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Background. Cyclooxygenases (COXs) play important roles in inflammation and carcinogenesis. The present
study aimed to determine the effects of COX-1 and COX-2 gene disruption on Helicobacter pylori-induced gastric
inflammation.

Methods. Wild-type (WT), COX-1 and COX-2 heterozygous (COX-1"~ and COX-2"7), and homozygous
COX-deficient (COX-17"" and COX-2"'"") mice were inoculated with H. pylori strain TN2 and killed after 24
weeks of infection. Uninfected WT and COX-deficient mice were used as controls. Levels of gastric mucosal
inflammation, epithelial cell proliferation and apoptosis, and cytokine expression were determined.

Results. COX deficiency facilitated H. pylori-induced gastritis. In the presence of H. pylori infection, apoptosis
was increased in both WT and COX-deficient mice, whereas cell proliferation was increased in WT and COX-1-
deficient, but not in COX-2—deficient, mice. Tumor necrosis factor (TNF)—« and interleukin—10 mRNA expression
was elevated in H. pylori~infected mice, but only TNF-oo mRNA expression was further increased by COX deficiency.
Prostaglandin E, levels were increased in infected WT and COX-2—deficient mice but were at very low levels in
infected COX-1—deficient mice. Leukotriene (LT) B, and LTC, levels were increased to a similar extent in infected

WT and COX-deficient mice.
Conclusions.

COX deficiency enhances H. pylori-induced gastritis, probably via TNF-« expression. COX-2,

but not COX-1, deficiency suppresses H. pylori-induced cell proliferation.

Cyclooxygenases (COXs) are the rate-limiting enzymes
in the production of prostanoids and are also the phar-
macological target of nonsteroidal anti-inflammatory
drugs (NSAIDs) [1]. There are 2 isoforms of COX:
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COX-1 is considered to be the constitutive form and
is believed to regulate gastrointestinal homeostasis via
the generation of prostaglandins (PGs), and COX-2 is
considered to be the inducible form and is involved in
the proinflammatory actions of PGs during injury [2].
Helicobacter pylori infection is a major cause of chron-
ic gastritis, peptic ulceration, and gastric carcinoma
[3]. Studies have shown that COX-2 is induced in gas-
tric mucosa during H. pylori infection [4-6] and that
NSAIDs enhance H. pylori-induced gastric inflamma-
tion and ulceration [7-12]. However, the role played
by COX-2 in H. pylori-induced gastric inflammation
is not entirely understood.

A dynamic balance between epithelial cell prolifer-
ation and apoptosis is essential for maintaining normal
gastric mucosal integrity. H. pylori infection induces
apoptosis and proliferation of gastric epithelial cells and
may lead to alterations in the balance of epithelial cell
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Figure 1. Levels of Helicobacter pylori (Hp) colonization in infected
mice (n = 12 per group), as assessed by counting the no. of colony-
forming units per gram of stomach tissue after bacterial culture. Data
are means = SEs. COX, cyclooxygenase.

proliferation and apoptosis [13—17], which is believed to con-
tribute to gastric ulcerogenesis or even carcinogenesis [18, 19].
However, whether COX-2 plays a role in the regulation of H.
pylori-induced apoptosis and cell proliferation is unknown.

Previous studies have demonstrated that the H. pylori-induced
immune response is skewed toward a Thl phenotype, as is in-
dicated by the predominance of cytokines—such as tumor ne-
crosis factor (TNF)—q, interferon (IFN)—y, and interleukin (IL)-
12—that contribute to the persistence of inflammation [20-23].
TNEF-a, on the one hand, is a key proinflammatory cytokine in
H. pylori-associated inflammation [24]; it is up-regulated early
during H. pylori colonization and induces the production of other
proinflammatory cytokines and chemokines, amplifying the H.
pylori-induced inflammation [25]. IL-10, on the other hand, is
an anti-inflammatory cytokine; it down-regulates the production
of proinflammatory cytokines, such as TNF-«, IFN-v, and IL-
12 [26, 27]. In addition, it has been shown that PGE, derived
from either COX-1 or COX-2 is involved in the regulation of
gastric mucosal inflammation and also contributes to the main-
tenance of mucosal integrity during H. pylori infection [28].
However, whether COX-1 or COX-2 affects H. pylori—induced
gastric inflammation through the regulation of cytokines and
PGs needs to be investigated further.

Because NSAIDs exert pharmacological effects via COX-
dependent and -independent mechanisms (the inhibition of
COX activity is only one of them), the observed effects pro-
duced by NSAIDs may not necessarily reflect the physiological
roles played by the COX isoforms [29-33]. To overcome this,
COX-1- and COX-2—deficient mice can be used in a novel
approach to help clarify the role that COX plays in H. pylori—
induced gastric inflammation [34, 35]. The aim of the present
study was to determine the effects of the COX-1 and COX-2
isoforms on H. pylori-induced gastric inflammation, apoptosis,
cell proliferation, and cytokine expression by studying long-
term H. pylori—infected wild-type (WT) and COX-deficient
mice. Additionally, because H. pyloriinfection is associated with

increased gastric mucosal expression of leukotrienes (LTs), such
as LTB, and LTC, (LTs are a class of lipids that are derived from
5-lipoxygenase [LOX] [36-38]), a possible change of LTs and
a potential role for the LOX pathway after H. pylori infection
in COX-deficient mice were also investigated.

MATERIALS AND METHODS

Animals. COX-1-deficient (COX-1"" [heterozygous] and
COX-1""" [homozygous]) and COX-2—-deficient (COX-2"'~
[heterozygous] and COX-2""~ [homozygous]) mice derived
from strain C57BL/6-129/0la and their WT littermates (which
have been described elsewhere [34, 35]) were used in the present
study. Mice were maintained on a 12-h-light/12-h-dark cycle
at 22°C in Plexiglas cages with autoclaved water and were fed
autoclaved standard laboratory chow ad libitum. All procedures
were performed with the approval of the Committee on the
Use of Live Animals in Teaching and Research of the University
of Hong Kong.

Genotyping. The genotype of each mouse was determined
3—4 weeks after birth by a polymerase chain reaction (PCR)-
based method that has been described elsewhere [39]. Briefly,
DNA from the tail was extracted using the DNeasy Tissue Kit
(Qiagen), in accordance with the manufacturer’s protocol. The
sample from the tail was lysed using proteinase K, and the
lysate was loaded into a minicolumn. After the column was
washed, DNA was eluted in a buffer ready for PCR. Three
primers were used in each PCR. For COX-1, the primers were
5-AGGAGATGGCTGCTGAGTTGG-3' (COX-1 5, for the WT
allele), 5-GCAGCCTCTGTTCCACATACAC-3' (COX-1 Neo,
for the mutant allele), and 5-AATCTGACTTTCTGAGTTGCC-
3’ (the 3’ primer; COX-1 3'), which yielded fragments of 560
and 650 bp for the COX-1 WT and mutant alleles, respectively.
For COX-2, the primers were 5-ACACACTCTATCACTGGC-
ACC-3' (COX-2 A9, for the WT allele), 5-ACGCGTCACCTT-
AATATGCG-3' (NeoPro, for the mutant allele), and 5'-TCCC-
TTCACTAAATGCCCTC-3' (the 3’ primer; TGC2-3), which
yielded fragments of 760 and 900 bp for the COX-2 WT and
mutant alleles, respectively.

A total of 120 six-week-old mice
weighing 17-22 g were used in the experiments. They included
24 WT, 24 COX-1"", 24 COX-17'7, 24 COX-2"", and 24 COX-
27" mice. The H. pylori strain used was TN2, which produces

Experimental design.

a vacuolating cytotoxin and possesses the cag pathogenicity
island (and which was used in our previous study [40]). This
strain shares an ancestral strain with TN2GF4, which has been
reported to induce gastric cancer in Mongolian gerbils [41].
After overnight fasting, mice (12 WT, 12 COX-1"7, 12 COX-
177, 12 COX-2"", and 12 COX-2"'") were inoculated 3 times
by gavage with 300 uL of H. pylori organisms (1 X 10® cfu/mL),
with a 1-day interval between inoculations. Age-matched control
mice were inoculated with 300 uL of medium (Brucella broth).
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Figure 2. Assessment of changes in Helicobacter pylori-induced gastric mucosal inflammation in wild-type (WT) and cyclooxygenase (COX)—deficient
mice 24 weeks after inoculation. Representative hematoxylin-eosin—stained stomach sections from uninfected WT mice (A) and from infected WT
(B), COX-1"~ (C), COX-1""~ (D), COX-2*~ (E), and COX-2~'~ (F) mice (original magnification, <200).

Mice were killed by cervical dislocation 24 weeks after inocu-
lation, and their stomachs were removed, weighed, opened along
the great curvature, and longitudinally divided into 6 pieces.
Three pieces were immediately frozen in liquid nitrogen and
stored at —80°C for measurement of levels of cytokines (TNF-
« and IL-10), PGE,, L'TB,, and LTC,; 2 pieces were fixed in 10%
neutral buffered formalin for histological examination and im-
munohistochemistry; and 1 piece was used for quantitative cul-
ture. Control groups consisted of 12 WT, 12 COX-1"", 12 COX-
177, 12 COX-2"", and 12 COX-2"'" mice.

Quantitative culture of H. pylori.
ment of H. pylori colonization, 1 piece of weighed stomach

For quantitative assess-

tissue was homogenized in 1 mL of Brucella broth by use of a
hand pestle (Kontes), and the homogenate was diluted 10- and

100-fold in Brucella broth. One hundred microliters of each
dilution was plated on selective medium containing 10% horse
blood (Hong Kong Jockey Club), 100 pg/mL vancomycin, 50
pg/mL cefsulodin, 50 pg/mL trimethroprim lactate, and 50 pg/
mL amphotericin B (Oxoid). Plates were incubated under mi-
croaerophilic conditions produced by a gas-generating system
(CampyGen; Oxoid) for 5-7 days. H. pylori was identified by
Gram staining and by positive urease, oxidase, and catalase
tests. H. pylori colonies were then counted, to determine the
number of colony-forming units per gram of stomach tissue.

Histological examinations. Gastric specimens were em-
bedded in paraffin and cut into 4-um-thick sections. The sec-
tions were stained with hematoxylin-eosin for semiquantitative
examination of the activity (neutrophil infiltration score) and
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Table 1.

Neutrophil infiltration and mononuclear cell infiltration into the stomachs of wild-type (WT) and cyclooxygenase (COX)-

deficient mice infected or not infected (control) with Helicobacter pylori.

WT COX-1 COX-1"/ COX-2+ COox-2"/
Infiltration Control H. pylori Control H. pylori Control H. pylori Control H. pylori Control H. pylori
Neutrophil 02 +02 1.0+ 0.1°7 02 +0.1 1.4+ 0.2° 0.4 + 03 16 = 0.2°° 03+ 0.1 1.5+ 0.1% 04 + 02 1.7 +03°°
Mononuclear cell 02+02 1101 01=x01 15+02° 02+02 19+03° 02=x01 1.7=+01*° 02=x02 1.9 =03

NOTE. Data are mean + SE infiltration scores 24 weeks after inoculation (explained in detail in Materials and Methods).

@ P<.01, compared with the corresponding uninfected mice.
 pP<.05, compared with the corresponding uninfected mice.
¢ P<.05, compared with the infected WT mice.

severity (mononuclear cell infiltration score) of chronic inflam-
mation, which were graded (in accordance with the updated
Sydney system [42]) as follows: 0, minimal; 1, mild; 2, mod-
erate; and 3, marked. The presence of spiral organisms was
examined in Giemsa-stained sections.

Determination of apoptosis and cell proliferation.
Epithelial cell apoptosis was determined in situ from paraffin-
embedded tissue sections by use of the TUNEL technique
(Apop Tag In Situ Apoptosis Detection Kit; Intergen Com-
pany), in accordance with the manufacturer’s protocol. Epi-
thelial cell proliferation was determined by immunohistochem-
ical staining for Ki-67. Briefly, sections were deparaffinized,
placed in citrate buffer (10 mmol/L; pH 6.0), and heated in a
700-W microwave oven for 20 min. Endogenous peroxidase
activity was quenched by use of hydrogen peroxide. After being
washed in immunoassay buffer, the slides were incubated with
a mouse monoclonal IgG against Ki-67 (DakoCytomation) in
a humidified chamber. Slides were incubated with biotinylated
rabbit anti-rat IgG and peroxidase-conjugated streptavidin
(DakoCytomation), developed using the DAB+ substrate-chro-
mogen system (DakoCytomation), and counterstained with he-
matoxylin (Sigma).

An experienced pathologist who was blinded to treatment
schedule read the stained slides. For determination of the level
of apoptosis or cell proliferation, cells were counted in 25 well-
orientated gastric glands in the gastric corpus and antrum. The
apoptosis index (AI) and the cell proliferation index (PI) were
defined as the percentage of positively stained cells per the total
number of cells counted (~1000 cells).

Reverse-transcription (RT)-PCR analysis of gastric TNF-«
and IL-10 mRNA expression.
TRIzol reagents (GIBCO BRL) and was reverse transcribed using

Total RNA was isolated using

the ThermoScript RT-PCR System (Invitrogen) in a total reaction
volume of 20 uL that contained 4 pg of RNA. The RT product
(cDNA; 2 pL) was amplified by PCR with 1.5 U of HotStar-Taq
DNA polymerase (Gene Company) and 10 pmol of forward and
reverse TNF-« or IL-10 primers (Genset Singapore Biotech), and
the same amounts of forward and reverse 3-actin primers were
included in the multiplex PCR, as an internal control for the
efficiency of the RT and the amount of RNA. Each PCR cycle

consisted of a denaturation step (45 s at 94°C), an annealing step
(45 s at 52°C), and an elongation step (45 s at 72°C). There was
a total of 35 cycles for TNF-a and IL-10 and 30 cycles for 3-
actin, which were followed by an additional extension step (7
min at 72°C). The primer sequences and the sizes of the PCR
products were as follows: for TNF-a, 5-CATGGATCTCAAAGA-
CAACCAA-3' (forward) and 5-GCTGGGTAGAGAATGGATG-
AAC-3 (reverse), with a product size of 385 bp; for IL-10,
5-ACCTCTGATACCTCAGTTCCCA-3 (forward) and 5-CAA-
TTGAAAGGACACCATAGCA-3' (reverse), with a product size
of 268 bp; and for -actin, 5-~ACCCAGATCATGTTTGAGA-
CCT-3' (forward) and 5-CTGCTCGAAGTCTAGAGCAACA-3
(reverse), with a product size of 318 bp. PCR products were
electrophoresed on 1.5% agarose gel with 0.5 pg/mL ethidium
bromide. Stained bands were visualized under UV light, pho-
tographed, and digitized using the Bio Imagine Detection System
(GS-700; Bio-Rad), and band intensity was quantitated using a
Macintosh computer and imaging and analysis software (Gene-
Tools; version 3.06; Syngene).

ELISAs for gastric PGE,, LTB,, and LTC, levels.
specimens were weighed and homogenized at 4°C in lysis buffer
(50 mmol/L Tris-HCl [pH 7.4], 100 mmol/L NaCl, 1 mmol/L
CaCl,, 1 mg/mL glucose, and 28 mmol/L indomethacin). Ho-

Gastric

mogenates were vortexed and centrifuged at 12,000 rpm for
30 min at 4°C. PGE,, LTB,, and LTC, levels in the supernatants
were measured by use of commercially available ELISA kits
(Caymen), in accordance with the manufacturer’s protocol.
Plates were read at 410 nm by use of a microtiter plate reader.

Statistical analyses. All numerical data are presented as
means *= SEs. The Mann-Whitney U test was used for assess-
ment of the differences between groups. Statistical analyses were
performed using SPSS (version 12.0 for Windows; SPSS). Sig-

nificance was defined as P<.05 (2-tailed).

RESULTS

Quantitative culture of H. pylori. H. pylori colonized in all
mice inoculated with the pathogen, as determined by culture.
There were no significant differences in the numbers of H. pylori

colony-forming units in gastric mucosa between the COX-de-
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Figure 3. Representative TUNEL-stained sections of the gastric corpus (A, original magnification, X<400) and Ki-67—-stained sections of the gastric
antrum (B; original magnification, X100) from uninfected wild-type (WT) mice and from Helicobacter pylori (Hp)}-infected WT and cyclooxygenase

(COX)—deficient mice 24 weeks after inoculation.

ficient mice and the WT mice when assayed 24 weeks after
inoculation (figure 1). H. pylori was not detected in the un-
infected mice.

Inflammation of gastric mucosa. No gastric mucosal in-
flammation was present in the uninfected WT and COX-de-
ficient mice (figure 2A). However, increased levels of poly-
morphonuclear neutrophils and mononuclear cells were found

in the stomachs of the infected WT and COX-deficient mice
(figure 2B-F); nonetheless, gastric atrophy, intestinal metapla-
sia, and ulceration were not observed in the infected mice.
Neutrophil infiltration was significantly increased in all in-
fected mice, compared with that in the uninfected mice. In the
infected COX-17'", COX-2"", and COX-2""" mice, neutrophil
infiltration was significantly increased, compared with that in
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Table 2. Apoptotic index (Al) and proliferation index (Pl) for gastric epithelial cells in wild-type (WT) and cyclooxygenase (COX)-
deficient mice infected or not infected (control) with Helicobacter pylori.

WT COX-1" COX-1" COX-2" COXx-2""
Index Control H. pylori Control H. pylori Control H. pylori Control H. pylori Control H. pylori
Al 0.03 = 0.01 0.15 + 0.01 0.03 = 0.00 0.14 = 0.01* 0.03 = 0.00 0.14 + 0.01* 0.05 + 0.01 0.16 = 0.02° 0.05 = 0.01 0.17 + 0.01°
Pl 0.17 = 0.03 039 + 001" 0.15 + 0.02 0.39 = 0.01° 0.7 = 0.01 0.40 + 0.01* 0.15 + 003 022 = 0.02°> 0.18 + 0.04 0.19 + 0.03°

NOTE. Data are mean + SE index values 24 weeks after inoculation (explained in detail in Materials and Methods).

@ P<.05, compared with the corresponding uninfected mice.

b p<.o1, compared with the infected COX-1-deficient mice and the infected WT mice.

the infected WT mice (P< .05, for all) (table 1). Mononuclear
cell infiltration was also significantly increased in all infected
mice, compared with that in the uninfected mice. In the in-
fected COX-17"", COX-2"", and COX-2""" mice, mononuclear
cell infiltration was significantly increased, compared with that
in the infected WT mice (P< .05, for all) (table 1).

Apoptosis and proliferation of gastric epithelial cells.
Apoptosis, assessed on the basis of TUNEL-positive cells, was
observed in the surface epithelium of the gastric corpus mucosa
of the infected WT and COX-deficient mice (figure 3A). Als
were significantly increased in the infected WT and COX-de-
ficient mice, compared with those in the uninfected mice
(P<.01) (table 2). However, there was no difference between
the Als in the infected COX-deficient mice and those in the
infected WT mice.

Immunostaining for Ki-67, which reflects cell proliferation,
was localized in the nuclei of epithelial cells located within the
proliferating compartment in the basal zone of the corpus and
antrum (figure 3B). Furthermore, H. pylori infection caused a
significant increase in the PIs in the WT and COX-1-deficient
mice (P<.01) but not in the COX-2—deficient mice (P = .10,
for the COX-2"~ mice; P = .73, for the COX-2"'~ mice). Com-
pared with those in the infected WT and COX-1—deficient mice,
PIs were significantly lower in the infected COX-2—deficient
mice (P<.01) (table 2).

TNF-oc and IL-10 mRNA expression in gastric mucosa.
TNF-a mRNA was detected by RT-PCR in all infected mice,
but expression was absent or low in the uninfected mice (figure
4A). Expression of TNF-o« mRNA was significantly increased
in the infected COX-17'7, COX-2"", and COX-2"'" mice, com-
pared with that in the infected WT mice (P<.05), although
there was no significant difference between expression in the
infected COX-1"" mice and that in the infected WT mice
(figure 4B). On the other hand, there was no difference in IL-
10 mRNA expression between the infected mice and the un-
infected mice and between the infected WT mice and the in-
fected COX-deficient mice (figure 4C).

Gastric PGE,, LTB, and LTC, levels.
significantly increased gastric PGE, production in the WT (1.6-
fold), COX-2"~ (1.3-fold), and COX-2"'~ (1.4-fold) mice, com-
pared with that in the corresponding uninfected mice (P<.05,

H. pylori infection

for all). However, PGE, was barely detectable in the gastric spec-
imens from the COX-1-deficient mice, both those that were
infected and those that were uninfected (P < .001, compared with
the WT mice) (figure 5A). Both LTB, and LTC, levels were in-
creased in the infected mice, compared with those in the un-
infected mice (P<.05); this result was independent of COX de-
ficiency (figure 5B and 5C).

DISCUSSION

In the present study, we have shown that there is no apparent
difference in the bacterial density in gastric mucosa between
WT and COX-deficient mice, suggesting that H. pylori colo-
nization is not affected by the absence of COX-1 or COX-2
expression. Several studies have demonstrated that NSAIDs en-
hance H. pylori-induced gastric mucosal inflammation and in-
jury [7-10, 28, 43, 44]—for example, Takahashi et al. reported
that NS-398, a COX-2-specific inhibitor, and indomethacin, a
dual COX inhibitor, promoted H. pylori-induced neutrophil
infiltration and lymphoid follicle formation [44]; Tanigawa et
al. showed that inhibition of COX-1 (by use of SC-560) or
COX-2 (by use of NS-398) enhanced neutrophil infiltration
into gastric mucosa in H. pylori—infected mice [28]; and Yoshida
et al. reported that H. pylori infection potentiated aspirin-in-
duced gastric mucosal injury in Mongolian gerbils [10]. How-
ever, other studies have shown that NSAIDs have no effect or
even protective effects on H. pylori-induced gastritis—Kim et
al. reported that indomethacin and NS-398 decreased gastric
inflammation induced by H. pylori infection in mice [11], and,
in a clinical study conducted by Scheiman et al., rofecoxib, a
COX-2 inhibitor, did not significantly affect gastritis scores
[12]. Various factors, such as the duration of H. pyloriinfection
and/or duration of NSAID treatment, may contribute to the
discrepant findings of these studies. Thus, a regulatory role for
COX in H. pylori-induced gastritis cannot be directly derived
from studies that use NSAIDs. Furthermore, these drugs have
many pharmacological activities in addition to the inhibition
of COX activity [29-33]. Therefore, the H. pylori—infected
COX-deficient mouse model is useful for clarifying the phys-
iological roles played by the COX-1 and COX-2 isoforms in
H. pylori-induced gastritis. The present study demonstrated
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Figure 4. Gastric tumor necrosis factor (TNF}-c and interleukin (IL}-10 mRNA levels in uninfected and Helicobacter pylori (Hp)—infected wild-type
(WT), cyclooxygenase (COX)-1—deficient, and COX-2—deficient mice. TNF-c, IL-10, and B-actin mRNA levels in representative gastric specimens from
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were performed in triplicate. Data are means + SEs. *P< .05, compared with the corresponding uninfected mice; P< .05, compared with the infected
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that genetic deficiency of the COX-1 or COX-2 isoform ex-
acerbated the severity of H. pylori-induced gastritis and that
heterozygous COX-deficient mice, which have a partial defi-
ciency of COX expression, displayed an intermediate pheno-
type. Our data, along with those from other animal studies [43,
44], suggest that COX-1 and COX-2 independently contribute
to the down-regulation of gastric mucosal inflammation in-
duced by H. pylori infection.

It has been consistently demonstrated that chronic H. pylori
infection increases apoptosis and proliferation of gastric epi-
thelial cells and may eventually result in an imbalance between
apoptosis and proliferation, which may contribute to either
gastric ulceration due to excessive apoptosis or even carcino-
genesis due to hyperproliferation [18, 19, 45-49]. Our animal
experiments showed that H. pylori infection increased both

apoptosis and proliferation of gastric epithelial cells in WT
mice, a finding that is consistent with those of previous studies.
Moreover, we observed, for the first time, the simultaneous
increase in apoptosis and lack of an increase in cell proliferation
in H. pylori-infected COX-2—deficient mice, suggesting that
COX-2 disruption is protective against H. pylori-induced gas-
tric carcinoma. We propose that, in the presence of H. pylori
infection, COX-2 is involved in the up-regulation of cell pro-
liferation but not of apoptosis and, thus, that COX-2 disruption
blocks the up-regulation of cell proliferation but has little effect
on apoptosis. In other words, COX-2 is involved in H. pylori—
induced gastric cell proliferation, and the inhibition or disrup-
tion of COX-2 production may be associated with a decreased
risk of H. pylori-induced gastric carcinoma because COX-2
blocks the up-regulation of cell proliferation without affecting

COX Disruption and H. pylori-Induced Inflammation * JID 2006:193 (1 April) « 1043
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apoptosis. Indeed, previous studies have shown that NSAIDs
have antineoplastic effects for gastric carcinoma [50, 51], and
several possible mechanisms that might underlie the effects—
including the induction of apoptosis, the inhibition of cell pro-
liferation, antiangiogenic activities, and immune surveillance—
have been proposed [52-56].

The observations that deficiency of the COX-1 or COX-2 gene
enhanced the severity of H. pylori-induced gastritis and that
COX-2 deficiency increased apoptosis without inducing a cor-
responding increase in cell proliferation raise the concern that
the risk of gastric erosion, or even of peptic ulcer, may increase.
However, no gastric ulceration was observed in the present study.
In COX-1-deficient mice, the balance between apoptosis and cell
proliferation—and, thus, the integrity of gastric mucosa—may

be maintained, as we found both to be increased at similar levels.
In COX-2—deficient mice, we found the production of PGE, to
be unchanged, which may be responsible for the maintenance
of gastric mucosal integrity. Moreover, the 2 COX isoforms might
have compensatory functions for one another in the regulation
of gastrointestinal homeostasis and inflammation during injury,
even though COX-1 is constitutive and COX-2 is inducible [57].
Kirtikara et al. reported compensatory PGE, biosynthesis in
COX-1- or COX-2—deficient lung fibroblasts [57]. However,
Langenbach et al. did not find any compensatory COX-2—me-
diated PGE, production in glandular gastric specimens from
COX-1-deficient mice [34], a finding that is consistent with our
observation here.

In the present study, H. pylori infection elevated the gastric
mucosal expression of TNF-o« mRNA and IL-10 mRNA in WT
mice, a finding that is in agreement with those of other studies
[24, 25, 58, 59]. Moreover, we observed that TNF-a mRNA
expression, but not IL-10 mRNA expression, was further in-
creased in COX-deficient mice, indicating that the 2 COX iso-
forms play an anti-inflammatory role by suppressing the ex-
pression of TNF-a. Our finding is supported by a previous
study conducted in mice that showed that H. pylori infection
elevated TNF-oo mRNA expression in the stomach and that the
expression of TNF-oo mRNA was further increased by the in-
hibition of both COX-1 and COX-2, indicating that both iso-
forms are involved in H. pylori-induced gastric inflammation
via inhibition of the expression of TNF-« [28].

We observed that basal PGE, levels were almost undetectable
in the gastric mucosa of COX-1""" mice. Basal PGE, levels were
reduced by ~85% in COX-1""" mice, compared with those in
their WT counterparts. Moreover, H. pylori infection did not
increase PGE, levels, although the severity of gastric mucosal
inflammation was enhanced in COX-1-deficient mice. In con-
trast, basal PGE, levels in COX-2—deficient mice were similar
to those in WT mice, and the production of PGE, was signif-
icantly increased by H. pylori infection. These observations in-
dicate that, in both infected and uninfected mice, PG synthesis
is dependent on COX-1 only.

Previous studies have shown that H. pylori-induced gastritis
is associated with increased levels of gastric mucosal LTs, such
as LTB, and LTC,, and that these products may amplify the
damaging effects that the bacterium has on gastric mucosa [36—
38]. To our knowledge, however, there has been no study of
whether COX-1 and COX-2 down-regulate H. pylori-induced
gastritis via inhibition of LTs or whether the LOX pathway is
involved in the increased H. pylori-induced gastritis observed
in COX-deficient mice. In the present study, the gastric levels
of both LTB, and LTC, were increased in H. pylori-infected WT
and COX-deficient mice, compared with those in the corre-
sponding uninfected mice. However, there was no further com-
pensatory LTB, and LTC, production in COX-deficient mice,
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compared with that in WT mice. These findings suggest that
LTB, and LTC, levels increased during H. pylori infection inde-
pendently of COX and that the LOX pathway was not involved
in the increased H. pylori-induced gastritis in COX-deficient
mice.

In conclusion, in the present 24-week H. pylori colonization
model, COX-1 and COX-2 deficiency enhances H. pylori—in-
duced gastritis, probably via TNF-a expression. COX-2 defi-
ciency, but not COX-1 deficiency, suppresses the cell prolif-
eration induced by H. pylori infection.
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