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A Novel Method for Resolving Vehicle Occlusion
in a Monocular Traffic-Image Sequence

Clement Chun Cheong Pang, William Wai Leung Lam, and Nelson Hon Ching Yung

Abstract—This paper presents a novel method for resolving the
occlusion of vehicles seen in a sequence of traffic images taken from
a single roadside mounted camera. Its concept is built upon a pre-
viously proposed vehicle-segmentation method, which is able to ex-
tract the vehicle shape out of the background accurately without
the effect of shadows and other visual artifacts. Based on the seg-
mented shape and that the shape can be represented by a simple
cubical model, we propose a two-step method: first, detect the cur-
vature of the shape contour to generate a data set of the vehicles
occluded and, second, decompose it into individual vehicle models
using a vanishing point in three dimensions and the set of cur-
vature points of the composite model. The proposed method has
been tested on a number of monocular traffic-image sequences and
found that it detects the presence of occlusion correctly and re-
solves most of the occlusion cases involving two vehicles. It only
fails when the occlusion was very severe. Further analysis of vehicle
dimension also shows that the average estimation accuracy for ve-
hicle width, length, and height are 94.78 %, 94.09 %, and 95.44%,
respectively.

Index Terms—Composite signature, curvature, monocular
traffic image sequence, occlusion, signature decomposition,
vanishing point.

1. INTRODUCTION

UTOMATED visual traffic surveillance (AVTS) has been

actively investigated in the past decade, as it can poten-
tially generate a large amount of useful information for other
intelligent transportation system (ITS) applications [1]-[4]. As
the name implies, AVTS allows the visualization of vehicles on
the road by using a single camera (monocular vision) mounted
in perspective view of the road segment that it is monitoring,
thus enabling traffic-scene analysis, such as traffic-conditions
assessment and travel-speed estimation, as well as queue-length
measurement, in which traditional nonvisual surveillance sys-
tems could not do [5]. However, the performance of an AVTS
system deteriorates when vehicles appear to occlude each other
from the camera’s point of view in a traffic-image sequence [6].
As aresult, methods for occlusion detection and resolution must
be adopted in order to produce meaningful results. These in-
clude using stereo vision [7]-[9], an overhead camera with a
viewing axis perpendicular to the road surface [1], or nonvi-
sual sensors such as an ultrasonic infrared or laser to aid the
vision system [10], [11]. Insofar as the problem is concerned,
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Fig. 1. Vehicle occlusion. (a) Same lane and (b) adjacent lanes.

Fig. 2. Occlusion event (frame x—y, from left to right).
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it is considered that stereo vision makes little difference from
monocular vision in this case, while changing the camera con-
figuration to overhead mounted reduces the variety of vehicle
information obtainable. The added installation and signal-pro-
cessing complexities of nonvisual sensors simply makes it pro-
hibitive. Therefore, we are motivated to challenge the problem
of resolving vehicle occlusion from an image sequence captured
from a single roadside mounted camera.

This paper presents a novel method for resolving the occlu-
sion of vehicles seen in a sequence of traffic images taken from a
single roadside mounted camera. Its concept is built upon a pre-
viously proposed vehicle-segmentation method, which is able
to accurately extract the vehicle shape out of the background
without the effect of shadow and other visual artifacts. Based
on the segmented shape and that the shape can be represented
by a simple cubical model, we propose a two-step method: first,
detect the curvature of the shape contour to generate a curvature
data set of the occluded vehicles and, second, decompose it into
individual vehicle models using a vanishing point in three di-
mensions and the set of curvature points of the composite model.
The proposed method has been tested on a number of monocular
traffic image sequences and found that it detects the presence of
occlusion correctly and resolves most of the occlusion cases in-
volving two vehicles. It only fails when the occlusion was very
severe. Further analysis of vehicle dimension also shows that
the average estimation accuracy for vehicle width, length, and
height are 94.78%, 94.09%, and 95.44%, respectively.

The rest of this paper is organized as follows. The problem
analysis is detailed in Section II. Following that, a literature re-
view is given in Section III. The proposed method is presented
in Section IV and experimental results and the discussion are de-
picted in Section V. The conclusion can be found in Section VI.

II. PROBLEM ANALYSIS

In this paper, occlusion refers to the overlapping of vehicles,
visually in an image due to the perspective view of the camera
(Fig. 1). Occlusion is a dynamic event changing over the dura-
tion, in which vehicles appear within the field of view. For in-
stance, vehicles may occlude for a short time and then separate
after that or vice versa (Fig. 2). Failing to detect and resolve
the presence of occlusion may lead to surveillance errors, in-
cluding incorrect vehicle count, incorrect tracking of individual
vehicles, and incorrect classification of vehicle type on that road
segment. However, occlusion detection and resolution are in-
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Fig. 4. Vehicle model of occluded and unoccluded cases (a) vehicle image,
(b) deformable model, (c) two-vehicle occlusion, and (d) occluded model.

herently complex, as they rely on a priori vehicle features that
would indicate whether a particular moving object consists of
one or more than one vehicle. If it is the latter case, then these
features would have to provide a basis for differentiating which
vehicle is which. The question is often regarding what kind of
features would enable the detection and how to utilize what kind
of features to resolve the occlusion. This paper intends to pro-
vide an answer to this question.

III. RELATED WORKS

Researchers have done an extensive amount of work on the
problem of vehicle tracking in the past [12]-[35]. They have ad-
dressed the problem of occlusion detection and occlusion han-
dling as the subset of their investigation on vehicle tracking. A
brief review on some of the proposed methods for resolving oc-
clusion follow.

Ikeda et al. [14] proposed a split and merging algorithm for
handling occlusion in traffic surveillance. Their idea is to ap-
proximate rectangles onto the binary mask of the vehicle based
on the geometric property of the extracted vehicle mask. To gen-
erate rectangles that have a one-to-one correspondence with the
vehicles, adjacent rectangles are split and merged under speci-
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Fig. 6. Texture-based vehicle segmentation:
(b) segmented image.

(a) original image and

fied rules so that redundant rectangles can be eliminated. It was
claimed that the algorithm can achieve an accuracy of 94.8%
for counting vehicles under occlusion. However, by using the
rectangular models, only two dimensions of the vehicles can be
identified (either front or back); thus, the algorithm cannot be
used to classify the type of vehicles effectively.

Kamijo et al. [20] proposed a spatio-temporal Markov
random model for segmenting vehicles under occlusion and
confusion at an intersection. The basic idea is to divide the
image taken at an intersection into small square blocks. The
algorithm then determines to which vehicle each block should
belong by computing the texture correlation of blocks between
consecutive images, as well as the neighboring blocks within
an image and segmenting the blocks into most likely objects
by the stochastic process. The proposed algorithm has the
advantage that it can be employed to monitor traffic at an
intersection where there are extensive vehicle occlusions and
confusions. The success rate of counting is claimed to be 95%.
However, the major drawback of the proposed algorithm is
that it can only count or track vehicles, but cannot estimate the
dimension of the vehicles. Therefore, it cannot be employed
for vehicle-type classification.
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Fig. 7. Camera model.

Fig. 8. Generalized deformable model.

Masoud et al. [25] proposed a blob-based algorithm to track
vehicles under confusion at weaving sections on highways. The
blobs representing the position of the vehicle are first extracted
from the image by a feature-extraction technique. A blob re-
lationship graph representing the split and merge of the blobs
between each subsequent frame is then computed. Vehicles are
then associated to each blob with the aid of the blob graph. The
idea is that if a vehicle is related to a blob in frame (i — 1) and
if that blob is related to another blob in the ¢th frame (through
split or merge), then the vehicle is also related to the latter blob.
This algorithm was able to track and count vehicles as well as
extracting the velocity and direction of each vehicle at weaving
sections of highways at an average accuracy of 85%. The pro-
posed algorithm has the advantage that it has addressed the
problem of lane changing on highways, which frequently oc-
curs in traffic images. However, similar to Kamijo’s method, it
was not able to estimate the dimensions of the vehicle and, thus,
it cannot classify the type of vehicles using the road, which is a
very important part of AVTS for traffic-volume measurement.

Lai [1] proposed a partitioning algorithm for handling occlu-
sion in AVTS. His idea was to fit a six-vertex deformable model
onto the binary masks of the vehicles based on the geometric
property of the binary vehicle mask, as well as the direction of
the road. In the case when there is occlusion, the binary vehicle
masks are fused together and, thus, one model is fitted onto
the occluded vehicles instead of several models. To generate
models that have one-to-one correspondences with the vehicles,
the fitted model is partitioned into equal portions of sub-models.
The number and direction of partitions were determined by the
width and length ratios between the occluded model and the
nonoccluded model. This algorithm was able to improve the ve-
hicle trajectories when tracking the individual vehicles. How-
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Fig. 9. Fitting of deformable model onto a vehicle. (a) Obtain Q . (b) Obtain GQ'. (c) Obtain points q; and q-. (d) Fitted model v.

ever, the assumption of partitioning the occluded model into
equal portions is questionable, since vehicles that involved in
an occlusion might be of different sizes. Moreover, this method
of model partitioning has not considered the severity of occlu-
sion, which might eventually lead to a large dimension-estima-
tion error in the partitioned model.

IV. PROPOSED METHOD

A. Philosophy and Concept

On the question of what kind of features would enable the
detection of occlusion, we have adopted Yung and Lai’s model
[6], which uses a deformable cubic model to fit a segmented
moving object. The simplicity of the model permits us to
determine object dimension based on a set of two-dimen-
sional (2-D)/three-dimensional (3-D) transformation equations
derived from a calibrated camera model [36]. The object
dimension indicates whether occlusion is present and what
kind of occlusion it is (side-by-side or front-and-back). Fig. 3
depicts the flow of this concept and Fig. 4 illustrates the results
of modeling and dimension estimation for the unoccluded and
two-vehicle occlusion cases. In the latter, the length of the
object dimension is much longer in relation to the width and
height of the object.

On the second question of how to utilize what kind of fea-
tures to resolve the occlusion, we propose to utilize the feature
points (curvature) of the occluded object contour and decom-
pose the occluded vehicles by model fitting individual vehicles
using the geometrical property of the feature points. As in Yung
and Lai’s model, the fitting is performed in three dimensions

that the model vectors are extended along the road direction,
which converge to the vanishing point p due to the perspective
effect. Fig. 5 depicts the flow of this concept.

B. Preprocessing

1) Background Estimation and Texture-Based Segmenta-
tion: The background-estimation algorithm adopted in this
paper is the “scoreboard algorithm,” as described in [37], which
has the advantage of being fast and accurate for estimating the
stationary background. The idea of the algorithm is to estimate
the background either by the running-mode or running-average
method. The decision of using which method is based on the
intensity difference of the pixels between the current frame and
the previously estimated frame. If the difference is high, then
the running-mode method is used. Otherwise, the running-av-
erage method is used. By selecting the method in this way, the
speed of the algorithm is greatly improved and accuracy is not
severely affected.

For vehicle segmentation, we have employed the tex-
ture-based vehicle-segmentation approach described in [38]
to extract the moving vehicles. This algorithm is capable of
extracting the vehicle body without being affected by the
vehicle cast shadow. The segmentation process contains three
steps. First, three likelihood maps, namely, the T-map, L-map,
and C-map, are computed according to the differences in
texture, luminance, and chrominance between the input and
background frames, respectively. Then, a logical OR circuit
operation is performed on the likelihood maps to produce the
OR map. Finally, morphological operations are performed on
the OR map to form the foreground mask. The vehicle is then
extracted based on the shape of the foreground mask. This



PANG et al.: NOVEL METHOD FOR RESOLVING VEHICLE OCCLUSION IN A MONOCULAR TRAFFIC-IMAGE SEQUENCE 133

Tangential Slope u(i)
——
—— = -

(i)

(b)
Contour Tangential Slope
12
92
\ g
B
'9‘ 08 ,‘
TR I
9% \ " 04
0 9 100 108 0 5 10
(d)
Tangert.al Siope (Fitered)
2 f "
? 1
—
" Ll -\
2 !
% 00 b 0 a0 S0 &0 700
(f)
- Detected Citical Points
80 e
100 o ~
120 /./’/
g
- 160
180 < _
z |
20
20 —_— , L
0 ] ] = 6 0

Fig. 10. Tangential slope curvature points extraction: (a) original image; (b) contour or shape of the segmented object; (c) signature curve of (b); (d) local variations
on the signature curve; (e) filtered signature curve; (f) detected curvature points on curve; (g) curvature points in clusters; (h) final curvature points detected; and

(i) closeup of the detected curvature points.

method proves to be very effective in extracting vehicle details
without shadow and other visual artifacts (Fig. 6).

2) Camera Calibration: The camera model from [36] is de-
picted in Fig. 7. It helps to define the relationship between the
2-D image coordinates and the 3-D world coordinates in terms
of the pan angle p, tilt angle ¢, swing angle s, focal length f,
and camera distance [. By the process known as camera calibra-
tion, these parameters can be determined. The mapping between

the 3-D and 2-D coordinates is defined in terms of the forward
transformation ® and the backward transformation ® 1, which
is depicted as

g=2{G} 1)
G=0"{g} 2)

where g is a point in the 2-D image coordinates and G is the
transformed point g in the 3-D world coordinates. A detailed
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derivation of how these parameters are determined can be found
in [36].

3) Deformable Modeling: From [22], the generalized de-
formable model is a wire frame with six vertices that can be
parameterized to fit onto any vehicles (Fig. 8). The six vertices
of the model can be represented as V. = [V, V. ... 7VS]T.
This model is designed to fit onto the convex hull of the seg-
mented vehicle. The steps of model fitting are summarized as
follows (Fig. 9).

Step 1) Compute the center of gravity g of the convex hull
of the segmented vehicle, which is defined as

N—-1

1 ,
8= x 220 3)

where z(1) are the sample points on the outline of the
convex hull and NV is the number of sample points on
the outline [Fig. 9(a)].

Draw the vector gq along the road direction in two
dimensions (f;0aq). Vector gq is defined as a vector
with arbitrary length that points from the center of
gravity (g) to the road direction (6,0.4) [Fig. 9(a)].
Transform vector gq from the 2-D to 3-D coor-
dinates using (2). The transformed gq is depicted

Step 2)

Step 3)

as uppercase letters (73 [Fig. 9(b)]. Rotate vector
G—>Q by 90° in the 3-D world coordinates. The ro-

/ !/
tated vector is depicted as GQ'. Transform GQ
from 3-D coordinates back to 2-D coordinates by

—

(1). The resultant vector is gq’, which is perpendic-

ular to the road direction in the 2-D perspective view
—

[Fig. 9(a)]. Traverse vector gq' upward and down-
ward to fit the upper and lower edges of the convex
hull.

Join points g and p to form line gp, where p is the
vanishing point of the road. Search in the perpendic-
ular direction of gp (in the 2-D image coordinates)
for points q; and qo. Connect the vanishing point p
with q; and q» [Fig. 9(c)].

Draw vertical lines in 2-D to fit the two side edges.
Find the intersections of the lines found in Steps 3),
4), and 5). The intersections define the six vertices
of model v [Fig. 9(d)].

The above model has the advantage that it does not require
any a priori knowledge of the vehicle shape for model fitting.
Therefore, it is able to fit onto any type of vehicles, including
complex-shaped vehicles such as cement trucks or even semi-
trailers. This advantage has greatly increased its applicability in
AVTS.

Step 4)

Step 5)
Step 6)

C. Occlusion Detection Based on Estimated Dimensions

From the vertices of the fitted model, the dimensions of the

vehicles can be estimated by transforming the model vertices
T . .

v = [vy,Va,...,Vg] from the 2-D image coordinates to the

3-D world coordinates through (2) [22]. The model vertices after

the transformation are denoted by the capital letter V; that is,

(Vaq)

Fig. 11. Model fitted onto two occluded vehicles (A and B).

V =[V,V,,... 7VG]T. The dimensions of the model are then
estimated as (see Fig. 8)

W =|Vs - Vy 4)
L=|Vy-V; Q)
H=|V,— V. (6)

When an occlusion occurs in the image sequence, the ratios be-
tween the dimensions of the fitted model are substantially dif-
ferent from the norm [6]. Besides, if occlusion starts or ends
while the vehicles are within the field of view, the estimated di-
mensions change abruptly. Moreover, the area ratio (Rayea) Of
the model is substantially lower than the norm, too, where

A
Ruvea = (7)
model
and A,k 1S the area of the segmented object and A o4l 1S the
area of the model fitted onto the segmented object. Occlusion is

detected if either of the following criteria is met:

|Rarea(i) - Rarea(i - 1)| > €1

or
W (i) = W (i = 1)| > e

or
L) LG —1)| >

or

|H (i) — H (i = 1)| > &2 ®)

where ¢ is the current frame and ¢ — 1 is the previous frame. The
values €1 and e» are thresholds to permit small changes in the
values. When there is no occlusion, ... should be close to 1
and the differences of W, L, and H between frames should be
relatively constant.

D. Shape Feature Extraction

The purpose of this approach is to extract feature points that
can be used to fit individual models to the composite segmented
object later on. The feature points chosen are those that represent
a change in direction along the extracted shape. Some of these
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Fig. 12. Model partition of vehicle A: (a) Step 2); (b) Step 3); (c) Step 4); and (d) Step 5).

points are clear corners with sharp curvature. On the other hand,
some of these points have a more gradual curvature and are less
definite as a corner point. In order to detect both types of points,
we propose the following approach.

1) Computation of Signature Curve: In the case of occlu-
sion, the segmented object would consist of more than one ve-
hicle. The contour or shape that describes the segmented ob-
ject is a composite of the occluded vehicles [Fig. 10(a) and
(b)]. To prepare for the subsequent fitting of the individual ve-
hicle model, we first compute the tangential slope of every data
sample on the contour of the segmented object [Fig. 10(c)]. For
simplicity, the tangential slope of a data sample i is defined as
the vector that joins samples 2 — 1 and 7 + 1. The signature curve
of the contour, which is a set of tangential slopes, can be written
mathematically as

si(zi,y:) = Yl 7 VizL 9

Tig1 — Ti—1

fori =2,..., N — 1, where N is the number of sample points
on the contour and z; and ¥; are the z and y components of
the sample point ¢, respectively. The merit of this method is
that it is straightforward and retains points of sharp and gradual
curvatures. However, this also implies that the signature curve
also contains a considerable amount of local variations or noise
[Fig. 10(d)] that required suppression in the next stage.

2) Signature Curve Filtering: These local variations or
noise are due to quantization in the digitizing process of the
contour and must be filtered before the curvature points can be
detected from the signature curve. From a detailed study of the
signature curve, it is found that most of these local variations
have a duration of not more than two samples in length. As

such, the filter can simply eliminate any spikes that satisfy
this condition. In other words, the filter changes [a,b, a] or
[a,b,b,a] to [a,a,a] or [a,a,a,a], respectively, where a and b
are two different tangential slope values. The resulting filtered
signature curve is depicted in Fig. 10(e). Comparing this with
Fig. 10(c), all the local variations have been removed.

3) Curvature Detection: First, start and end points of each
disjointed segment on the filtered signature curve are consid-
ered curvature points, as they represent a substantial change in
tangential slopes. Second, curvature points are also detected at
the transition point where the filtered signature curve changes
state.

The detected curvature points are shown in Fig. 10(f) and
(g). We can observe from Fig. 10(g) that some of the detected
points are clustered. To alleviate this problem, we simply se-
lect one point with the highest curvature out of a cluster of de-
tected points. The set of final curvature points is depicted in
Fig. 10(h). Fig. 10(i) depicts the closeup of the detected cur-
vature points and we can observe that the proposed algorithm
has accurately detected the curvature points. The set of detected
curvature points can be written as ¢ = [cy, Ca, ..., C K]T, where
K is the number of detected curvature points.

E. Model Decomposition

Given the detected curvature points ¢ = [cq,Ca, ... 7cK]T
and the vanishing point p, assume that model v =
[V1,Va,...,ve]" is fitted geometrically onto the segmented
object of two occluded vehicles, namely, vehicle A and B
(Fig. 11). It is observed that, in an ideal case, the expected
number of K is 10 when there are two vehicles occluded as

seen in the image. Based on this set of curvature points, the
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Fig. 13.

Fig. 14. Partitioned models va and vg.

the occluded model v can be decomposed into two sep-
arate models, namely, vo = [VAl,VAz,...,VAG]T and
vB = [VB1,VB2,.-.,VBe| , s0 that model va and vp

represent vehicle A and B, respectively.

From Fig. 11, it can be seen that point v 5 3 can be determined
by traversing line v3v, upward until it aligns with curvature
points c3 and ¢4 and point v 5 g can be determined by traversing
line V5 Vg leftward until it aligns with curvature points cg and
c10. Similarly, points vgg can be determined by traversing line
V2 V3 rightward until it aligns with ¢4 and c5 and vpg can be
determined by traversing line vive downward until it aligns
with cg and cg.

Now, points {va1,Va2,Vas,Vae} of model va and points
{vBs, VB4, VB5, VBe } of model vp are already known. Only

€ s e e

Model partition of vehicle B: (a) Step 2); (b) Step 3); (c¢) Step 4); and (d) Step 5).

Fig. 15. Sedan occluded by a double-decker bus: (a) image; (b) fitted model;
(c) model partitioning; (d) segmented bus; and (e) segmented sedan.

points {vaq4,vas} of model A and {vpy,vp2} of model B
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(a) (b)

Fig. 16. Taxi occluded by another taxi: (a) image; (b) fitted model; (c) model
partitioning; (d) segmented taxi (right); and (e) segmented minivan (left).

Fig. 18. Truck occluded by another truck: (a) image; (b) fitted model;
(c) model partitioning; (d) segmented truck (left); and (e) segmented truck
(right).

(a) (b)

(c) (d)

Fig. 17. Sedan occluded by a minivan: (a) image; (b) fitted model; (c) model
partitioning; (d) segmented minivan; and (e) segmented sedan.

are missing. These points can be determined by exploiting the
information given by the curvature points, as well as the van-
ishing point p. The steps are depicted as follows.

Vehicle A (Fig. 12):

Step 1) Extend line vzVvy and line V4 Vs until they meet at
point p.

Step 2) Connect points p and vag and extend the line
[Fig. 12(a)].

Step 3) Traverse line VA1Vae along plane PVA1VAG until]  Fig. 19. Miniya}n Qccluded by another rnipiyan: (a) image; (b) fitted model;
it intersects with point v as. The new corner on the gclgns;)r(lilefrgstr)tmomng; (d) segmented minivan (back); and (e) segmented
extended plane is now labeled as var [Fig. 12(b)]. '

Step 4) Traverse line VA2 Va3 along the plane VA2VA3VA7T
until it intersects with point v57. The intersection Step 5) Connect point p and v a4. An intersection point v s
between the new line and the horizontal line passing is formed [Fig. 12(d)].
through v A 3 is now labeled as va4 [Fig. 12(c)]. Vehicle B (Fig. 13):
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Fig. 20. Truck occluded by a tour bus: (a) image; (b) fitted model; (c) model
partitioning; (d) segmented tour bus; (e) segmented truck.

Step 1) Extend lines vov7 and V4 vy until they intersect at
point p.

Connect points p and vpg and extend the line
[Fig. 13(a)].

Traverse line VvB5VBg along plane pvesVBe until
it intersects with point vg4. The new corner on the
extended plane is now labeled as vgy [Fig. 13(b)].
Traverse line VB3 VB4 upward until it intersects with
point vpr. The intersection between the new line
and the vertical line passing through vpg is now
labeled as vpe [Fig. 13(c)].

Connect point p and vp2. An intersection point vg1
is formed [Fig. 13(d)].

From the above steps, the model can be partitioned into two
separate but complete models v o and vy, representing vehicles
A and B, respectively (Fig. 14). Dimensions of the individual
vehicle can be estimated by the same procedure as introduced
in Section IV-C.

Step 2)

Step 3)

Step 4)

Step 5)

V. RESULTS AND DISCUSSIONS

The proposed method is evaluated by 50 sets of monocular
traffic-image sequences that are taken on a busy highway where
occlusions occur frequently. All the image sequences are ac-
quired during daytime, when shadows are prominent. These re-
sults are subjectively analyzed for each case to see if the pro-
posed method performed in a satisfactory manner (Figs. 15-21).
To objectively evaluate the accuracy of the proposed method,
the dimensions of the vehicles segmented from the test image
sequences were calculated from the partitioned model. The es-
timated values are then compared with the actual dimensions
published by the manufacturers and the percentage accuracies

Fig. 21.
partitioning; (d) segmented truck; and (e) segmented taxi.

Taxi occluded by a truck: (a) image; (b) fitted model; (c) model

of the estimated dimensions are plotted in Fig. 22. The first
image sequence contains a sedan that is partially occluded by
a double-decker bus, as depicted in Fig. 15(a). The convex hull
of the two vehicles as well as the fitted model is depicted in
Fig. 15(b). The segmented vehicles as well as the decomposed
models are shown in Fig. 15(c). The resolved vehicles are shown
in Fig. 15(d) and (e). In Fig. 15(d), the decomposed model fits
the double-decker bus very well, except that the width is slightly
wider due to the effect of the side mirror, which causes the left
edge of the decomposed model to move to the left. It can be
observed from Fig. 15(e) that the decomposed model fits the
sedan well and that the side mirror in this case has no effect to
the modeling.

The second image sequence contains a taxi that is partially
occluded by another taxi, as depicted in Fig. 16(a). The decom-
posed models are shown in Fig. 16(d) and (e). It can be observed
that both decomposed models fit the taxis very well.

The third image sequence contains a sedan that is partially
occluded by a minivan, as depicted in Fig. 17(a). The decom-
posed model fits the width and height of the minivan accurately.
However, the fitting of the top edge of the minivan is slightly de-
viated from the vehicle [Fig. 17(d)]. This error is due to the fact
that the traveling direction of the vehicle is slightly misaligned
from the road direction. Therefore, when the vehicle is aligned
with the vanishing point, such deviation occurred. On the other
hand, in Fig. 17(e), the decomposed model fits the sedan well.

The fourth image sequence contains a truck that is partially
occluded by another truck [Fig. 18(a)]. Similar to the minivan in
the previous case, the fitting of the top edge is slightly deviated
from the truck roof for the same reason [Fig. 18(d)]. For the left
truck, the decomposed model is slightly larger due to the side
MirTor.
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Fig. 22. Percentage accuracy of the dimension estimation of the individual vehicles: (a) percentage accuracy of the width estimation; (b) percentage accuracy of

the length estimation; and (c) percentage accuracy of the height estimation.

The fifth image sequence contains a minivan that is partially
occluded by another minivan on the same lane [Fig. 19(a)]. The
decomposed model fits the van at the back reasonably well with
the top right side edge slightly too far to the right [Fig. 19(d)]. For
the front van, the model is slightly larger due to the side mirror.

The sixth image sequence contains a truck that is partially
occluded by a tour bus [Fig. 20(a)]. The truck is so severely oc-
cluded by the tour bus that the proposed method fails to deter-
mine its height. As a result, the decomposed model for the truck
[Fig. 20(e)] is far too large, whereas the decomposed model of
the tour bus is satisfactory [Fig. 20(d)]. As a matter of fact,
it would be equally difficult for human beings to estimate the
height of the truck in this case too.

The seventh image sequence contains a taxi that is being se-
verely occluded by a truck, as depicted in Fig. 21(a). In this
case, the proposed method fails to find the width and length
of the model of the taxi and, as a result, calculated an erratic
model, as depicted in Fig. 21(e). Similar to the sixth case, it
would be challenging for human beings to estimate the height
and length without applying our knowledge of what vehicle it is
(as in recognition).

The accuracy of the proposed algorithm is being evaluated
qualitatively by determining the dimensions of the vehicles in
the test-image sequences from the decomposed model. The es-
timated values are then compared with the actual dimensions
published by the manufacturers and the percentage accuracies

TABLE 1
TIME REQUIREMENT OF THE PROPOSED METHODOLOGY
Time required
Signature curve computation 0.31 sec
Signature curve filtering 0.55 sec
Model decomposition 0.12 sec

of the estimated dimensions are plotted in Fig. 22. The average
accuracy for width estimation is 94.78% and the average accu-
racy for length and height estimation is 94.09% and 95.44%, re-
spectively. In all three cases, the worst case accuracy is around
91% while the best case accuracy is around 98%. The errors
for width, length, and height estimation are 5.22%, 5.91%, and
4.56% respectively. These figures again show the potential of
the proposed method.

The computational speed values for the three major steps of
the proposed methodology are depicted in Table I. The proposed
algorithms were implemented in MATLAB on a Pentium III
800-MHz platform. We could see that the signature curve-fil-
tering step required the longest time to execute, while the model
decomposition step required the shortest execution time. The
total time delay for performing all three tasks is less than 1 s.
It should be noted that MATLAB implementation general is not
very efficient and is much slower than dedicated C++ or C#
implementation. As such, the proposed algorithms are compu-
tationally feasible.
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VI. CONCLUSION

This paper proposed a novel method for detecting and
resolving occlusion between vehicles, as seen in a monocular
image sequence. By adopting the texture-based segmentation
and deformable modeling method, it performed the curvature
detection reasonably accurate, which then enables the decom-
position of the composite model into individual vehicle models
using a geometric approach. The proposed method has been
evaluated on a number of real-world traffic image sequences
and the average estimation accuracy in estimating vehicle width
is 94.78%, length is 94.09%, and height is 95.44%. It should
be noted that the errors are due to: 1) the side mirror (left or
right) that protrudes out of the vehicle body and, being part of
the vehicle, it is detected as part of the shape of the vehicle and
2) the vehicle is not completely aligned with the road direction,
which causes slight deviations in aligning lines through the
vanishing point. Both drawbacks do not introduce large errors
to the method. Further, the proposed method in its current form
is not able to handle severely occluded cases, as shown in the
sixth and seventh cases. This is perhaps not a deficiency of
the proposed method, but is a problem that inherently require
more complex approaches, such as vehicle recognition, to deal
with it. Although we have not considered the more complex
scenarios, such as occlusion, that involve more than two
vehicles and a long queue of vehicles in congesting situations,
the proposed method does indeed present a way forward for
further development in this direction.
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