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DIFFERENTIAL METHODS FOR FINDING INDEPENDENT SETS
IN HYPERGRAPHS∗

YUSHENG LI† AND WENAN ZANG‡

Abstract. It is shown by using differential methods that if H is a double linear, r-uniform
hypergraph with degree sequence {dv} such that any subhypergraph induced by a neighborhood has
maximum degree less than m, then its independence number is at least

∑
v
fr,m(dv), where fr,m(x)

is a convex function satisfying fr,m(x) ∼ (log x)/x if r = 2 and c/x1/(r−1) if r ≥ 3, as x → ∞,
and c = c(r,m) > 0 is a constant. The proof yields a polynomial-time algorithm for finding such an
independent set in H.
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1. Introduction. Hypergraphs are systems of sets which are conceived as natu-
ral extensions of graphs: elements correspond to vertices and sets correspond to edges
which are allowed to connect more than two vertices. Hypergraph theory is a part of
the general study of combinatorial properties of families of sets; for in-depth accounts
of the subject, see Berge [5] and Duchet [8]. The present paper concerns itself with
the independent set problem on hypergraphs.

A hypergraph H = (V, E) consists of a vertex set V and an edge set E such that
each edge is a nonempty subset of V . Throughout this paper we assume that each
edge contains at least two vertices. For each vertex v, the degree of v, denoted by dv,
is the number of edges containing v, and the neighborhood of v, denoted by N(v), is
the set of all neighbors of v, where a vertex u is a neighbor of (or is adjacent to) v if
u �= v and there is an edge that contains both u and v. Let U be a subset of V . Set
EU = {E ∈ E : E ⊆ U}. The hypergraph (U, EU ) is called the subhypergraph of H
induced by U . We say that U is an independent set of H if it contains no edge. The
independence number of H, denoted by α(H), is the maximum number of vertices in
an independent set of H. The independent set problem is to find an independent set
with the largest size. As is well known, this NP-hard problem arises in a rich variety
of applications, so it has attracted tremendous research efforts.

Let G = (V,E) be a graph on N vertices with average degree d. A classical
theorem of Turán asserts that α(G) ≥ N

d+1 , which was strengthened independently by

Caro [6] and Wei [17] as α(G) ≥
∑

v∈V
1

dv+1 (this bound is better than the former
since function 1/(1 + x) is strictly convex); a nice probabilistic proof of this theorem
can be found in Alon and Spencer [4]. In case G is triangle-free, Turán’s lower bound
can be improved substantially. As shown by Ajtai et al. [1, 2] and Ajtai, Komlós, and
Szemerédi [3], α(G) ≥ cN log d

d , where (and throughout this paper) log x stands for the
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natural logarithmic function, and constant c can be set equal to 1/2.4 (cf. Griggs [9]).
Shearer [15] confirmed a conjecture of Ajtai, Komlós, and Szemerédi [3] and managed
to improve c to 1 − o(1) by establishing that α(G) ≥ Ng(d), where

g(x) =
x log x− x + 1

(x− 1)2
;(1)

he [16] further improved the bound as α(G) ≥
∑

v ḡ(dv), where the function ḡ(x) is
asymptotically equal to g(x) as x → ∞. In his proofs, Shearer first introduced the
appealing differential methods, which are proved to be very powerful in applications.
Shearer’s results can be extended [11, 12, 13] as follows: if in a graph G with N
vertices and average degree d, any subgraph induced by a neighborhood has no vertex
of degree at least m, then α(G) ≥

∑
v gm(dv) ≥ Ngm(d), where

gm(x) =

∫ 1

0

(1 − t)1/m

m + (x−m)t
dt.(2)

(Notice that g1(x) is exactly Shearer’s function g(x) as specified in (1).) This result
has interesting applications in Ramsey theory [12, 14]; for instance, it yields R(m,n) ≤
(1 + o(1))nm−1/(log n)m−2, where Ramsey number R(m,n) is the smallest integer N
such that for any graph G of order N , either α(G) ≥ m or α(Ḡ) ≥ n holds. It is
worthwhile pointing out that since the order of magnitude of R(3, n) is n2/ log n (see
Kim [10]), the above-mentioned lower bound due to Ajtai, Komlós, and Szemerédi
[3] cannot be improved more than a constant factor; we believe Shearer’s bound is
asymptotically sharp on extremal graphs for R(3, n).

The independent set problem on hypergraphs is much more difficult and in-
tractable than that on graphs. So it is natural to restrict our attentions to some
special classes of hypergraphs. A hypergraph H is called r-uniform if each edge of
H contains exactly r vertices (so a 2-uniform hypergraph is a graph), and called
triangle-free if H contains no three distinct vertices v1, v2, v3 and three distinct edges
E1, E2, E3 such that {v1, v2, v3} − {vi} is a subset of Ei for i = 1, 2, 3. We say that
a hypergraph H is linear if any two edges of H have at most one vertex in com-
mon. A linear hypergraph H is said to be double linear if for any two nonadjacent
vertices u and v, each edge containing u contains at most one neighbor of v. Caro
and Tuza [7] proposed a problem on extending the lower bound of Ajtai, Komlós,
and Szemerédi [3] to triangle-free hypergraphs; as a solution to this problem, Zhou
and Li [18] proved that every r-uniform linear triangle-free hypergraph H satisfies
α(H) ≥ Nfr,1(d), where function fr,1(x) is much bigger than (log x)/x when r ≥ 3.
Observe that if a linear hypergraph H is triangle-free, then its subhypergraph induced
by any neighborhood has maximum degree zero. However, the converse need not hold
in general. In this paper we consider hypergraphs whose subhypergraphs induced by
neighborhoods may have edges.

Let us define some functions before presenting our main result. As usual, let

B(p, q) =
∫ 1

0
(1 − t)p−1tq−1dt denote the beta function with p, q > 0. For integers

r ≥ 2 and m ≥ 1, set constants

a =
1

(r − 1)2
, b =

r − 2

r − 1
,

and

B = B(a/m, 1 − b) =

∫ 1

0

(1 − t)a/m−1t−bdt.
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Clearly, 0 < a ≤ 1, 0 ≤ b < 1, and B > 0. For the above r, m and x ≥ 0, define

fr,m(x) =
m

B

∫ 1

0

(1 − t)a/m

tb[m + (x−m)t]
dt.

Since

(1 − t)a/m

tb[m + (x−m)t]
≤ (1 − t)a/m

tb[m(1 − t)]
=

1

m
(1 − t)a/m−1t−b,

we see that fr,m(x) is bounded above by 1 and thus is well defined.

Theorem. Let H = (V, E) be an r-uniform, double linear hypergraph with degree
sequence {dv}. If the maximum degree of any subhypergraph induced by a neighborhood
is less than m, then

α(H) ≥
∑
v∈V

fr,m(dv).

Note that if r = 2, then a = 1, b = 0, and B = m, so f2,m is the function gm(x)
defined in (2). And fr,1(x) is precisely the function involved in the above Zhou–Li
bound. Since any graph and any linear triangle-free hypergraph are double linear,
our theorem generalizes all the results cited above, including Turán’s theorem and
the Caro–Wei theorem as long as graphs in consideration satisfy the conditions.

For any fixed integers r ≥ 3 and M ≥ 1, it was shown in [18] that fr,1(x) ≥
(logM x)/x provided x is large enough. We shall verify that fr,m(x) is a convex
function for x ≥ 0 and that fr,m(x) ∼ (log x)/x if r = 2 and c/x1/(r−1) if r ≥ 3, as
x → ∞, where c = c(r,m) > 0 is a constant and ∼ means an asymptotic equality. By
convexity of fr,m(x), we have fr,m(d) ≤ 1

|V |
∑

v∈V fr,m(dv), where d = 1
|V |

∑
v∈V dv.

Thus the following is an immediate consequence of the above theorem.

Corollary. For fixed integers r ≥ 3 and m ≥ 1, let c = c(r,m) > 0 be the
constant as described above. Then for any ε > 0, there exists a constant D = D(r,m, ε)
such that if a hypergraph H = (V, E) is double linear, r-uniform, and the subhypergraph
induced by any neighborhood has maximum degree less than m, then

α(H) ≥ (1 − ε)
cN

d1/(r−1)
,

where N = |V | and d is the average degree of H with d ≥ D.

2. Properties of the function fr,m. The purpose of this section is to exhibit
some properties satisfied by the function fr,m defined in the preceding section.

Lemma 1. For fixed integers r ≥ 2 and m ≥ 1 and for x ≥ 0, the function
f(x) = fr,m(x) satisfies the differential equation

(r − 1)2x(x−m)f ′(x) + [(r − 1)x + 1]f(x) = 1.(3)

Moreover, f(x) is strictly and completely monotonic, that is, (−1)kf (k)(x) > 0 for all
x ≥ 0. In particular, f(x) is positive, strictly decreasing, and strictly convex.

Proof. By differentiating x under the integral and then integrating by parts,



DIFFERENTIAL METHODS FOR FINDING INDEPENDENT SETS 99

we have

x(x−m)f ′(x)

=
−mx(x−m)

B

∫ 1

0

(1 − t)a/mt1−b

[m + (x−m)t]2
dt

=
mx

B

∫ 1

0

(1 − t)a/mt1−b d

dt

(
1

m + (x−m)t

)
dt

=
−mx

B

∫ 1

0

1

m + (x−m)t

[
(1 − b)(1 − t)a/mt−b − a

m
(1 − t)a/m−1t1−b

]
dt

= −(1 − b)xf(x) +
ax

B

∫ 1

0

(1 − t)a/m−1t1−b

m + (x−m)t
dt

= −(1 − b)xf(x) +
am

B

∫ 1

0

(
1

m(1 − t)
− 1

m + (x−m)t

)
(1 − t)a/mt−bdt

= −(1 − b)xf(x) +
a

B

∫ 1

0

(1 − t)a/m−1t−bdt− af(x)

= −(1 − b)xf(x) + a− af(x)

= −
(

x

r − 1
+

1

(r − 1)2

)
f(x) +

1

(r − 1)2
,

so the desired differential equation follows. The strict and complete monotonicity of
f(x) can be seen by repeatedly differentiating x under the integral.

Let us now proceed to the asymptotic behavior of the function f2,m(x).
Lemma 2. For any fixed integer m ≥ 1 and for x > 1, we have

log(x/m) − 1

x
≤ f2,m(x) ≤ x log x− x + 1

(x− 1)2
.

Therefore f2,m(x) ∼ (log x)/x as x → ∞.
Proof. We first claim that for fixed x ≥ 1, function

f2,m(x) =

∫ 1

0

(1 − t)1/mdt

m + (x−m)t
=

∫ 1

0

t1/mdt

mt + x(1 − t)
dt

decreases as m ≥ 1 increases. To justify the claim, setting t = um gives

f2,m(x) =

∫ 1

0

mumdu

mum + x(1 − um)
.

So it suffices to show that if δ > 0 and 0 < u < 1, then

mum

mum + x(1 − um)
>

(m + δ)um+δ

(m + δ)um+δ + x(1 − um+δ)
.

Equivalently,

δum+δ + m− (m + δ)uδ > 0.

For this purpose, set h(u) = δum+δ + m − (m + δ)uδ. Then h(1) = 0 and h′(u) =
δ(m + δ)uδ−1(um − 1) < 0 for 0 < u < 1, and thus the claim follows.
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Since for x > 1, we have

f2,1(x) =

∫ 1

0

(1 − t)dt

1 + (x− 1)t
=

x log x− x + 1

(x− 1)2
,

by the above claim f2,m(x) ≤ f2,1(x), and so the upper bound is established.
To derive the lower bound, note that

f2,m(x) =

∫ 1

0

(1 − t)1/mdt

m + (x−m)t
>

∫ 1

0

(1 − t)dt

m + (x−m)t

=
x log(x/m) − x + m

(x−m)2
≥ log(x/m) − 1

x
,

where the last inequality amounts to (2x − m) log(x/m) ≥ x − m, or equivalently
(2t − 1) log t ≥ t − 1. Set φ(t) = (2t − 1) log t − t + 1. Then φ(1) = 0 and φ′(t) =
2 log t + (1 − 1/t), which is less than 0 if 0 < t < 1, equal to 0 if t = 1, and greater
than 0 if t > 1. Hence φ(t) ≥ 0 for t > 0, implying the lower bound.

Our next lemma concerns the case when r ≥ 3; it shows that the asymptotic
behavior of fr,m is dramatically different from that of f2,m.

Lemma 3. For fixed integers r ≥ 3 and m ≥ 1, function fr,m(x) ∼ c
x1/(r−1) as

x → ∞, where c = c(r,m) > 0 is defined to be

m

B(m + 1)a/m

∫ 1

0

(1 − t)a/m

tb(m + t)
dt + a

∫ ∞

m+1

dt

t1+a/m(t−m)b−a/m
.

Proof. Our proof relies heavily on the theorem that a linear first-order differential
equation

dy

dx
= p(x)y + q(x)

has a unique solution

y = eφ(x)

(
y0 +

∫ x

x0

q(t)e−φ(t)dt

)

satisfying y0 = y(x0), where φ(x) =
∫ x

x0
p(t)dt. Now let us transform the differential

equation (3) in Lemma 1 into the above standard form. Then we get

p(x) = −a((r − 1)x + 1)

x(x−m)
and q(x) =

a

x(x−m)
.

Set x0 = m + 1 and

y0 = fr,m(m + 1) =
m

B

∫ 1

0

(1 − t)a/m

tb(m + t)
dt.

It follows from the uniqueness of the solution that

fr,m(x) = eφ(x)

(
y0 +

∫ x

m+1

q(t)e−φ(t)dt

)
for x ≥ m + 1.
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Since

φ(x) = −
∫ x

m+1

a((r − 1)t + 1)

t(t−m)
dt

= −a log

((
m + 1

x

)1/m

(x−m)r−1+1/m

)
,

we obtain

eφ(x) =
xa/m

(m + 1)a/m(x−m)1/(r−1)+a/m
(4)

∼ 1

(m + 1)a/mx1/(r−1)
,(5)

and hence

e−φ(x) ∼ (m + 1)a/mx1/(r−1).

Thus there exists a constant M > 0 such that for all t ≥ m + 1,

0 ≤ q(t)e−φ(t) ≤ Mt1/(r−1)

t2
=

M

t1+b
.

Recall that b > 0 as r ≥ 3, so
∫∞
m+1

q(t)e−φ(t)dt < ∞ and

∫ x

m+1

q(t)e−φ(t)dt =

∫ ∞

m+1

q(t)e−φ(t)dt− o(1)

as x → ∞. It follows from (5) that

fr,m(x) = eφ(x)

(
y0 +

∫ ∞

m+1

q(t)e−φ(t)dt− o(1)

)

∼ c

x1/(r−1)
,

where c = 1
(m+1)a/m (y0 +

∫∞
m+1

q(t)e−φ(t)dt). Using (4) and plugging y0, we see that

c is as defined in the lemma.

3. Proof of the theorem. Let us introduce some notions before presenting the
proof. For each v ∈ V , let Hv be the subhypergraph of H induced by V −(N(v)∪{v}),
and let {d′u} denote the degree sequence of Hv. For simplicity, write fr,m(x) as f(x).
Set S(H) =

∑
u∈V (H) f(du) and S(Hv) =

∑
u∈V (Hv) f(d′u). The default value of

S(Hv) is zero if V − (N(v) ∪ {v}) = ∅.
The key step of our proof is to establish the following statement.
Lemma 4. There exists a vertex v in H such that 1 + S(Hv) ≥ S(H).
To show that H contains an independent set I with size at least

∑
v∈V f(dv), we

may apply the following algorithm: Initially set I = ∅. Let v be the vertex exhibited
in Lemma 4. Set I = I ∪ {v} and H = Hv. Repeat the process until H contains no
vertex.

So Lemma 4 serves as a criterion for selecting vertices in I. Let us now prove
that such an independent set I is indeed as desired.
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Proof of the Theorem (assuming Lemma 4). We apply induction on |V |, the
number of vertices in H. Since f(0) = 1 by (3), the assertion holds trivially for
|V | = 1. So we proceed to the induction step.

Note that α(H) ≥ 1+α(Hu) for any vertex u of H. Let v be a vertex as described
in Lemma 4. Then, by induction hypothesis, we have α(H) ≥ 1+α(Hv) ≥ 1+S(Hv) ≥
S(H), completing the proof.

It therefore remains to prove the above lemma.
Proof of Lemma 4. For each v ∈ V , set

N2(v) = {x ∈ V − (N(v) ∪ {v}) : N(x) ∩N(v) �= ∅}

and

Y (v) = 1 + S(Hv) − S(H)

= 1 +
∑

x∈V (Hv)

[f(d′x) − f(dx)] − f(dv) −
∑

u∈N(v)

f(du).

Besides, for each x ∈ N2(v), set nv,x = |N(v) ∩ N(x)|. Let us consider the terms in
Y (v). Since any vertex x ∈ V (Hv)−N2(v) satisfies d′x = dx and any vertex x ∈ N2(v)
satisfies d′x = dx − nv,x (for H is double linear),

Y (v) = 1 − f(dv) −
∑

u∈N(v)

f(du) +
∑

x∈N2(v)

[f(dx − nv,x) − f(dv)].

Clearly, (6) is equivalent to saying that Y (v) ≥ 0 for some vertex v of H. So to prove
the lemma it suffices to show that ∑

v∈V (H)

Y (v) ≥ 0.(6)

Since H is linear and r-uniform,∑
v∈V (H)

∑
u∈N(v)

f(du) = (r − 1)
∑

v∈V (H)

dvf(dv).

So ∑
v∈V (H)

Y (v)

=
∑

v∈V (H)

{1 − [(r − 1)dv + 1]f(dv)} +
∑

v∈V (H)

∑
x∈N2(v)

[f(dx − nv,x) − f(dx)].

Observe that x ∈ N2(v) if and only if v ∈ N2(x) and that nv,x = nx,v; exchanging the
variables in the sum gives∑

v∈V (H)

∑
x∈N2(v)

[f(dx − nv,x) − f(dx)] =
∑

v∈V (H)

∑
x∈N2(v)

[f(dv − nv,x) − f(dv)].

Let

Z(v) =
∑

x∈N2(v)

[f(dv − nv,x) − f(dv)].
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Then ∑
v∈V (H)

Y (v) =
∑

v∈V (H)

{1 − [(r − 1)dv + 1]f(dv)} +
∑

v∈V (H)

Z(v).(7)

Now comes the technical part of our proof, the analysis of the term
∑

v∈V (H) Z(v).

Since f(x) is convex, we have

f(x− 1) − f(x) ≥ f(y − 1) − f(y) whenever 1 ≤ x ≤ y.(8)

(To see this, write x = α(x − 1) + (1 − α)y and y − 1 = β(x − 1) + (1 − β)y, where
0 ≤ α, β ≤ 1. By convexity, f(x) ≤ αf(x−1)+(1−α)f(y) and f(y−1) ≤ βf(x−1)+
(1−β)f(y). Summing up these two inequalities yields f(x)+f(y−1) ≤ f(x−1)+f(y)
as α + β = 1.) From (8) we deduce that

f(dv − nv,x) − f(dv) =

nv,x∑
i=1

[f(dv − i) − f(dv − (i− 1))] ≥ [f(dv − 1) − f(dv)]nv,x,

and so

Z(v) ≥ [f(dv − 1) − f(dv)]
∑

x∈N2(v)

nv,x.

Note that H is double linear, r-uniform, and each vertex u ∈ N(v) is incident to at
most m−1 edges in N(v). Moreover, there is precisely one edge in H containing both
u and v. So ∑

x∈N2(v)

nv,x ≥ (r − 1)
∑

u∈N(v)

(du −m).

Write Av = f(dv − 1) − f(dv). Then∑
v∈V (H)

Z(v) ≥ (r − 1)
∑

v∈V (H)

∑
u∈N(v)

(du −m)Av

= (r − 1)
∑
E∈E

∑
u,v∈E

{(du −m)Av + (dv −m)Au}

= (r − 1)
∑
E∈E

∑
u,v∈E

{(dv −m)Av + (du −m)Au + (du − dv)(Av −Au)}.

By (8), we get (du − dv)(Av −Au) ≥ 0. Thus∑
v∈V (H)

Z(v) ≥ (r − 1)
∑
E∈E

∑
u,v∈E

{(dv −m)Av + (du −m)Au}

= (r − 1)
∑

v∈V (H)

∑
u∈N(v)

(dv −m)Av

= (r − 1)2
∑

v∈V (H)

dv(dv −m)Av.

From the convexity of f(x), it follows that f(y) ≥ f(x)+f ′(x)(y−x) for any x, y ≥ 0.
So Av = f(dv − 1) − f(dv) ≥ −f ′(dv) and hence∑

v∈V (H)

Z(v) ≥ −(r − 1)2
∑

v∈V (H)

dv(dv −m)f ′(dv).(9)
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Finally, combining (7) with (9) and using differential equation (3) in Lemma 1, we
obtain ∑

v∈V (H)

Y (v)

≥
∑

v∈V (H)

{1 − [(r − 1)dv + 1]f(dv) − (r − 1)2dv(dv −m)f ′(dv)}

= 0.

This completes the proof of (6) and hence the lemma.
It is easy to see that our proof yields a polynomial-time algorithm for finding an

independent set in H with at least
∑

v∈V fr,m(dv) vertices.
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