD, et al. Evidence based general practice: a retrospective study of interventions in one training practice. *BMJ* 1996;312:819–21.

 9 Kenny SE, Shankar KR, Rintala R, et al. Evidence-based surgery: interventions in a regional paediatric surgical unit. *Arch Dis Child*
- 1997;76:50-3.
- Jemec GB, Thorsteinsdottir H, Wulf HC. Evidence-based dermatologic out-patient treatment. Int J Dermatol 1998;37:850–4.
- 11 Myles PS, Bain DL, Johnson F, et al. Is anaesthesia evidence-based? A
- survey of anaesthetic practice. Br J Anaesth 1999;82:591–5.

 12 Kingston R, Barry M, Tierney S, et al. Treatment of surgical patients is evidence-based. Eur J Surg 2001;167:324–30.

 13 Sheikh A, Hurwitz B, Cave J. Antibiotics versus placebo for acute
- bacterial conjunctivitis. In: Cochrane Collaboration. Cochrane Library.
 Issue 3. Oxford: Update Software, 2002.
 Snellingen T, Evans JR, Ravilla T, et al. Surgical interventions for age-related cataract. In: Cochrane Collaboration. Cochrane Library.
- sue 3. Oxford: Update Software, 2002.
- 15 Wilhelmus KR. Interventions for herpes simplex virus epithelial keratitis. In: Cochrane Collaboration. Cochrane Library. Issue 3. Oxford: Update
- 16 Zhang WY, Po AL, Dua HS, et al. Meta-analysis of randomised controlled trials comparing latanoprost with timolol in the treatment of patients with open angle glaucoma or ocular hypertension. *Br J* Ophthalmol 2001;**85**:983–90.
- 17 Sanchez-Thorin JC, Rocha G, Yelin JB. Meta-analysis on the recurrence rates after bare sclera resection with and without mitomycin C use and

- conjunctival autograft placement in surgery for primary pterygium. Br J Ophthalmol 1998;**82**:661–5.

- Sigurdsson H, Hanna I, Lockwood AJ, et al. Removal of rust rings, comparing electric drill and hypodermic needle. Eye 1987;1:430–32.
 Mustafa TA, Oriafage IH. Three methods of treatment of chalazia in children. Saudi Med J 2001;22:968–72.
 Young BJ, Cunningham WF, Akingbehin T. Double-masked controlled clinical trial of 5% folmetin versus 0.5% prednisione versus 0.9% saline in acute and controlled clinical trial of 5% folmetin versus 0.5% prednision versus 0.9% saline. in acute endogenous nongranulomatous anterior uveitis. *Br J Ophthalmol* 1982;**66**:389–91.
- Verin P, Easty DL, Secchi A, et al. Clinical evaluation of twice-daily emedastine 0.05% eye drops (Emadine eye drops) versus levocabastine 0.05% eye drops in patients with allergic conjunctivitis. Am J Ophthalmol
- 22 Boberg-Ans G, Nissen KR. Comparison of Fucithalmic viscous eye drops and chloramphenicol eye ointment as a single treatment in corneal abrasion. Acta Ophthalmol Scand 1998;76:108–11.
- 23 Marner K, Prause JU. A comparative clinical study of tear substitutes in normal subjects and in patients with keratoconjunctivitis sicca. Acta Ophthalmol (Copenh) 1984;**62**:91–5. 24 **Khosla PK**, Rana SS, Tewari HK, et al. Evaluation of visual function
- following argon laser photocoagulation in central serous retinopathy.

 Ophthalmic Surg Lasers 1997; 28:693–7.

 25 Power WJ, Collum LM, Easty DL, et al. Evaluation of efficacy and safety
- of ciprofloxacin ophthalmic solution versus chloramphenicol. Eur J Ophthalmol 1993;**3**:77–82.
- Ophthalmol 1993;3:7/-82.
 26 Frucht-Pery J, Siganos CS, Solomon A, et al. Topical indomethacin solution versus dexamethasone solution for treatment of inflamed pterygium and pinguecula: a prospective randomized clinical study. Am J Ophthalmol 1999;127:148–52.
 27 Fleck BW, Wright E, Fairley EA. A randomised prospective comparison of operative peripheral iridectomy and Nd:YAG laser iridotomy treatment of acute angle closure glaucoma: 3 year visual acuity and intraocular pressure control outcome. Br J Ophthalmol 1997;81:884–8.
 28 Fahy GT, Easty DL, Collum LM, et al. Randomised double-masked trial of ladvamida and sodium companyactic in allargic and disease. A

- lodoxamide and sodium cromoglycate in allergic eye disease. A multicentre study. Eur J Ophthalmol 1992;2:144–9.

 Shulman DG, Sargent JB, Stewart RH, et al. Comparative evaluation of the short-term bactericidal potential of a steroid-antibiotic combination versus steroid in the treatment of chronic bacterial blepharitis and conjunctivitis. Eur J Ophthalmol 1996;6:361–7.
- 30 Hayreh SS, Rubenstein L, Podhajsky P. Argon laser scatter photocoagulation in treatment of branch retinal vein occlusion. A prospective clinical trial. Ophthalmologica 1993;206:1–14.
- The Central Vein Occlusion Study Group N report. A randomized
- clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. Ophthalmology 1995;102:1434–44.
 Darougar S, Viswalingam N, El-Sheikh H, et al. A double-blind comparison of topical therapy of chlamydial ocular infection (TRIC infection) with rifampicin or chlortetracycline. Br J Ophthalmol 1981;65:549–52.
 Darougar S, Viswalingam N, El-Sheikh H, et al. Controlled evaluation of a second collection.
- 33 Donnenfeld ED, Selkin BA, Perry HD, et al. Controlled evaluation of a bandage contact lens and a topical nonsteroidal anti-inflammatory drug in treating traumatic corneal abrasions. *Ophthalmology* 1995;102:979–84.

 34 Chevalet P, Barrier JH, Pottier P, et al. A randomized, multicenter,
- Cnevaler r, parrier jn, romer r, et al. A randomized, multicenter, controlled trial using intravenous pulses of methylprednisolone in the initial treatment of simple forms of giant cell arteritis: a one year followup study of 164 patients. J Rheumatol 2000;27:1484–91.
 Power WJ, Hillery MP, Benedict-Smith A, et al. Acyclovir ointment plus
- topical betamethasone or placebo in first episode disciform keratitis. Br J Ophthalmol 1992;**76**:711–3.
- 36 The Herpetic Eye Disease Study Group. A controlled trial of oral acyclovir for iridacyclitis caused by herpes simplex virus. Arch Ophthalmol 1996;114:1065–72.
- Early Treatment Diabetic Relinopathy Study Research Group.
 Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Arch Ophthalmol 1985;103:1796—
- 38 Early Photocoagulation for Diabetic Retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991;98:766–85.
 39 Watson PG, Barnett MF, Parker V, et al. A 7 year prospective comparative study of three topical beta blockers in the management of primary open angle glaucoma. Br J Ophthalmol 2001;85:962–8.

- 40 Duperre J, Grenier B, Lemire J, et al. Effect of timolol vs acetazolamide on sodium hyaluronate-induced rise in intraocular pressure after cataract surgery. Can J Ophthalmol 1994;**29**:182–6.
- 41 Hykin PG, Foss AE, Pavesio C, et al. The natural history and management of recurrent corneal erosion: a prospective randomised trial. Eye 1994;8:35-40.
- 42 Hammer M, Margo CE, Grizzard WS. Complex retinal detachment treated with silicone oil or sulfur hexafluoride gas: a randomized clinical trial. *Ophthalmic Surg Lasers* 1997;**28**:926–31.

 43 **Pitts JF**, Jardine AG, Murray SB, *et al.* Spontaneous subconjunctival
- haemorrhage: a sign of hypertension? *Br J Ophthalmol* 1992;**76**:297–9.

 44 **Danjoux JP**, Reck AC. Corneal sutures: is routine removal really
- necessary? Eye 1994;8:339-42.
 45 Arora I, Singhvi S. Impression debridement of corneal lesions.
- Ophthalmology 1994;101:1935–40.
 Bath PE, Fankhauser F. Long-term results of Nd:YAG laser posterior capsulotomy with the Swiss laser. J Cataract Refract Surg 1986;12:150–3.
- Linberg JV, Vasquez RJ, Chao GM. Aponeurotic prosis repair under local anesthesia. Prediction of results from operative lid height. Ophthalmology 1988;**95**:1046–52.
- 48 Key JE. A comparative study of eyelid cleaning regimens in chronic
- blepharitis. CLAO J 1996;22:209-12.
 Perry HD, Serniuk RA. Conservative treatment of chalazia. Ophthalmology 1980;87:218-21.
 Goins K, Schmeisser E, Smith T, Argon laser pretreatment in Nd:YAG
- Sours R, Schmeisser E, Smith L. Argon laser prefreatment in Natifacting iridotomy. Ophthalmic Surg 1990;21:497–500.
 Suresh P, Mercieca F, Morton A, et al. Eye care for the critically ill. Intensive Care Med 2000;26:162–6.
 Dayan MR, Jayamanne DG, Andrews RM, et al. Flashes and floaters as
- predictors of vitreoretinal pathology: is follow-up necessary for posterior
- vitreous detachment? Eye 1996;10:456–8. 53 **Brodovsky SC**, McCarty CA, Snibson G, et al. Management of alkali burns: an 11-year retrospective review. *Ophthalmology* 2000;**107**:1829–35.
- 54 Jabs DA, Mudun A, Dunn JP, et al. Episcleritis and scleritis: clinical features and treatment results. Am J Ophthalmol 2000;130:469–76.
 55 Russo PA, Chaglasian MA. Toxic optic neuropathy associated with
- ethambutol: implications for current therapy. J Am Optom Assoc 1994;**65**:332–8.
- 56 Sanders SK, Kawasaki A, Purvin VA. Long-term prognosis in patients with vasculopathic sixth nerve palsy. Am J Ophthalmol 2002;134:81–4.
 57 Folk JC, Arrindell EL, Klugman MR. The fellow eye of patients with
- phakic lattice retinal detachment. Ophthalmology 1989;96:72–9.
 58 Choong YF, Irfan S, Menage MJ. Acute angle closure glaucoma: an evaluation of a protocol for acute treatment. Eye 1999;13:613–6.

- 59 Smiddy WE, Miller D, Flynn HW Jr. Scleral buckle removal following refinal reattachment surgery: clinical and microbiologic aspects.

 Ophthalmic Surg 1993;24:440–5.

 60 Boboridis K, Bunce C, Rose GE. A comparative study of two procedures
- for repair of involutional lower lid entropion. *Ophthalmology* 2000;**107**:959–61.
- 61 Brown SI, Mondino BJ. Therapy of Mooren's ulcer. Am J Ophthalmol
- 62 McKibbin M, Gupta A, Atkins AD. Cataract extraction and intraocular 62 McKibbin M, Gupta A, Atkins AD. Cataract extraction and intraocular lens implantation in eyes with phacomorphic or phacolytic glaucoma. J Cataract Refract Surg 1996;22:633-6.
 63 Hung PT, Chang JM. Treatment of glaucomatocyclitic crises. Am J Ophthalmol 1974;77:169-72.
 64 Smith TF, O'Day D, Wright PF. Clinical implications of preseptal (periorbital) cellulitis in childhood. Pediatrics 1978;62:1006-9.
 65 Reidy JJ. Paulus MP, Gona S. Recurrent erosions of the cornea: epidemiology and treatment. Cornea 2000;19:767-71.
 66 Gonvers M, Andenmatten R. Temporary silicone oil tamponade and intraocular pressure: an 11-year retrospective study. Eur J Ophthalmol 1996;6:74-80.
 67 Schwab IR Abbott RI. Toxic ulcerative keratopathy. An unrecognized

- 1990;6:74-80.
 7 Schwab IR, Abbott RL. Toxic ulcerative keratopathy. An unrecognized problem. Ophthalmology 1989;96:1187-93.
 8 Flynn CA, D'Amico F, Smith G. Should we patch corneal abrasions? A meta-analysis. J Fam Pract 1998;47:264-70.
 9 Moudgil SS, Khurana AK, Singh M, et al. Effect of methyl cellulose on tear film break-up-time in health and disease. Acta Ophthalmol (Copenh) 1987;65:397-9.
- Graz B, Xu JM, Yao ZS, et al. Trachoma: can trichiasis be treated with a sticking-plaster? A randomized clinical trial in China. Trop Med Int Health 1999;4:222-8.
- 71 Recchia FM, Saluja RK, Hammel K, et al. Outpatient management of
- traumatic microhyphema. *Ophthalmology* 2002;**109**:1465–70. **72 Foulks GN**, Austin R, Knowlton G. Clinical comparison of topica solutions containing trimethoprim in treating ocular surface bacterial infections. J Ocul Pharmacol 1988;4:111-5.
 Eke T, Morrison D, Austin DJ. Topical ointment does not prevent recurrent
- symptoms following traumatic corneal abrasion. Br J Ophthalmol 1998:**82**:1096–7
- 74 Beck RW, Cleary PA, Anderson MM Jr, et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N Engl J Med 1992;326:581–8.
 75 Issacs D, Fitzgerald D. Seven alternatives to evidence based medicine. BMJ 1999;319:1618.
 75 Andrews M. Readersiand controlled trials and controlled trials.
- 76 Nordin-Johansson A, Asplund K, Randomized controlled trials and consensus as a basis for interventions in internal medicine. J Intern Med 2000;247:94-104.
- 77 Lee JS, Urschel DM, Urschel JD. Is general thoracic surgical practice evidence based. Ann Thorac Surg 2000;70:429–31.