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Application of Fully Decoupled Parity Equation in
Fault Detection and Identification of DC Motors

C. W. Chan, Song Hua, and Zhang Hong-Yue, Senior Member, IEEE

Abstract—A multiple fault detection and identification method
based on fully decoupled parity equations for dynamic systems
with known linear and unknown nonlinear terms is presented. The
fully decoupled parity equation vectors is derived and it is shown
that the residuals generated from it are decoupled from other
faults and the unknown nonlinear term and are sensitive only to
specific actuator or sensor faults. The condition for the existence
of the equation is also given. From the residuals generated from the
fully decoupled parity equation, the faults are estimated using the
recursive least-squares method. The performance of the proposed
method is illustrated by applying it to detect, isolate, and identify
faults in a simulated dc motor.

Index Terms—Fault detection and identification, parity equa-
tion, recursive least-squares method.

I. INTRODUCTION

FAULT detection, isolation, and identification are important
to improve the safety and reliability of practical control

systems. A number of techniques for fault diagnosis can be
found in well-known books in this research area [1]–[3]. A
general approach to detect faults is based on residuals generated
from the parity equation [4]–[9]. The residuals are small, if the
system is operating normally, but are large, if there are faults
in the system. If the residuals are sensitive to specific faults,
then these faults can be isolated and identified. The design of
the parity equation for systems with modeling errors arising
from changes in the operating point is presented in [8]. An
optimal robust parity equation for generating residuals maxi-
mally sensitive to faults and minimally sensitive to modeling
errors is derived in [9]. This approach is further refined in [10]
and a criterion is constructed for determining a set of parity
vectors with different robustness properties in fault detection.
The optimal parity vector for isolating faults is proposed in
[11] and [12]. However, the identification of the faults has not
been considered.

The unknown input observer (UIO) is another popular fault
diagnosis approach for systems with an unknown nonlinearity.
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In [13], the uncertainty is estimated and the estimate is used to
discount the effect of the nonlinear uncertainty. Observers are
proposed in [14] and [15] to decouple the effect of the unknown
inputs, and are then used in fault diagnosis schemes [16], [17].
Although fault diagnosis based on the UIO can handle nonlinear
systems, few results are available in the literature to use this
approach to identify faults. However, it is important to identify
faults, especially for fault accommodation.

To compute the residuals from the general parity equation, it
is necessary to obtain first an accurate mathematic model of the
system. For this reason, it has mainly been applied to linear sys-
tems, where accurate models are more readily available. How-
ever, as accurate models for nonlinear systems are more difficult
to obtain in practice, and as the parity equation is sensitive to
noise and model uncertainties, the parity equation derived using
existing approaches cannot be readily applied to nonlinear and
uncertainty systems. In this paper, a new approach is presented
not only to detect and isolate faults, but also to identify faults
for systems with know linear and unknown nonlinear terms.
In practical control systems, there are two common faults: the
actuator fault and the sensor fault [18]. In this paper, a fully
decoupled parity equation is derived and the residuals generated
from it are decoupled from the system state, the unknown non-
linearity, and other faults, but only sensitive to specific sensor
or actuator faults. For an actuator, the common faults are either
it fails completely, or it is jammed [19]. Sensor faults are more
complicated. Bias and/or drifting can occur, as well as precision
degradation or complete failure [19]. It is shown in [19] and
[20] that these faults can be described by a linear fault model,
and faults can be identified from the parameters of this model.
As the fault model is linear, its parameters can be identified
from the residuals using the recursive least-squares method. To
illustrate the performance of the proposed method, it is applied
to a simulated dc motor, and it is shown that the proposed
method is able to detect, isolate, and identify the faults.

The paper is organized as follows. In Section II, the condi-
tions for the residuals generated from the fully decoupled parity
equations to be decoupled from the system state, the unknown
nonlinearity and other faults, but only sensitive to specific
sensor or actuator faults are derived. The isolation of actuator
or sensor fault based on the fully coupled parity equation is pre-
sented in Section III, followed by the identification of actuator
or sensor faults based on the linear fault model in Section IV.
The implementation and the performance of the proposed
method is demonstrated by a simulated dc motor with a shunt
field circuit, and it is shown that the actuator or sensor faults
can be successfully isolated and identified.
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II. FULLY DECOUPLED PARITY EQUATION

Practical dynamic systems can often be represented by a
known linear state-space model with unknown nonlinearity.
The known linear part can be obtained from the physical
construction of the system, while the unknown nonlinear part
includes the uncertainty and the unknown inputs such as mod-
eling errors and external disturbances. The nonlinear discrete
dynamic system can be described by [11]

{
x(k + 1) = Ax(k) + Bu(k) + Fw(x, u, k) + ς(k)
y(k) = Cx(k) + Gψ(x, u, k) + ξ(k) (1)

where x(k) ∈ Rn is the state, u(k) ∈ Rp is the input, y(k) ∈
Rq is the sensor output, w(x, u, k) ∈ Rr and ψ(x, u, k) ∈
Rr1 are the unknown nonlinear part of the system, ς(k) and
ξ(k) are noise with Gaussian distribution, and A, B, C,
F , and G are known matrices with appropriate dimensions.
Let w(k) = w(x, u, k) and ψ(k) = ψ(x, u, k). For s > 0, the
second equation in (1), or the measurement equation is given
by [11]

Y (k) = H0x(k − s) + HcU(k) + HwW (k) + HψΨ(k) (2)

where Y (k) is the normal sensor output, s is the order of
the parity space, Y (k) = [yT(k − s) . . . yT(k)]T, U(k) =
[uT(k − s) . . . uT(k)]T, W (k) = [wT(k − s) . . . wT(k)]T,
Ψ(k) = [ψT(k − s) . . . ψT(k)]T, and H0, Hc, Hw, and Hψ are

H0 =




C
CA

...
CAs−1

CAs




Hc =




0 · · · 0
CB 0 · · · 0
CAB CB 0 · · · 0

...
CAs−2B · · · · · · CB 0 0
CAs−1B CAs−2B · · · CAB CB 0




Hw =




0 · · · 0
CF 0 · · · 0
CAF CF 0 · · · 0

...
CAs−2F · · · · · · CF 0 0
CAs−1F CAs−2F · · · CAF CF 0




Hψ =



G
G
...
G


 . (3)

Definition 1: The parity space V is defined as follows
[12], [20]

V = {v|vTH0 = 0} (4)

where v is the parity vector with order s, and H0 and s are
defined in (3).

Definition 2: The parity equation at time k is given by

r(k) = vT [Z(k) −HcUc(k)] (5)

where r(k) is the residual, Uc(k) = [uc(k − s) . . . uc(k)]T

is the normal input to the actuator, and Z(k) = [Z(k −
s) . . . Z(k)]T is the sensor output that may contain faults.

From (5), any actuator or sensor fault is included in r(k).
For a normal actuator, Uc(k) = U(k), and for a normal sensor,
Z(k) = Y (k). To isolate and identify faults, the residuals gen-
erated by (5) should be sensitive only to the specific fault.
Definition 3: If parity vector v satisfies

V ∗ = {v|vTH∗ = 0} (6)

where H∗ is to decouple v from the state, unknown nonlinear
term and other faults. Then, V ∗ is the fully decoupled parity
space and v is the fully decoupled parity vector.

The conditions under which the fully decoupled parity (5)
can be used to detect, isolate, and identify faults are given
below.
Lemma 1: Faults can be detected, isolated, and identified by

r(k) given by the fully decoupled parity (5), if there exists a
fully decoupled parity vector v, such that r(k) is:

1) decoupled from the states of systems;
2) decoupled from the unknown nonlinear parts W (k) and

Ψ(k), which may contain the unknown inputs and the
uncertainty;

3) sensitive only to special actuator faults or sensor faults,
but decoupled from other faults.
Proof: Condition (1) can be obtained readily from (4). For

a system operating normally, r(k) obtained from (2) is

r(k) = vT [Y (k) −HcUc(k)]

= vT [H0x(k − s) + HcU(k) + HwW (k)

+ HΨΨ(k) −HcUc(k)]

= vT [H0x(k − s) + HwW (k) + HΨΨ(k)] . (7)

From (4), r(k) is decoupled from the system state when the
system is normal. If the unknown nonlinear terms W (k) and
Ψ(k) are identically zero, r(k) obtained from (7) is zero only if
the system is normal. If vT[HwW (k) + HψΨ(k)] is identically
zero, then condition (2) follows, and hence r(k) is decoupled
from W (k) and Ψ(k). If conditions (1) and (2) are satisfied,
r(k) is nonzero only if the system is faulty. Therefore, faults
can be detected from r(k), as follows

‖r(k)‖ =
{≥ rh faulty

< rh normal
(8)

where rh is the threshold obtained from experience based on
the safety and reliability requirement for the system. However,
the residual r(k) generated from (5) satisfies only conditions (1)
and (2), and can only be used to detect fault, but not to isolate it.
This is because r(k) is a function of all actuator faults or sensor
faults. However, if conditions (3) is satisfied, then r(k) will only
be sensitive to specific faults, and insensitive to any other faults.
Consequently, r(k) can also be used to isolate and identify
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faults using a fault model, as described later. Conditions (2) and
(3) are the key to derive the fully decoupled parity equation.
The diagnosis of multiple actuator and sensor faults based on
Lemma 1 is presented below. �

III. ISOLATION OF FAULTS

To isolate a fault, the residual must be sensitive only to that
fault, but insensitive to any other faults. The design of H∗ to
ensure the fully decoupled vector v satisfies condition (3) for
an actuator fault or a sensor fault is presented in this section.

A. Isolation of Actuator Faults

To isolate the actuator fault with the assumption that the
sensors are operating normally, the parity vector must satisfy
(4) to ensure the residuals are decoupled from the system state.
The residuals are decoupled from the unknown nonlinear terms
W (k) and Ψ(k), if [21]

vTHw = 0 vTHψ = 0. (9)

For actuator i, the parity vector must satisfy the following
equation:

vT
i Hci = 0, i = 1, 2, . . . , p (10)

where p is the number of actuators in the dynamic system, νi is
the parity vector sensitive to the ith actuator, and Hci is

Hci =




0 0 · · · 0

CB∗ 0 0
...

CAB∗ CB∗ 0 0
...

CAs−2B∗ · · · · · · CB∗ 0 0
CAs−1B∗ CAs−2B∗ · · · CAB∗ CB∗ 0




(11)

where B∗ is the matrix after removing the ith column from
B, which corresponds to the ith actuator. It follows that H∗ is
given by

H∗ = [H0 Hw Hψ Hci]. (12)

From (6), (9), and (10), the fully decoupled parity vector
sensitive to the ith actuator must satisfy

vT
i [H0 Hw Hψ Hci] = 0. (13)

The parity equation constructed by the parity vector satisfy-
ing (13) is referred to as the fully decoupled parity equation
sensitive to a specific actuator. The condition for the existence
of nonzero solutions of (13) is given in Theorem 1.
Theorem 1: Let the column rank of [H0 Hw Hψ Hci] be nx.

The necessary and sufficient condition for (13) to have nonzero
solutions is

s >
nx
q

− 1 (14)

and the sufficient condition is

s >
n + r1

q + 1 − (r + p)
− 1, q > (r + p) − 1 (15)

where n is the dimension of the system states, q and p are,
respectively, the number of sensors and actuators, and r and
r1 are, respectively, the dimension of the unknown nonlinear
term in (1).

Proof: The left null space and hence the nonzero so-
lution of (13) exists, if and only if the number of rows of
[H0 Hw Hψ Hci] is greater than nx. Since the dimension
of H0, Hw, Hψ , and Hci are, respectively, (s + 1)q × n,
(s + 1)q × (s + 1)r1, (s + 1)q × r1, and (s + 1)q × (s + 1) ·
(p− 1), hence the dimension of [H0 Hw Hψ Hci] is given
by (s + 1)q × [n + r1 + (s + 1)(r + p− 1)]. Therefore, the
necessary and sufficient condition for the existence of nonzero
solution is: (s + 1)q > nx, i.e., s > (nx/q) − 1.

Further, if the number of rows of [H0 Hw Hψ Hci] is greater
than the number of columns, then the nonzero solution of (13)
is certain to exist, giving the sufficient condition: (s + 1)q >
n + r1 + (s + 1)(r + p− 1).

From Theorem 1, the order s can be selected first before
constructing the matrices H0, Hw, Hψ , and Hci. From (13), if
q > (r + p) − 1, an appropriate data window s can be selected
to obtain the fully decoupled parity vector for constructing
H0, Hw, Hψ , and Hci. Clearly, if q > n + r1 + (r + p), then
s = 0. �

B. Isolation of Sensor Faults

Similarly, it is assumed that the actuators are operating
normally when detecting sensor faults. The fully decoupled
parity equation is constructed such that the residuals generated
are sensitive only to specific sensor faults, but insensitive to
other sensor faults. For sensors from 1 to q, the fully decoupled
parity equation given by (5) is obtained for each sensor using
H0i, Hci, Hwi, and Hψi and with C and G replaced by Ci
and Gi, where Ci and Gi, are obtained from C and G by
setting the ith row to 0, which corresponds to the ith sensor.
For example, for sensor 1: C1 = [0T cT2 cT3 · · · cTq ]T and G1 =
[0T gT

2 gT
3 · · · gT

q ]T, where cj and gj(j = 1, 2, . . . , q) are the
jth row vector of matrices C and G. If the sensors are operating
normally, then

ri(k) = vT
i [H0ix(k − s) + HwiW (k) + HψiΨ(k)] . (16)

From (16), for ri(k) to be decoupled from the system state, vi
must satisfy

vT
i H0i = 0. (17)

The parity vector vi should also satisfy the following conditions
if it is decoupled from W (k) and Ψ(k):

vT
i Hwi = 0 vT

i Hψi = 0 (18)

and H∗ becomes

H∗ = [H0 Hwi Hψi]. (19)
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It follows that if the parity vector is insensitive to the ith
sensor, then

vT
i [H0i Hwi Hψi] = 0. (20)

For vi to be insensitive to the ith sensor, the elements corre-
sponding to the ith sensor in H0i, Hci, Hwi, and Hψi must
be 0. The parity equation given by (20), referred to as the fully
decoupled parity equation, is insensitive to the ith sensor, if the
element of vi corresponding to the ith sensor is 0. The condition
for the existence of vi is given below.

Theorem 2: Let ni be the number of the independent
columns in [H∗

0i H
∗
wi H

∗
ψi]. The necessary and sufficient condi-

tion for the existence of nonzero solution of (20) is

s >
ni

q − 1
− 1 (21)

and the sufficient condition is

s >
n + r1

q − 1 − r
− 1, q > r + 1 (22)

where H∗
0i, H∗

wi, and H∗
ψi are obtained from H0i, Hwi, and

Hψi by removing the ith row of Ci, Di, and Gi, which is a
“0” vector.

The proof of this theorem is similar to that of Theorem 1.
From (21) and (22), s is selected, and H0i, Hci, Hwi, and Hψi

are then constructed.

IV. IDENFICATION OF FAULTS

It is shown in [18] and [20] that the actuator and/or sensor
faults, such as varying scaling factor and constant bias, can be
described by

z = ηy + λ (23)

where z is measurement with a fault, y the output without fault,
η the scaling factor, and λ the bias. If an actuator or a sensor is
operating normally, then η = 1 and λ = 0. For constant output
fault, η = 0, and λ is a nonzero constant. For a scaling factor
fault, η �= 1 and λ = 0, and for a constant bias fault, η = 1
and λ �= 1. The estimation of the parameters η and λ from
residuals generated from the fully decoupled parity equation
will be discussed in this section.

A. Identification of Actuator Faults

If the ith actuator is faulty, then (23) becomes

ui(k) = ηi(k)uic(k) + λi(k) (24)

where ui(k) is the input of the ith actuator, uic(k) is the normal
input, ηi(k) is the scaling factor, and λi(k) is the bias. From the
residuals generated from the fully decoupled parity equations,
the parameters of the fault model (24) can be estimated by
using the recursive least-squares method. From (2) and (5), the
residuals that are sensitive to the ith actuator are given by

ri(k) = vT
i [(H0x(k − s) + HcU(k)

+ HwW (k) + HψΨ(k)) −HcUc(k)] . (25)

From (11), νT
i H0x(k − s) = 0, νT

i HwW (k) = 0 and
νT
i HψW (k) = 0, then

ri(k) = vT
i [HcU(k) −HcUc(k)] . (26)

Also, vT
i Hci = 0, where Hci is obtained by removing the ith

column of B in Hc. Since ri(k) obtained from (26) is sensitive
only to the ith actuator and insensitive to the other actuators,
changes in the input of other actuators do not affect ri(k).
Therefore, it can be assumed that the scaling factor and the bias
of the fault model of the other actuators are the same as that
for the ith actuator. As the fault model of actuator at s + 1 is
unchanged from the last data window at s, then (24) becomes

U(k) = ηi(k)Uc(k) + λi(k)E (27)

where E = [1 1 · · · 1]T is a vector with a dimension of
(s + 1)p. Rewriting (26) gives

ri(k) = vT
i [Hc (ηi(k)Uc(k) + λi(k)E) −HcUc(k)]

= vT
i [(ηi(k) − 1)HcUc(k) + Hcλi(k)E]

=φi(k)θi(k). (28)

Rewriting (28) to include modeling and measurement noise
n(k) gives

ri(k) = φi(k)θi(k) + n(k) (29)

where φi(k) = [νT
i HcUc(k) νT

i HcE] and θi(k) = [(ηi(k) −
1) λi(k)]T. Assuming n(k) is a zero mean white noise with a
covariance matrix of R(k), then from (29), θ̂(k) can be obtained
by the recursive least-squares method [23]:

K(k) =P (k − 1)φT(k)
[
I + φ(k)P (k − 1)φT(k)

]−1
(30)

θ̂(k) = θ̂(k − 1) + K(k)
[
r(k) − φ(k)θ̂(k − 1)

]
(31)

P (k) =P (k − 1) −K(k)φ(k)P (k − 1) (32)

where K(k) and P (k) are, respectively, the gain matrix and the
error covariance matrix, and I is the unit matrix. From (29),
the fault of the ith actuator appears in the residuals, if the fully
decoupled parity vector also satisfies

vT
i Hc �= 0. (33)

This result is summarized in the following theorem.
Theorem 3: The residual generated from the fully decoupled

parity equation can detect, isolate, and identify the actuator
faults, if the fully decoupled parity vector satisfies (13) and
(33), i.e.,

vT
i [H0 Hw Hψ Hci] = 0 and vT

i Hc �= 0.

B. Identification of Sensor Faults

The fault model of the ith sensor can be described by [22]

zi(k) = yi(k) + fi(k) (34)
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where zi(k) is the measured output of the ith sensor and yi(k)
is the output without fault. In matrix form, (34) becomes

z(k) = y(k) + f(k) (35)

where

z(k) = [z1(k) z2(k) · · · zq(k)]T

y(k) = [y1(k) y2(k) · · · yq(k)]T

f(k) = [f1(k) f2(k) · · · fq(k)]T .

Assuming the fault model of sensor is unchanged from the last
data window s + 1, then

Z(k) = Y (k) + I∗f(k) (36)

where Z(k) = [zT(k − s), zT(k − s + 1), . . . , zT(k)]T is the
actual sensor output, I∗ = [I0 I0 · · · I0]T is a matrix with
dimension (s + 1)q × q and I0 is a q × q identity matrix. The
residual insensitive to the ith sensor is

ri(k) = vT
i [Zi(k) −HciU(k)]

= vT
i

[
Yi(k) + I∗f i(k) −HciU(k)

]
(37)

where yi and fi are replaced by 0 in Yi(k) and fi(k). When the
actuators are operating normally, the residual insensitive to the
ith sensor can be obtained from (16) and (37)

ri(k) = vT
i [H0ix(k − s) + HciU(k) + HwiW (k)

+ HψiΨ(k) + I∗f i(k) −HciU(k)
]
. (38)

From (20)

vT
i H0ix(k − s) = 0, vT

i HwiW (k) = 0, vT
i HψiW (k) = 0

hence

ri(k) = vT
i I

∗f i(k) (39)

r(k) = vI∗f(k)

=φ(k)θ(k) (40)

where r(k) = [r1(k) r2(k) · · · vq]T and v = [v1 v2 · · · vq]T.
Rewriting (40) to include the measurement noise n(k) yields

r(k) = φ(k)θ(k) + n(k) (41)

where θ(k) = f(k), φ(k) = vI∗, and n(k) is defined in (29).
From (41), sensor faults can be estimated by the recursive least-
square algorithms, as described previously.

V. EXAMPLE

Fault diagnosis of dc motors has attracted considerable
interest, as they are often used in practical control systems
[24], [25]. In this paper, the proposed approach is used to detect
and identify faults in the dc motor. A dc motor with a shunt field

Fig. 1. Residual sensitive to actuator under normal operating conditions.

Fig. 2. Residual sensitive to actuator when fault occurred at t = 10 s.

circuit can be described by the nonlinear ordinary differential
equations [26]


i̇f = −Rf

Lf
if + 1

Lf
V, if (0) = if0

i̇a = −Ra

La
ia − M

La
ifωr + 1

La
V, ia(0) = ia0

ω̇r = M
J if ia − D

J ωr, ωr(0) = ωr0

(42)

where if is the field current, ia the armature current, ωr the
angular velocity, V the input voltage, Rf and Lf the field
resistance and inductance, Ra and La the armature resistance
and inductance, M the mutual inductance between Lf and
La, and D and J the viscous damping and the moment of
inertia of the load. Let x = [if ia ωr]T be the state and y =
[if ia if + ia ωr]T be the measurement output. Let u = V . The
discrete state-space equation derived from (42) is [27]

x(k + 1) =


 0.8825 0 0

0 0.6839 0
0 0 0.9948


x(k)

+


 0.002235

0.0832
0


u(k) +


 0 0

1 0
0 1


w(k) (43)

y(k) =




1 0 0
0 1 0
1 1 0
0 0 1


x(k) (44)

where the unknown nonlinear term w is defined as: w(k) =[
ϕ1(k)
ϕ2(k)

]
, and ϕ1(k) and ϕ2(k) are the discrete versions of

(−M/La)ifωr and (M/J)if ia in (42).
From (43) and (44), there are one actuator and four sensors.

As R(k) is assumed known, it is set to a 2 × 2 diagonal
matrix with 0.02 along its diagonal in the simulation. The
parity vectors can be obtained from (13) and (20), and residuals
sensitive to a specific fault can be computed by (5). The fault
models can be estimated from (29) and (41) by the recursive
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Fig. 3. Estimated parameters of fault model under normal operating conditions.

Fig. 4. Estimated parameters of the fault model when actuator fault occurred at t = 10 s.

Fig. 5. Estimation of sensor faults when faulty occurred at t = 10 s f =
[10 10 0.1 0]T.

least-squares method. Since the constant bias fault is common
in control systems [14], it will be used to validate the proposed
technique in the simulation.

A. Identification of Actuator Faults

The matrix Hc for the actuator is

Hc =
[

0 0 0 0 0 0 0 0
0 0 0 0 0.0022 0.0823 0.0845 0

]T

.

The residuals sensitive to specific actuator fault before the
fault occurs are shown in Fig. 1. When a fault given by the
fault model (20) with η = 2 and λ = 10 occurred at 10 s,
the residuals are shown in Fig. 2. The identification of the
fault under normal operating condition is shown in Fig. 3, and
under faulty condition in Fig. 4. Clearly, the residuals generated
from the fully decoupled parity equation is sensitive only to the
specific actuator fault, and is independent of the system state

Fig. 6. Estimation of sensor faults when fault occurred at t = 10 s, f =
[0 3.5 2 0]T.

and the unknown nonlinear term, indicating that the actuator
fault can be detected, isolated, and identified.

B. Identification of Sensor Faults

The matrices Hci(i = 1, 2, 3, 4) for sensor 1 to sensor 4 are
computed, as shown at the top of the next page.

Consider a step offset with a magnitude of 10 occurring in
sensors 1 and 2, and 0.1 in sensors 3 and 4 after 10 s. The
estimated parameters of the fault model are shown in Fig. 5,
and are close to the actual fault. Next, consider the case when
sensors 1 and 4 are operating normally, while sensors 2 and
3 have developed a fault with a step offset of 3.5 and 2,
respectively, after 10 s. The estimated faults are shown in
Fig. 6, showing that the estimated faults are close to the actual
ones, illustrating that the proposed method is able to detect,
isolate, and identify successfully sensor faults.



CHAN et al.: APPLICATION OF FULLY DECOUPLED PARITY EQUATION IN FAULT DETECTION 1283

HC1 =




0 0 0 0 0 0.0823 0.0845 0 0 0.0563 0.0583 0 0 0.0385 0.0402 0 0 0.0263 0.0279 0

0 0 0 0 0 0 0 0 0 0.0823 0.0845 0 0 0.0563 0.0584 0 0 0.0385 0.0402 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0.0823 0.0845 0 0 0.0563 0.0583 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0823 0.0845 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




T

HC2 =




0 0 0 0 0.00224 0 0.0845 0 0.00197 0 0.0583 0 0.00174 0 0.0402 0 0.00154 0 0.0279 0

0 0 0 0 0 0 0 0 0.00224 0 0.0845 0 0.00197 0 0.0583 0 0.00174 0 0.0402 0

0 0 0 0 0 0 0 0 0 0 0 0 0.00224 0 0.0845 0 0.00197 0 0.0583 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00224 0 0.0845 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




T

HC3 =




0 0 0 0 0.00224 0.0823 0 0 0.00197 0.0563 0 0 0.00174 0.0385 0 0 0.00154 0.0263 0 0

0 0 0 0 0 0 0 0 0.00224 0.0823 0 0 0.00197 0.0563 0 0 0.00174 0.0385 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.00224 0.0823 0 0 0.00197 0.0563 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00224 0.0823 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




T

HC4 =




0 0 0 0 0.00224 0.0823 0.0845 0 0.00197 0.0563 0.0583 0 0.00174 0.0385 0.0402 0 0.00154 0.0263 0.0279 0

0 0 0 0 0 0 0 0 0.00224 0.0823 0.0845 0 0.00197 0.0563 0.0583 0 0.00174 0.0385 0.0402 0

0 0 0 0 0 0 0 0 0 0 0 0 0.00224 0.0823 0.0845 0 0.00197 0.0563 0.0583 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00224 0.0823 0.0845 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




T

VI. CONCLUSION

An approach based on the fully decoupled parity equation
for fault diagnosis in systems with unknown nonlinearity is
presented in this paper. Conditions for the residuals gener-
ated from the fully decoupled parity equation to be sensi-
tive only to specific faults, but decoupled from the system
state, the unknown nonlinearity, and other faults are derived.
By assuming the actuator and sensor faults to be approxi-
mated by a linear fault model, these faults can be estimated
from the residuals by the recursive least-squares method. It
is shown that the proposed method has successfully detected
and identified multiple actuator or sensor faults in a simulated
dc motor.
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