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The paper investigates the hypothetical assumption of neglecting transverse normal stress in
vibration analysis for cantilevered thick plates and rectangular parallelepiped. The analysis solves
the three-dimensional elasticity energy functional including, as well as excluding, transverse normal
stress and obtains free vibration solutions for a cantilevered parallelepiped. Although it is widely
accepted, the omission of transverse normal stress is well justified in Kirchhoff–Love thin-plate
theory and higher-order thick-plate models; the transverse normal stress effects and thickness extent
to which the thick-plate models apply as the thickness increases are practically unknown. The
inconsistency of assuming constant transverse normal displacement through thickness for
thick-plate models is also addressed. The paper concludes that for a rectangular parallelepiped with
thickness exceeding a certain limit, there is considerable discrepancy if transverse normal stress is
neglected. ©1999 Acoustical Society of America.@S0001-4966~99!02312-7#

PACS numbers: 43.40.Dx@CBB#
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INTRODUCTION

For decades, the analysis of thick plates has negle
the effects of transverse normal stress. The Reissn
Mindlin first-order plate theory~Reissner, 1945; Mindlin,
1951! extended the classical Kirchhoff–Love thin-pla
theory to analyze plates with considerable thickness. Tra
verse shear deformation was considered by including tra
verse shear strain effects in the analysis. The first-or
theory assumes constant transverse shear strains throug
plate thickness and renders a paradoxical implication that
transverse shear strain components do not vanish on the
and bottom surfaces. A shear correction factor (k5p2/12)
was therefore derived by Reissner~1945! to account for this
deficiency. Using this first-order theory, accurate vibrat
formulation and solutions have been reported for lamina
curved beams~Qatu, 1993! and plates~Bert and Chen,
1978!.

The inadequacy of the first-order shear deformat
theory to overcome the nonvanishing shear strain effe
stimulated the development of research in thick plates w
various formulations of higher-order theories. One of the e
liest attempts was initiated by Soler~1968!, who expressed
all dependent variables including displacement and st
components in Legendre polynomials. Other developme
in the higher-order plate theory include Whitney and S
~1973! with quadratic and linear distributions for in-plan
and transverse displacements; Whitney and Sun~1974! with
linear and quadratic distributions for in-plane and transve
displacements; and Iyengaret al. ~1974! and Lo et al.
~1977a,b! with cubic and quadratic distributions for in-plan
and transverse displacements. Washizu~1980! expressed the
in-plane displacement in a power series of transverse c
dinate (z) and simplified the function to a first-order expre
sion. By imposing zero transverse shear-stress condition
the free surfaces, Levinson~1980! developed a third-orde
plate theory with cubic in-plane displacement and cons
transverse displacement without the requirement of a s
3375 J. Acoust. Soc. Am. 106 (6), December 1999 0001-4966/99/1
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correction factor. Perhaps the most remarkable work on
third-order shear deformation theory for thick plates was
tributed to Reddy and his associates~1984a, b, 1985, 1989!
based on a similar approach as Levinson~1980!, resulting in
a parabolic transverse shear strain distribution in thickne
This approach had been extended to investigate the num
cal aspects and effects of various boundary conditions
free vibration of thick plates~Lim et al., 1998a,b! and singly
and doubly curved shallow shells~Lim and Liew, 1995;
Liew and Lim, 1996!.

Similar to the hypothesis of Kirchhoff–Love plat
theory, the Reissner–Mindlin first-order and Levinson
Reddy higher-order plate theories do not consider transv
normal stress. Some authors have expressed concern ov
validity of this hypothesis. Gould~1988! suggested that the
concept of transverse inextensibility (w5wo) must be re-
viewed in analysis of thick plates and shells with transve
shear flexibility. He expressed that the inclusion of tran
verse shearing strains to extend the bounds to include so
what thicker plates and shells is difficult to quantify since
true thick-plate or shell theory should account for transve
normal stress as well.

The transverse normal stress is considered in th
dimensional elastic analysis of solids. However, such thr
dimensional elastic solutions are particularly scarce. Som
the investigations are concerned with rods and bea
~Hutchinson, 1971; Hutchinson, 1981; Leissa and S
1995a!, parallelepiped~Fromme and Leissa, 1970; Hutchin
son and Zillmer, 1983; Leissa and Zhang, 1983; Liewet al.,
1995a!, solid and hollow cylinders~Hutchinson, 1967;
Hutchinson, 1980; Leissa and So, 1995b; Liewet al., 1995b;
So and Leissa, 1997!, truncated hollow cones~Leissa and So,
1995c!, and open shells~Lim et al., 1998c!.

To the author’s knowledge, direct comparison of thre
dimensional elasticity solutions including and excludi
transverse normal stress is only available in Hutchins
~1979, 1984!. In these two papers, Hutchinson analyzed
337506(6)/3375/9/$15.00 © 1999 Acoustical Society of America
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vibration of thick, free circular plates using the Mathieu s
ries solution and modified Pickett method to obtain ex
solutions. The approximate solutions were obtained by
Mindlin thick-plate model including shear deformation a
rotary inertia. These analyses concluded that, for thick, f
circular plates, the approximate solution yields frequenc
of sufficient accuracy for most engineering applicati
within the range of applicability of the approximate theor
However, results are not available for thick rectangu
plates. It is the key objective of this paper to address
validity of the hypothetical neglect of transverse norm
stress and transverse inextensibility in the specific cas
free vibration of a cantilevered rectangular parallelepip
The assumption of transversely inextensible displacem
through thickness will also be examined. This paper a
intends to determine to what extent the omission of tra
verse normal stress in the Kirchhoff–Love thin-plate theo
is applicable to cantilevered thick-plate vibrations.

I. FORMULATION

A. Basic definition

An isotropic parallelepiped of lengtha, width b, and
thicknessc is illustrated in Fig. 1. With respect to a Cartesi
coordinate system with origin located at the center of
body, a point within the body is designated by (x, y, z). The
parallelepiped is clamped at a surfacex52a/2 with all other
surfaces free.

B. Three-dimensional strain and kinetic energy
expressions

For linear, elastic free vibration, the strain energy o
three-dimensional solid is

U5
1

2E E E
V
@~D12G!~exx

2 1eyy
2 1ezz

2 !12D~exxeyy

1eyyezz1ezzexx!1G~gyz
2 1gzx

2 1gxy
2 !# dx dy dz,

~1!

whereV is the volume,G is the shear modulus and

D5
nE

~11n!~122n!
, ~2a!

FIG. 1. Geometry of a rectangular parallelepiped.
3376 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
-
t
e

e
s

.
r
e
l
of
.
nt
o
-

y

e

G5
E

2~11n!
, ~2b!

in which E is the Young’s modulus.
Let the displacements in thex, y, z directions beu, v, w,

respectively. The normal and shear strain-displacement r
tions are

exx5
]u

]x
, ~3a!

eyy5
]v
]y

, ~3b!

ezz5
]w

]z
, ~3c!

gyz5
]v
]z

1
]w

]y
, ~3d!

gzx5
]w

]x
1

]u

]z
, ~3e!

gxy5
]u

]y
1

]v
]x

. ~3f!

The kinetic energy is

T5
r

2E E E
V
F S ]u

]t D
2

1S ]v
]t D

2

1S ]w

]t D 2GdV, ~4!

wherer is the mass density per unit volume.
For small deformation vibration, the displacement co

ponents assume temporal simple harmonic functions in
forms of

u~ x̄,ȳ,z̄,t !5U~ x̄,ȳ,z̄!sin vt, ~5a!

v~ x̄,ȳ,z̄,t !5V~ x̄,ȳ,z̄!sin vt, ~5b!

w~ x̄,ȳ,z̄,t !5W~ x̄,ȳ,z̄!sin vt, ~5c!

whereU, V, W are the displacement amplitude functions,v
is the angular frequency of vibration, and

x̄5
x

a
, ~6a!

ȳ5
y

b
, ~6b!

z̄5
z

c
, ~6c!

are the nondimensional coordinates.
For a nondissipative system, the total energy in a vib

tion cycle is conserved. The maximum strain and kine
energy integral expressionsUmax and Tmax can be derived
easily by substituting Eqs.~5a!–~5c! into Eqs. ~1! and ~4!
and determining the extremum with respect to timet, as
3376C. W. Lim: Thick cantilevered parallelepiped



Umax5
bcE

a~11n!
E E E

V
H 12n

2~122n! F S ]U

] x̄
D 2

1S a

bD 2S ]V

] ȳ
D 2

1S a

cD 2S ]W

] z̄
D 2G1

n

122n Fa

b

]U

] x̄

]V

] ȳ
1

a2

bc

]V

] ȳ

]W

] z̄
1

a

c

]U

] x̄

]W

] z̄
G

1
1

4 F S a

cD 2S ]V

] z̄
D 2

1
2a2

bc

]V

] z̄

]W

] ȳ
1S a

bD 2S ]W

] ȳ
D 2

1S a

cD 2S ]U

] z̄
D 2

1
2a

c

]U

] z̄

]W

] x̄
1S ]W

] x̄
D 2

1S a

bD 2S ]U

] ȳ
D 2

1
2a

b

]U

] ȳ

]V

] x̄
1S ]V

] x̄
D 2G J dx̄ dȳ dz̄, ~7!
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Tmax5
rv2abc

2 E E E
V
~U21V21W2! dx̄ dȳ dz̄. ~8!

C. Three-dimensional energy functional and
eigenvalue equation

The displacement amplitude functions for a vibrati
parallelepiped can be expressed by a set of three-dimens
~3D! p-Ritz functions. These functions are the products
2D p-Ritz functions fu( x̄,ȳ), fv( x̄,ȳ), fw( x̄,ȳ) for the
midsurface deformation, and 1Dp-Ritz functions cu( z̄),
cv( z̄), cw( z̄) for the thickness deformation. The displac
ment amplitude functions are

U~ x̄,ȳ,z̄!5(
i 51

m

(
j 51

n

Cu
i j fu

i ~ x̄,ȳ!cu
j ~ z̄!, ~9a!

V~ x̄,ȳ,z̄!5(
i 51

m

(
j 51

n

Cv
i j fv

i ~ x̄,ȳ!cv
j ~ z̄!, ~9b!

W~ x̄,ȳ,z̄!5(
i 51

m

(
j 51

n

Cw
i j fw

i ~ x̄,ȳ!cw
j ~ z̄!, ~9c!

in which Cu
i j , Cv

i j , andCw
i j are the unknown coefficients.

An energy functional is defined as the difference of t
maximum strain and kinetic energy components

P5Umax2Tmax. ~10!

Numerical frequency solutions can be obtained by minim
ing this energy functional with respect to the unknown co
ficients in accordance with the Ritz procedure

]P

]Ca
i j

50; a5u, v, and w, ~11!

which leads to the governing eigenvalue equation

~K2l2M !$C%5$0%, ~12!

where

l5vaAr~11n!

E
~13!

is the dimensionless frequency parameter. The derivative
Umax andTmax with respect to the unknown coefficients a
presented in Appendix A.

The stiffness and mass matrices are
3377 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
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K5F kuu kuv kuw

kvv kvw

sym kww

G , ~14!

M5F muu @0# @0#

mvv @0#

sym mww

G , ~15!

and the vector of unknown coefficients is

C5H $Cu%

$Cv%

$Cw%
J . ~16!

The elements in the stiffness submatrix are

kuu
ik j l 5

12n

122n
I f

uu
ik

1010
Jc

uu
jl

00
1

1

2 F S a

cD 2

I f
uu
ik

0000
Jc

uu
jl

11

1S a

bD 2

I f
uu
ik

0101
Jc

uu
jl

00 G , ~17a!

kuv
ik j l 5

n

122n

a

b
I f

uv
ik

1001
Jc

uv
j l

00
1

a

2b
I f

uv
ik

0110
Jc

uv
j l

00
, ~17b!

kuw
ik j l 5

n

122n

a

c
I f

uw
ik

1000
Jc

uw
jl

01
1

a

2c
I f

uw
ik

0010
Jc

uw
jl

10
, ~17c!

kvv
ik j l 5

12n

122n S a

bD 2

I fvv
ik

0101
Jcvv

j l
00

1
1

2 F S a

cD 2

I fvv
ik

0000
Jcvv

j l
11

1I fvv
ik

1010
Jcvv

j l
00 G , ~17d!

kvw
ik j l 5

n

122n

a2

bc
I fvw

ik
0100

Jcvw
jl

01
1

a2

2bc
I fvw

ik
0001

Jcvw
jl

10
, ~17e!

kww
ik j l 5

12n

122n S a

cD 2

I f
ww
ik

0000
Jc

ww
jl

11
1

1

2 F S a

bD 2

I f
ww
ik

0101
Jc

ww
jl

00

1I f
ww
ik

1010
Jc

ww
jl

00 G , ~17f!

and the elements in the mass submatrix are

muu
ik j l 5I f

uu
ik

0000
Jc

uu
jl

00
, ~18a!

mvv
ik j l 5I fvv

ik
0000

Jcvv
j l

00
, ~18b!
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ik j l 5I f

ww
ik

0000
Jc

ww
jl

00
, ~18c!

in which

I f
ab
ik

abcd
5E E

Ā

]a1bfa
i ~ x̄,ȳ!

] x̄a] ȳb

]c1dfb
k ~ x̄,ȳ!

] x̄c] ȳd
dx̄ dȳ, ~19a!

Jc
ab
j l

e f
5E

c̄

]eca
j ~ z̄!

] z̄e

] fcb
l ~ z̄!

] z̄f
dz̄, ~19b!

where a,b5u,v,w; i ,k51,2, . . . ,m, and m is the total
number of terms employed in the two-dimensionalp-Ritz
shape functions for planes parallel to thexy-midsurface;
j ,l 51,2, . . . ,n, andn is the total number of terms employe
in the one-dimensionalp-Ritz shape functions in the thick
nessz-direction. The normalized midsurface area is deno
as Ā and the normalized thickness isc̄.

D. Boundary conditions and p-Ritz admissible
functions

In the Ritz method, we ensure the satisfaction of g
metric boundary conditions such as displacements and r
tions at the boundary surfaces. Although satisfaction of na
ral boundary conditions such as shear forces and momen
not required at the outset, accurate computation shows
stresses at the free boundaries approach zero if accurate
quencies~for vibration! or buckling loads~for buckling! are
obtained. For a parallelepiped, no geometric boundary c
dition is required for a free boundary surface. For a clamp
boundary surface atx̄520.5, the geometric boundary con
ditions are

U~ x̄,ȳ,z̄!u x̄520.55V~ x̄,ȳ,z̄!u x̄520.55W~ x̄,ȳ,z̄!u x̄520.550.
~20!

The displacement components denoted byU( x̄,ȳ,z̄),
V( x̄,ȳ,z̄), andW( x̄,ȳ,z̄) are truncated finite series express
in Eqs.~5a!–~5c!. The two-dimensional deformation admi
sible functionsfu( x̄,ȳ), fv( x̄,ȳ), and fw( x̄,ȳ) are geo-
metrically compliant polynomial functions derived such th
the geometric boundary conditions~20! are satisfied at the
outset~Lim et al., 1998a!. They are composed of the produ
of a series of simple two-dimensional polynomialsFf( x̄,ȳ)
and boundary-compliant basic functionsfu

b( x̄,ȳ), fv
b( x̄,ȳ),

andfw
b ( x̄,ȳ). The basic functions are geometric expressio

of the parallelepiped boundaries raised to an appropriate
sic power in accordance with various boundary constra
~Lim et al., 1998a!. For a cantilevered parallelepipe
clamped atx̄520.5, the two-dimensional deformation a
missible functions are

fu~ x̄,ȳ!5~ x̄10.5!Ff~ x̄,ȳ!, ~21a!

fv~ x̄,ȳ!5~ x̄10.5!Ff~ x̄,ȳ!, ~21b!

fw~ x̄,ȳ!5~ x̄10.5!Ff~ x̄,ȳ!, ~21c!

where
3378 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
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Ff~ x̄,ȳ!5 (
q50

pxy

(
i 50

q

x̄q2 i ȳi , ~22!

in which pxy is the highest degree of the two-dimension
polynomial in the admissible functions andm5(pxy11)
3(pxy12)/2 is the number of the 2D terms.

Similarly, the one-dimensional thickness admissib
functionscu( z̄), cv( z̄), andcw( z̄) are the products of set
of one-dimensional polynomial functionsFc( z̄) and appro-
priate basic functionscu

b( z̄), cv
b( z̄), andcw

b ( z̄). For a can-
tilevered parallelepiped clamped atx̄520.5, the one-
dimensional thickness deformation admissible functions

cu~ z̄!5Fc~ z̄!, ~23a!

cv~ z̄!5Fc~ z̄!, ~23b!

cw~ z̄!5Fc~ z̄!, ~23c!

where

Fc~ z̄!5(
i 50

pz

z̄i , ~24!

in which pz is the highest degree of the one-dimension
polynomial in the admissible functions andn5pz11 indi-
cates the number of 1D terms.

II. RESULTS AND DISCUSSION

A. Mode classification and convergence of
eigenvalues

To improve computational efficiency without sacrificin
numerical accuracy, classification of vibration modes is p
sible by grouping terms with odd and even powers ofx̄, ȳ

and z̄ in Ff( x̄,ȳ), andFc( z̄) in Eqs.~22! and ~24!, respec-
tively. This tremendously reduces the number of terms
each series and thus the determinant size of the eigenv
equation is considerably smaller. Huge computational ef
can be saved without affecting the numerical accuracy
cause the odd and even terms ofx̄, ȳ, andz̄ only contribute
to specific modes and they are trivial in other modes~Lim
et al., 1998a!.

Classification of vibration modes depends on symme
of geometry and boundary conditions. Eight mode clas
are possible for a parallelepiped with perfect symmetry
geometry and boundary conditions. For a cantilevered pa
lelepiped, mode classification can be referred to thexy- and
xz-planes~see Fig. 1! perpendicular to the clamped surfac
at x̄520.5. Four mode classes exist as the symmetr
symmetric ~SS!, symmetric–antisymmetric ~SA!,
antisymmetric–symmetric ~AS!, and antisymmetric–
antisymmetric~AA ! modes.

Convergence of eigenvalues presented in Table I fo
cantilevered cube is investigated with respect to increase
pz andpxy for the 1D and 2D polynomial functions, respe
tively, in accordance with various symmetry classes. T
polynomial degrees are increased from 7 to 10 forpxy and
from 7 to 9 forpz . As observed in Table I, downward con
vergence is obvious. It is a unique numerical feature of
3378C. W. Lim: Thick cantilevered parallelepiped
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Ritz procedure which overestimates vibration frequency
buckling load and underestimates bending deflection. C
vergence of eigenvalues can be ensured by including an
equate number of terms in the admissible shape functi
As seen in Table I, the eigenvalues are converged to at l
three significant figures and in most cases more than t
significant figures.

B. Comparison of solutions

As described in the Introduction, the Kirchhoff–Lov
thin-plate theory and most of the existing thick-plate mod
neglect transverse normal stressszz. Although the omission
of szz for thin-plate theory has been examined and verifi
in many publications~Leissa, 1969!, it is rather hypothetical
in Reissner–Mindlin and Levinson–Reddy thick-plate mo
els and has been questioned by a number of researchers
as Gould~1988!. These thick-plate models further assum
constant transverse normal displacement (w) through the
thickness, or transverse inextensibility. It is easily verifi
that a trivialszz implies

ezz52
n

12n
~exx1eyy!, ~25!

in accordance with the generalized Hooke’s law. Therefo
to neglectszz and at the same time keepw constant through
the thickness~transverse inextensibility! is an inconsistent
thick-plate model. Although some early higher-order thic
plate models~Whitney and Sun, 1973, 1974; Iyengaret al.,
1974 and Loet al., 1977a,b! had suggested nonlinear~qua-
dratic and cubic! expressions forw, these models had no
gained much popularity over the Reissner–Mindlin a
Levinson–Reddy thick-plate models. It is, therefore, the p

TABLE I. Convergence ofl5vaAr/E for a cantilevered cube withn
50.3.

Symmetry Mode number

Class pxy3pz M-1 M-2 M-3 M-4

SS 737 1.5977 2.5805 2.9126 3.0508
837 1.5972 2.5805 2.9123 3.0508
937 1.5969 2.5804 2.9120 3.0507

1037 1.5967 2.5803 2.9119 3.0507
1038 1.5965 2.5803 2.9118 3.0507
1039 1.5965 2.5803 2.9118 3.0507

SA 737 0.668 51 1.7671 2.7523 3.0578
837 0.668 34 1.7670 2.7523 3.0575
937 0.668 24 1.7669 2.7522 3.0573

1037 0.668 16 1.7669 2.7522 3.0573
1038 0.667 96 1.7668 2.7521 3.0567
1039 0.667 96 1.7668 2.7521 3.0567

AS 737 0.671 02 1.7696 2.7529 3.0670
837 0.669 93 1.7679 2.7525 3.0629
937 0.669 27 1.7675 2.7523 3.0597

1037 0.668 85 1.7672 2.7523 3.0589
1038 0.668 85 1.7672 2.7523 3.0589
1039 0.668 81 1.7672 2.7522 3.0589

AA 7 37 0.909 09 2.1790 2.6909 2.7474
837 0.908 53 2.1788 2.6879 2.7467
937 0.908 32 2.1786 2.6870 2.7465

1037 0.908 21 2.1786 2.6865 2.7464
1038 0.908 21 2.1786 2.6865 2.7464
1039 0.908 15 2.1786 2.6863 2.7463
3379 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
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mary objective of this paper to address the importance ofszz

and the consistency of a thick-plate model with nonlinearw.
To simulate a thick-plate model neglectingszz, Eq.~25!

is substituted into Eq.~1! to derive the strain energy as

U5
1

2E E E
V
F E

12n2
~exx

2 1eyy
2 !1

2nE

12n2
exxeyy

1G~gyz
2 1gzx

2 1gxy
2 !G dx dy dz, ~26!

while the kinetic energy expression~4! is still valid. The
maximum strain energy is presented in Appendix B. T
formulation from Eqs.~5a!–~16! is repeated to obtain a cor
responding eigenvalue equation. The stiffness matrix e
ment expressions for a parallelepiped neglectingszz are pre-
sented in Appendix C.

For the purpose of comparison and to simulate cons
w through thickness in Reissner–Mindlin and Levinson
Reddy thick-plate models,cw( z̄)5Fc( z̄)51 is set in Eq.
~23c! for solutions withszz'0 such that the transverse no
mal displacement

W~ x̄,ȳ,z̄!5W~ x̄,ȳ!5(
i 51

m

Cw
i1fw

i ~ x̄,ȳ! ~27!

in Eq. ~9c! is independent ofz̄.
A comparison of free vibration frequency solutions wi

the results of Leissa and Zhang~1983! ~denoted by A! is
presented in Table II for parallelepipeds with various asp
ratios. The vibration frequencies are classified into four sy
metry classes with respect toxy- and xz-planes. Solutions
~denoted by B! by solving the full three-dimensional energ
functional using the Ritz energy approach as governed
Eq. ~12! are presented. In addition, solutions~denoted by C!
neglectingszz and assuming constantw through thickness
with reference to Eqs.~26! and~27! are also included. Over
all, excellent agreement of solutions between A and B
observed, while the agreement with respect to C is gener
satisfactory. The excellent agreement of A and B solution
expected, as Leissa and Zhang~1983! also solved the full
three-dimensional energy functional. The most obvious d
crepancy between solutions of A and C or B and C happ
in the SS modes for a cantilevered parallelepiped witha/b
50.5 andb/c51. One of the reasons the largest discrepan
is observed in this case is because this parallelepiped h
thickness twice the length (c/a52) and the effect ofszz is
expected to be more obvious as the thickness increases
other parallelepiped configurations havec/a either 0.5 or 1.
We will see the effects ofszz more closely in the next sec
tion.

C. Effects of transverse normal stress szz

A set of first-known solutions for examining the effec
of szz for various parallelepiped configurations is present
Figures 2–5 present the nondimensional vibration freque
parametersl with varying thickness ratioc/b in four distinct
mode classes for a cantilevered rectangular parallelep
with aspect ratioa/b50.5.
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3

2.7011
.6863

2.7132
4.1787
.1711

4.1953
3.4387
.4007

3.3960
1.9061
.9052

1.8903
2.1420
.1363

2.1193
TABLE II. Comparison ofl5vaAr/E for cantilevered rectangular parallelepiped (n50.3) with xy- andxz-symmetric planes.

Aspect ratios Mode frequencies

a/b b/c Sources SS-1 SS-2 SS-3 SA-1 SA-2 SA-3 AS-1 AS-2 AS-3 AA-1 AA-2 AA-

1 1 A 1.6000 2.5812 2.9154 0.670 87 1.7695 2.7562 0.670 87 1.7695 2.7562 0.909 30 2.1801
B 1.5965 2.5803 2.9118 0.667 96 1.7668 2.7521 0.668 81 1.7672 2.7522 0.908 15 2.1786 2
C 1.5800 2.8160 3.2228 0.662 26 1.7595 2.7518 0.658 93 1.7726 3.0386 0.909 42 2.1982

2 1 A 1.5938 4.5811 5.0646 0.443 71 1.6711 3.7237 0.443 71 1.6711 3.7237 0.904 02 2.7191
B 1.5888 4.5496 5.0520 0.440 21 1.6612 3.4626 0.440 72 1.6629 3.4654 0.902 08 2.7012 4
C 1.5778 4.5898 5.2746 0.436 72 1.6516 3.4475 0.435 04 1.6592 3.4757 0.902 54 2.7082

1 2 A 1.5962 2.7974 3.1994 0.447 33 1.6642 2.2777 0.667 44 1.7744 3.0680 0.788 31 2.2196
B 1.5920 2.7959 3.1946 0.444 13 1.6551 2.2733 0.664 96 1.7721 3.0436 0.785 86 2.2094 3
C 1.5800 2.8160 3.2228 0.440 30 1.6455 2.2634 0.658 93 1.7726 3.0386 0.784 53 2.2063

0.5 1 A 1.4670 1.5623 1.7967 0.830 04 1.5317 1.7647 0.830 04 1.5317 1.7647 0.916 36 1.3550
B 1.4679 1.5588 1.8423 0.827 32 1.5293 1.7628 0.828 31 1.5289 1.7629 0.914 85 1.3530 1
C 1.5281 1.6889 2.0438 0.826 18 1.5281 1.7523 0.818 63 1.6839 2.3306 0.918 70 1.3646

0.5 2 A 1.5325 1.6835 2.0337 0.674 84 1.3538 1.8070 0.827 12 1.6911 2.3128 0.821 31 1.7307
B 1.5300 1.6812 2.0282 0.672 00 1.3507 1.8037 0.825 31 1.6892 2.3020 0.819 37 1.7284 2
C 1.5208 1.6889 2.0438 0.665 72 1.3496 1.7933 0.818 63 1.6839 2.3306 0.818 29 1.7263

aLeissa and Zhang~1983!.
bPresent~including szz).
cPresent~excludingszz and assuming constantw through thickness!.
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Frequency solutions for the first four SS modes withc/b
ranging from 0.2 to 2.0 are presented in Fig. 2. As expec
excellent agreement for solutions including and exclud
szz ~constantw through thickness! is achieved for small
thickness ratio. The discrepancy of solutions becomes m
apparent asc/b increases. The onsets of distinct discrepan
between the solutions are associated with smallerc/b for
higher vibration modes. For instance, distinct discrepancy
SS-1 solutions can be observed forc/b.0.9, while for SS-4
the onset reduces toc/b'0.4. The physical implication is a
follows. It is widely known that higher vibration modes po

FIG. 2. Effect of thickness ratio on the SS frequencies for a thick can
vered rectangular parallelepiped withn50.3 anda/b50.5.
3380 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999
d,
g

re
y

f

sess more nodal lines~Lim et al., 1998b! for plates; or more
nodal surfaces for parallelepipeds. A nodal line~surface! is a
line ~surface! with zero vibration amplitude. We may treat
nodal line~surface! as a boundary line~surface! with certain
constraints which should not be seen as a simply suppo
or clamped boundary constraints. As a result, the effec
region is smaller for higher vibration modes with more nod
lines ~surfaces! or, equivalently, the effective thickness rat
becomes larger than the overall thickness ratioc/b. Conse-
quently, the onset of distinct discrepancy between soluti

-FIG. 3. Effect of thickness ratio on the SA frequencies for a thick cant
vered rectangular parallelepiped withn50.3 anda/b50.5.
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with respect toc/b becomes smaller for higher vibratio
modes. The effects ofszz on other classes of vibratio
modes are illustrated in Figs. 3–5.

It is also noticed that solutions consideringszz are al-
ways lower when the effect ofszz becomes significant fo
largec/b. AlthoughezzÞ0, as determined by Eq.~25!, even
if szz is neglected, the consideration ofszz allows transverse
extensibility not governed by Eq.~25!, thus providing a fur-
ther degree of flexibility in the transverse normal directio
Vibration frequency is smaller ifszz is considered becaus
flexibility reduces the structural stiffness for the parallele
ped.

In Figs. 2–5, more apparent discrepancy of solutions
the SS modes compared to the other modes is observed.
is true only for a cantilevered parallelepiped and it is inco
clusive for other parallelepiped configurations as the sign
cance and effects ofszz depend not only on geometry bu
also boundary conditions. However, it is reasonable to c
clude that the effect ofszz for c/b,0.5 is rather insignificant
for some lower modes in the aspect of free vibration of th
plates and parallelepipeds. Such conclusion was also rea
by Hutchinson~1979, 1984! in analyzing vibrations of thick,
free circular plates using exact and approximate metho
These analyses concluded that, for thick, free circular pla
the approximate solution yields frequencies of sufficient
curacy for most engineering application within the range
applicability of the approximate theory. Based on the conc
sions, accurate solutions employing the Levinson-Re
higher-order plate theory have been reported~Liew and Lim,
1996; Lim and Liew, 1995, 1996; Limet al., 1998a,b!.

FIG. 4. Effect of thickness ratio on the AS frequencies for a thick cant
vered rectangular parallelepiped withn50.3 anda/b50.5.
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III. CONCLUSIONS

New solutions and benchmarks for examining the effe
of transverse normal stressszz in the context of vibration of
a cantilevered parallelepiped are presented and analyzed
hypothetical assumption of neglectingszz while maintaining
constant transverse normal displacementw through thickness
in existing thick-plate models is investigated by solving t
full three-dimensional energy functional. The extent
which the assumption is applicable is verified.

When the effect of transverse normal stress becom
significant for large thickness ratio, vibration frequency
always lower when transverse normal stress is conside
because transverse extensibility provides a further degre
flexibility in the transverse normal direction and thus reduc
the stiffness of a parallelepiped. For higher vibration mod
the onset of significant contribution of transverse norm
stress is associated with a lower thickness ratio.
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APPENDIX A

The derivatives of strain and kinetic energy integra
with respect to the unknown coefficients for Eq.~11! are as
follows:

FIG. 5. Effect of thickness ratio on the AA frequencies for a thick canti
vered rectangular parallelepiped withn50.3 anda/b50.5.

-
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are given in Eqs.

~19a!, ~19b!.

APPENDIX B

The maximum strain energy in a vibration cycle for
parallelepiped neglectingszz is as follows:
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APPENDIX C

The stiffness matrix element expressions for a paral
epiped neglectingszz are as follows:
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