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ISOMETRIES FOR KY FAN NORMS
BETWEEN MATRIX SPACES

CHI-KWONG LI, YIU-TUNG POON, AND NUNG-SING SZE

(Communicated by Joseph A. Ball)

Abstract. We characterize linear maps between different rectangular matrix
spaces preserving Ky Fan norms.

1. Introduction and statements of results

Let Mm,n (Mn) be the linear space of m × n (n × n) complex matrices. The
singular values of A ∈Mm,n are the nonnegative square roots of the eigenvalues of
A∗A, and they are denoted by s1(A) ≥ · · · ≥ sn(A). For 1 ≤ k ≤ min{m,n}, the
Ky Fan k-norm on Mm,n is defined and denoted by

‖A‖k = s1(A) + · · ·+ sk(A).

The Ky Fan 1-norm reduces to the operator norm; when m = n the Ky Fan n-norm
is also known as the trace norm.

Evidently, Ky Fan k-norms are unitarily invariant norms, i.e.,

‖UAV ‖k = ‖A‖k
for any A ∈ Mm,n, and unitary U ∈ Mm and V ∈ Mn. Actually, they form an
important class of unitarily invariant norms; see [1, Chapters 2 and 3]. For instance,
given A,B ∈Mm,n,

‖A‖k ≤ ‖B‖k for all k = 1, . . . ,min{m,n}
if and only if

‖A‖ ≤ ‖B‖ for all unitarily invariant norms ‖ · ‖.
There has been considerable interest in studying isometries for Ky Fan norms on
matrix spaces. For example, by a result of Kadison [5], one easily deduces that
isometries for the operator norm on Mn have to have the form

A 7→ UAV or A 7→ UAtV(1)

for some unitary matrices U, V ∈ Mn. In [4], the authors showed that the same
conclusion holds for Ky Fan k-norm isometries for any k = 1, . . . ,min{m,n}, where
the second form in (1) can occur only whenm = n. In [8], the authors considered the
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problem on block triangular matrix algebras in Mn, and showed that the isometries
essentially have the same structure. In [3], the authors studied isometries φ :
(Mn, ‖·‖1),→ (Mp, ‖·‖1) for n 6= p, and obtained a complete characterization when
p ≤ 2n− 2; moreover, examples were given to show that φ may have complicated
structure for p > 2n − 2. In view of these, one may think that isometries φ :
(Mn, ‖ · ‖k),→ (Mp, ‖ · ‖k) also have complicated structure for k > 1. It turns
out that it is not the case as shown in the corollary of our main theorem, which
characterizes isometries φ : (Mm,n, ‖ · ‖k′),→ (Mp,q, ‖ · ‖k) provided k′ > 1. We
need some notation and definitions to describe our main result.

For two matrices A and B with A = (aij) denote by A ⊗ B the block matrix
(aijB). An r × s matrix X is called a partial isometry if X∗X = Is, i.e., X has
orthonormal columns.

Theorem 1.1. Let 1 < k′ ≤ min{m,n} and 1 ≤ k ≤ min{p, q}. Suppose φ :
Mm,n →Mp,q satisfies

‖φ(A)‖k = ‖A‖k′ for all A ∈Mm,n.(2)

Then there exist nonnegative integers c1 and c2 with c1 + c2 > 0, and partial isome-
tries U and V of sizes p× (c1m+ c2n) and q× (c1n+ c2m), respectively, such that
one of the following holds:

(a) k′ < min{m,n}, k = k′(c1 + c2), and φ has the form

A 7→ 1
c1 + c2

U [(Ic1 ⊗A)⊕ (Ic2 ⊗A)t)]V ∗.

(b) k′ = min{m,n}, k′(c1 + c2) ≤ k, and there are diagonal matrices D1 ∈Mc1

and D2 ∈ Mc2 with positive diagonal entries satisfying trD1 + trD2 = 1,
such that φ has the form

A 7→ U [(D1 ⊗A)⊕ (D2 ⊗At)]V ∗.

If k′ = k, then either (c1, c2) = (1, 0) or (c1, c2) = (0, 1). By adding columns to
U and V to form unitary matrices, we have the following corollary.

Corollary 1.2. Let 1 < k ≤ min{m,n}. Suppose φ : Mm,n →Mp,q satisfies

‖φ(A)‖k = ‖A‖k for all A ∈Mm,n.

Then there are unitary matrices U ∈Mp and V ∈Mq such that φ has the form

A 7→ U [A⊕ 0p−m,q−n]V or A 7→ U [At ⊕ 0p−n,q−m]V.

2. Auxiliary results and proofs

Replacing φ by the mapping(s) A 7→ φ(At) and/or A 7→ [φ(A)]t, we may assume
thatm ≤ n and p ≤ q. Two nonzero matricesA,B ∈Mm,n are said to be orthogonal
if AB∗ = 0 and A∗B = 0. Equivalently, there are unitary matrices U and V such
that UAV =

∑r
j=1 ajEjj and UBV =

∑r+s
j=r+1 bjEjj with a1 ≥ · · · ≥ ar > 0 and

b1 ≥ · · · ≥ bs > 0 for some r, s with r + s ≤ min{m,n}. The nonzero matrices
A1, · · ·Ad ∈ Mm,n are said to be pairwise orthogonal m × n matrices if AiA∗j = 0
and A∗iAj = 0 for any distinct pair (i, j). In such a case, there are unitary U ∈Mm

and V ∈Mn, 0 = r0 < r1 < · · · < rd ≤ min{m,n} and positive numbers a1, . . . , ard
such that UAiV =

∑
ri−1<j≤ri ajEjj .
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We begin with the following lemma from [8, Lemma 5].

Lemma 2.1. Let A,B ∈Mm,n be nonzero. Then ‖aA+ bB‖k = |a|‖A‖k + |b|‖B‖k
for every a, b ∈ C if and only if A and B are orthogonal and rankA+ rankB ≤ k.

By Lemma 2.1 and a simple inductive argument, we have the following.

Lemma 2.2. Let φ : Mm,n → Mp,q be a map satisfying (2). Suppose the rank
one matrices A1, . . . , Ad ∈ Mm,n, d ≤ min{m,n}, are pairwise orthogonal. Then
φ(A1), . . . , φ(Ad) ∈ Mp,q are nonzero and pairwise orthogonal. Furthermore, for
any 1 ≤ s1 < · · · < sk′ ≤ d,

∑k′

j=1 rankφ(Asj ) ≤ k.

Proof of Theorem 1.1. For the sufficiency part of Theorem 1.1, one readily sees
that singular values of φ(A) have c = (c1 + c2) copies of s1(A)/c, . . . , sm(A)/c if
φ has the form (a). On the other hand, if k′ = m and φ has the form (b), then
k ≥ ck′ and so the Ky Fan k-norm of φ(A) is just the sum of its singular values.
Let D1 ⊕D2 = diag (d1, . . . , dc). Then,

‖φ(A)‖k = d1‖A‖k′ + · · ·+ dc‖A‖k′ = tr(D1 ⊕D2)‖A‖k′ = ‖A‖k′ .
To prove the necessity part, let (p′, q′) = (p − c1m − c2n, q − c1n − c2m). It

suffices to prove that there are unitary matrices U ∈ Mp and V ∈ Mq such that φ
has the form

(a) A 7→ 1
c1 + c2

U [(Ic1 ⊗A)⊕ (Ic2 ⊗At)⊕ 0p′,q′ ]V ∗ if k′ < m,

(b) A 7→ U [(D1 ⊗A)⊕ (D2 ⊗At)⊕ 0p′,q′ ]V ∗ if k′ = m.

We divide the proof into three cases:
(I) k′ < m = n, (II) k′ = m = n, and (III) m < n.

First consider case (I) : k′ < m = n. For any A ∈ Mm,n with singular values
1, 0, . . . , 0, there are unitary X and Y such that A = XE11Y . Let Aj = XEjjY
for j = 1, . . . ,m. Then A1, . . . , Am are pairwise orthogonal. By Lemma 2.2,
φ(A1), . . . , φ(Am) are pairwise orthogonal. Thus, there exist unitary U and V ,
0 = r0 < r1 < · · · < rd ≤ m and positive numbers a1, . . . , ard such that

Bi = Uφ(Ai)V =
∑

ri−1<j≤ri

ajEjj for any i = 1, . . . ,m.

By Lemma 2.2 again, the sum of any k′ matrices chosen from B1, . . . , Bm has rank
at most k. Let 1 ≤ t1 < · · · < tk′ ≤ m. Then

s`

 k′∑
j=1

Btj

 = 0, for all ` > k .(3)

Moreover, if t ∈ {1, . . . ,m} \ {t1, . . . , tk′}, we claim that

s1(Bt) ≤ sk

 k′∑
j=1

Btj

 .(4)

If (4) does not hold, then s1(Bt) > sk

(∑k′

j=1 Btj

)
, which gives the following con-

tradiction:

k′ =

∥∥∥∥∥∥At +
k′∑
j=1

Atj

∥∥∥∥∥∥
k′

=

∥∥∥∥∥∥Bt +
k′∑
j=1

Btj

∥∥∥∥∥∥
k

>

∥∥∥∥∥∥
k′∑
j=1

Btj

∥∥∥∥∥∥
k

=

∥∥∥∥∥∥
k′∑
j=1

Atj

∥∥∥∥∥∥
k′

= k′ .
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Let c = k/k′. It follows from (2), (3) and (4) that for each 1 ≤ j ≤ m, we have
si(Bj) = 1/c for 1 ≤ i ≤ c and si(Bj) = 0 for c < i ≤ p. Thus, we see that

(i) every rank one matrix is mapped to a rank c matrix, and
(ii) every unitary matrix is mapped to a matrix with the singular values

1/c, . . . , 1/c,︸ ︷︷ ︸
cm

0, . . . , 0.

Since (i) holds, by Theorem 2.5 in [7], φ has the form

A 7→ R[(Ic1 ⊗A)⊕ (Ic2 ⊗At)⊕ 0p′,q′ ]S∗

for some invertible R ∈ Mp and S ∈ Mq. Let R1 (respectively, S1) be obtained
from R (respectively, S) by removing its last p′ (respectively, q′) columns. Then

R[(Ic1 ⊗A)⊕ (Ic2 ⊗At)⊕ 0p′,q′ ]S∗ = R1[(Ic1 ⊗A)⊕ (Ic2 ⊗At)]S∗1 .

By polar decomposition, there are unitary matrices U ∈ Mp, V ∈ Mq and positive
definite matrices P ∈Mc1m+c2n and Q ∈Mc1n+c2m such that

R1 = U

(
P

0p′,c1m+c2n

)
and S2 = V

(
Q

0q′,c1n+c2m

)
.

Thus,
φ(A) = U

{
P [(Ic1 ⊗A)⊕ (Ic2 ⊗At)]Q∗ ⊕ 0p′,q′

}
V ∗.

Define ψ : Mm →Mcm such that ψ(X) = cP [(Ic1 ⊗A)⊕ (Ic2 ⊗At)]Q∗. By (ii), we
see that ψ maps unitary matrices to unitary matrices. By the result in [2], we see
that ψ(A) = W1[(Ic1 ⊗A)⊕ (Ic2 ⊗At)]W2 for some unitary W1,W2 ∈Mcm. Thus,
condition (a) holds.

Next, we turn to case (II) : k′ = m = n. From the first part of the proof
in case (I), we can see that for any unitary X,Y ∈ Mm and λ1, . . . , λm ∈ C,∑m
i=1 λiφ(XEiiY ) has rank at most k. Hence, φ(A) has rank at most k for all

A ∈ Mm. We may assume that p = q by appending q − p zero rows to φ(A) for
each A ∈ Mm. So, we assume that φ : Mm → Mp and suppose φ(Im) = D is a
nonnegative diagonal matrix with diagonal entries arranged in descending order.
For any Hermitian X ∈Mm with trace zero and spectrum in [−1, 1] and t ∈ [−1, 1],

‖φ(Im + tX)‖k = ‖Im + tX‖k′ = k′ = ‖Im‖k′ = ‖φ(Im)‖k = trD.

Let Y = φ(X). Then trY = 0 because

|trD + ttrY | ≤ ‖φ(Im + tX)‖p = ‖φ(Im + tX)‖k = trD

for t = ±1. Moreover,

k′ = tr (D ± Y ) ≤ ‖φ(Im + tX)‖p = ‖φ(Im + tX)‖k = k′.

By [6, Corollary 3.2], we conclude that D±Y is positive semidefinite. As a result, if
φ(Im) = D = diag (d1, . . . , dr, 0, . . . , 0) with d1 ≥ · · · ≥ dr > 0, then φ(X) has the
form Y ⊕0p−r. We may now consider ψ : Mm →Mr such that φ(A) = ψ(A)⊕0p−r.
It follows from the above argument that ψ maps Hermitian matrices to Hermitian
matrices and ‖ψ(A)‖r = ‖φ(A)‖k = ‖A‖k′ . We claim that

(i) ψ maps positive semidefinite matrices to positive semidefinite matrices, and
(ii) ψ maps invertible Hermitian matrices to invertible Hermitian matrices.
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To see (i), suppose that A ∈ Mm is positive semidefinite. Let D1 = ψ(Im) =
diag (d1, . . . , dr). Choose t > 0 such that D1 + tψ(A) is positive semidefinite. Then
we have

tr (D1 + tψ(A)) = ‖D1 + tψ(A)‖r = ‖Im + tA‖k′ = tr (Im) + ttr (A)

= ‖Im‖k′ + t‖A‖k′ = ‖ψ(Im)‖r + t‖ψ(A)‖r = trD1 + t‖ψ(A)‖r.
Thus, trψ(A) = ‖ψ(A)‖r, and it follows from [6, Corollary 3.2] again that ψ(A) is
positive semidefinite.

To prove (ii), let

A = U∗

 m∑
j=1

λjEjj

U

for some unitary U and λj ∈ R \ {0} for j = 1, . . . ,m. Since φ(U∗E11U), . . . ,
φ(U∗EmmU) are pairwise orthogonal and φ(Im) = D, φ(U∗EjjU) = V ∗FjV ⊕0p−r
for j = 1, . . . ,m, such that Fi =

∑
ri−1<s≤ri asEss for 0 = r0 < · · · < rm = r and

positive numbers a1, . . . , arm . Therefore,

ψ(A) = V ∗

 m∑
j=1

λj(
∑

ri−1<s≤ri

asEss)

V

is also invertible. Thus, condition (ii) holds.
Now, ψ(Im) is positive definite and ψ maps invertible Hermitian matrices to

invertible Hermitian matrices. By (the proof of) [7, Proposition 3.4], we see that

ψ(X) = T ∗[(Ic1 ⊗X)⊕ (Ic2 ⊗Xt)]T(5)

for some invertible T ∈Mr. In particular, we see that
(iii) ψ maps rank s matrices to rank cs matrices for s = 1, . . . ,m.
Next, we show that ψ has the form X 7→ U∗[(D1 ⊗X)⊕ (D2 ⊗Xt)]U for some

unitary matrix U and diagonal matrices D1 and D2 with positive diagonal entries
such that trD1 + trD2 = 1. Equivalently, we show that ψ has the form

A = (auv) 7−→ V ∗BV, where B = (Buv)1≤u,v≤m with Buv = auvD1 ⊕ avuD2

for some unitary V . First, by a suitable permutation, we can rewrite ψ in (5) as

A = (auv) 7−→ S∗BS with B = (Buv)1≤u,v≤m with Buv = auvIc1 ⊕ avuIc2
(6)

for some nonsingular S ∈Mr. By Lemma 2.2, we see that φ(E11), . . . , φ(Emm) are
pairwise orthogonal. Then for any distinct pair i and j,

[S∗(Eii ⊗ Ic)S]∗[S∗(Ejj ⊗ Ic)S] = ψ(Eii)∗ψ(Ejj) = 0.

Thus, (Eii⊗Ic)SS∗(Ejj⊗Ic) = 0 whenever i 6= j. It follows that SS∗ = S1⊕· · ·⊕Sn
where Si ∈Mc.

Let i > 1, X = E11 + E1i and Y = Ei1 − Eii. From (6), ψ(X) = S∗(Brs)S and
ψ(Y ) = S∗(Crs)S so that

B̃ =
(
B11 B1i

Bi1 Bii

)
=
(

Ic Ic1 ⊕ 0c2
0c1 ⊕ Ic2 0c

)
,

C̃ =
(
C11 C1i

Ci1 Cii

)
=
(

0c 0c1 ⊕ Ic2
Ic1 ⊕ 0c2 −Ic

)
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and all other Buv and Cuv are 0c. Let J1 = Ic1 ⊕ 0c2 and J2 = 0c1 ⊕ Ic2 . Since
X and Y are orthogonal, so are ψ(X) and ψ(Y ). Hence B∗(SS∗)C = 0 and
B(SS∗)C∗ = 0. Thus,(

J2SiJ1 S1J2 − J2Si
0 J1S1J2

)
= B̃∗(S1 ⊕ Si)C̃ = 0

= B̃(S1 ⊕ Si)C̃∗ =
(
J1SiJ2 S1J1 − J1Si

0 J2S1J1

)
.

Since J2S1J1 = J1S1J2 = J2SiJ1 = J1SiJ2 = 0, each of the matrices S1 and
Si is a direct sum of a matrix in Mc1 and a matrix in Mc2. Furthermore, we
can conclude that S1 = Si = P1 ⊕ P2, where P1 ∈ Mc1 and P2 ∈ Mc2 , from
S1J1−J1Si = 0 = S1J2−J2Si. Since i is arbitrary, SS∗ = Im⊗ (P1⊕P2) where P1

and P2 are both positive definite. Thus there exist unitary U1 ∈Mc1 and U2 ∈Mc2

such that U1P1U
∗
1 = D1 and U2P2U

∗
2 = D2, where D1 and D2 are diagonal matrices

with positive diagonal entries.
Let U = Im ⊗ (U1 ⊕ U2) and S̃ = US. Then S̃S̃∗ = Im ⊗ (D1 ⊕ D2). Since

the row vectors of S̃ form an orthogonal basis, we may write S̃ = DV , where
D = Im ⊗ (D1 ⊕D2)1/2 and V is unitary.

On the other hand, we have U∗BU = B for the block matrix B in (6), since

auvIc1 ⊕ avuIc2 = (U1 ⊕ U2)∗(auvIc1 ⊕ avuIc2)(U1 ⊕ U2).

Then S∗BS = S∗U∗BUS = S̃∗BS̃ = V ∗D∗BDV . In fact, the (i, j)-th block of
D∗BD is equal to

(D1 ⊕D2)1/2(auvIc1 ⊕ avuIc2)(D1 ⊕D2)1/2 = auvD1 ⊕ avuD2.

Thus, φ has the asserted form. Since ‖Im⊗(D1⊕D2)‖k′ = ‖ψ(Im)‖r = ‖Im‖k′ = m,
it follows that tr (D1 ⊕D2) = trD1 + trD2 = 1.

Finally, we consider case (III) : m < n. We prove the desired conclusion by
induction on n − m starting from n − m = 0, which follows from cases (I) and
(II). Suppose that n − m = r > 0 and that the result holds for the cases when
n−m < r. Applying the assumption on the restriction of φ on M0

m,n, the subspace
of Mm,n that consists of matrices with zero n-th column, we conclude that for any
A ∈M0

m,n,

φ(A) = U [(D1 ⊗ Ã)⊕ (D2 ⊗ Ãt)⊕ 0p′,q′ ]V

where Ã denotes the m × (n − 1) matrix obtained from A by deleting the n-th
column, (p′, q′) = (p− c1m− c2(n− 1), q− c1(n− 1)− c2m), U ∈Mp and V ∈Mq

are unitary, and the following holds:
(a) if k′ < m and c = c1 + c2 = k/k′, then D1 = 1

c Ic1 and D2 = 1
c Ic2 ;

(b) if k′ = m and c = c1+c2 ≤ k/k′, then D1 ∈Mc1 and D2 ∈Mc2 are diagonal
matrices with positive diagonal entries such that trD1 + trD2 = 1.

Now replacing φ by X 7→ U∗φ(X)V ∗, we may assume that U = Ip and V = Iq .
For any x ∈ Mm,1, let A be the m × n matrix with x as the n-th column and

zero in the other columns, and X = (Xuv)1≤u,v≤c+1 = φ(A), where Xuu ∈Mm,n−1

for 1 ≤ u ≤ c1, Xuu ∈Mn−1,m for c1 < u ≤ c and Xc+1,c+1 ∈Mp′,q′ .
Take any nonzero y ∈ Mm,1 such that x∗y = 0. (Note that 1 < k ≤ m and

hence y exists.) For any l < n, let B be the m×n matrix with y as the l-th column
and zero in all other columns. Then Y = φ(B) = (D1 ⊗ B̃)⊕ (D2 ⊗ (B̃)t)⊕ 0p′,q′ .
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Since A and B are orthogonal, X∗Y = 0q and XY ∗ = 0p. It follows from the
structure of Y that

X∗uvB̃ = 0 when 1 ≤ u ≤ c1 and 1 ≤ v ≤ c+ 1,

X∗uvB̃
t = 0 when c1 < u ≤ c and 1 ≤ v ≤ c+ 1,

XuvB̃
∗ = 0 when 1 ≤ u ≤ c+ 1 and 1 ≤ v ≤ c1,

Xuv(B̃t)∗ = 0 when 1 ≤ u ≤ c+ 1 and c1 < v ≤ c.

Since the l-th column of the m × (n − 1) matrix B̃ is the nonzero vector y, if
XuvB̃

∗ = 0, then the l-th row of Xuv must be the zero vector. Furthermore, since
l can be any integer in {1, . . . , n − 1}, we conclude that Xuv = 0. Similarly, Xuv

must be the zero matrix if X∗uvB̃
t = 0.

On the other hand, if X∗uvB̃ = 0, then all the columns of Xuv must be orthogonal
to y. Since y can be any vector orthogonal to x, all columns of Xuv must be
multiples of x. Hence, Xuv = xwt for some vector w of suitable size. Similarly,
since Xuv(B̃t)∗ = 0, we have Xuv = zxt for some z.

By the arguments in the last two paragraphs, if 1 ≤ u ≤ c1 and c1 < v ≤ c,
then xwt = Xuv = zxt for some w and z of suitable sizes. Thus, w = λx for some
constant λ in C, that is, Xuv = λxxt.

Combining the above analysis, we know that

φ[0m,n−1 | x] =

0c1m,c1n E(x) F (x)
0c2n,c1n 0c2n,c2m 0c2n,q′
0p′,c1n G(x) H(x)


where

E(x) = (λuvxxt)1≤u≤c1,1≤v≤c2 ,

F (x) =

 xwt
1

...
xwt

c1

 ,

G(x) =
(
z1wt · · · zc2x

t
)
,

H(x), λuv, wu and zv all depend on x. By linearity of φ, λuv , wu and zv must be
the same for all x, and λuv must be zero. i.e., E(x) = 0c1m,c2m.

Now we consider the orthogonal pair A = E11 +E1n and B = −E21 +E2n. Let
ei be the i-th column of Im. Then

φ(A) =

D1 ⊗ Ẽ11 0c1m,c2m F (e1)
0c2n,c1n D2 ⊗ Ẽt11 0c2n,q′
0p′,c1n G(e1) H(e1)


and

φ(B) =

D1 ⊗−Ẽ21 0c1m,c2m F (e2)
0c2n,c1n D2 ⊗−Ẽt21 0c2n,q′
0p′,c1n G(e2) H(e2)

 .
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Set W =

wt
1

...
wt
c1

. Since φ(A)φ(B)∗ = 0, the (1, 1)-th block equals

0c1m = (D1 ⊗ Ẽ11)(D1 ⊗−Ẽ21)∗ + F (e1)F (e2)∗

= −(D2
1 ⊗ E12) + (WW ∗ ⊗ E12)

= (WW ∗ −D2
1)⊗ E12.

Thus, WW ∗ = D2
1 . Let D1 = diag (d1, . . . , dc1). Hence, {w1/d1, . . . ,wc1/dc1} is

a set of orthonormal vectors. Let U ∈ Mq′ be a unitary matrix with wt
1/d1, . . . ,

wt
c1/dc1 as the first c1 rows. Then F ′(x) = F (x)U∗ = [D1 ⊗ x | 0c1m,q′−c1 ].
Similarly, by considering φ(A)∗φ(B) = 0, we write

G′(x) = V ∗G(x) =
(
D2 ⊗ xt

0p′−c2,c2m

)
for some unitary V . Now, we write

φ[0m,n−1 | x] = (Icn ⊕ V )

0c1m,c1n 0c1m,c2m F ′(x)
0c2n,c1n 0c2n,c2m 0c2n,q′
0p′,c1n G′(x) H ′(x)

 (Icn ⊕ U).

On the other hand, by applying the assumption on the restriction of φ on the
subspace of Mm,n that consists of matrices with zero in the (n− 1)-th column, we
conclude that

rankφ[0m,n−1 |x] = rankφ[x | 0m,n−2 | x] = rankφ[x | 0m,n−1] = c.

(Note that here we used the fact that n > m ≥ 2 to ensure nontrivial consideration.)
Therefore, H ′(x) = 0 for all x. Finally, there exist permutation matrices P and Q
such that for A = [0m,n−1 |x],

φ(A) = (Icn ⊕ V )P [(D1 ⊗A)⊕ (D2 ⊗At)⊕ 0p′−c2,q′−c1 ]Q(Icn ⊕ U).

The result follows. �
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