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PERSPECTIVE
The Future of Association Studies: Gene-Based Analysis and Replication
Benjamin M. Neale1 and Pak C. Sham1,2
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Historically, association tests were limited to single variants, so that the allele was considered the basic unit for
association testing. As marker density increases and indirect approaches are used to assess association through
linkage disequilibrium, association is now frequently considered at the haplotypic level. We suggest that there are
difficulties in replicating association findings at the single-nucleotide–polymorphism (SNP) or the haplotype level,
and we propose a shift toward a gene-based approach in which all common variation within a candidate gene is
considered jointly. Inconsistencies arising from population differences are more readily resolved by use of a gene-
based approach rather than either a SNP-based or a haplotype-based approach. A gene-based approach captures
all of the potential risk-conferring variations; thus, negative findings are subject only to the issue of power. In
addition, chance findings due to multiple testing can be readily accounted for by use of a genewide-significance
level. Meta-analysis procedures can be formalized for gene-based methods through the combination of P values. It is
only a matter of time before all variation within genes is mapped, at which point the gene-based approach will
become the natural end point for association analysis and will inform our search for functional variants relevant
to disease etiology.

Introduction

The past decade has seen a dramatic increase in the use
of association studies for the genetic analysis of complex
disorders (Lander and Schork 1994; Risch 2000). The
introduction of the transmission/disequilibrium test was
one important landmark in the popularization of asso-
ciation studies (Spielman et al. 1993), followed by the
demonstration by Risch and Merikangas (1996) of the
potential feasibility of genomewide association studies
and the comparatively greater power of association over
linkage for detecting genes of minor or modest effect
size. The enormous promise of association analysis is
beginning to be realized through the improved detail
and resolution of genetic maps, including the imminent
completion of the International Haplotype Mapping
(HapMap) Project (Couzin 2002; Stumpf and Goldstein
2003) and the rapid development of high-throughput
genotyping technologies (Collins et al. 1997).

This explosion of association studies has, however,
given rise to some controversy concerning study design,
statistical analysis, and interpretation of findings. Many
of these issues have been the subject of recent reviews
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(Risch and Merikangas 1996; Terwilliger and Weiss
1998; Schork et al. 2000; Cardon and Bell 2001; Clay-
ton and McKeigue 2001; Reich and Lander 2001; Lewis
2002). In the present article, we discuss the fundamental
question of what should constitute the basic genetic
component to be considered for association with a com-
plex disorder. Historically, association has referred
primarily to allelic association, implicating the allele as
the basic unit of analysis. With increasing marker den-
sity and the use of an indirect approach to association
through linkage disequilibrium (LD), association is now
often considered at the haplotypic level. These levels of
analyses are, however, potentially problematic in the
context of replication. Must a replication study obtain
a pattern of association exactly the same as that of the
original finding to count as supportive evidence? Con-
versely, can a negative finding be regarded as nonrepli-
cation if only the associated allele or haplotype from
the initial study is examined? We argue that the current
tendency to perform association analysis at the SNP or
the haplotype level is problematic, and we suggest a
move toward a gene-based approach in which all vari-
ants within a putative gene are considered jointly.

Complex Disorder/Complex Association

Risch and Merikangas (1996) identified SNPs as the pu-
tative genetic risk factors for association testing and pro-
posed a genomewide-significance level set at the very low
value of 10�8 to allow for the total number of intragenic
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Figure 1 Adapted from figure 1 of Williams et al. (2004). Blackened boxes 1–13 represent the coding regions of dysbindin; adjacent
unblackened boxes represent alternative splicing sites. P1–P4 represent the four hypothesized promoter regions of dysbindin. The numbered
loci constitute the initial 8-marker haplotype specified by Straub et al. (2002). The lettered loci are the SNPs Williams et al. (2004) discovered
and analyzed. The Roman numerals specify the additional markers typed by Schwab et al. (2003). Van Den Bogaert et al. (2003) typed 2, 4,
5, 7, and 8, whereas Schwab et al. (2003) typed 2, 3, 4, 6, 7, and 8.

SNPs in the human genome. Since most current studies
are underpowered to achieve such a stringent level of
significance, replications are usually necessary for the
confirmation of an association finding. Sufficient data
have been gathered to gain some insight into the fate of
putative association findings, whether they are likely or
unlikely to be confirmed subsequently. In a heroic study,
Hirschhorn et al. (2002) conducted a meta-analysis of
166 initial association findings and their subsequent at-
tempted replications, for a large number of complex dis-
orders. They included putative association findings for
which at least two subsequent replication attempts have
been published, and they determined that only 6 of the
166 initial findings have been reliably replicated (with
175% of replication studies showing significant results).
Of the other initial findings, 97 had at least one signifi-
cant replication, and 63 have not been replicated. This
excellent review is, however, restricted to only replica-
tions of precisely the same polymorphism as the initial
finding and does not take account of supporting evidence
from more-complex patterns of associations with other
polymorphisms in the same gene. Similar surveys of the
association literature have been conducted, yielding suc-
cessful replication rates of 16%–30% (Ioannidis 2003;
Ioannidis et al. 2003; Lohmueller et al. 2003).

The recent association findings on schizophrenia serve
to illustrate the complexity of association findings that
can arise from complex disorders. Following an initial
study by Straub et al. (2002) that demonstrated an as-
sociation with schizophrenia and dysbindin, located at
6p22.3, four attempts have been made at replication in
six different populations (Morris et al. 2003; Schwab
et al. 2003; Van Den Bogaert et al. 2003; Williams et
al. 2004). All of these attempted replication studies ex-
amined more than just the most significant SNP from
the initial study, but none chose exactly the same SNPs
that comprise the original high-risk haplotype. The

Schwab et al. (2003) and Van Den Bogaert et al. (2003)
studies examined fewer SNPs than the original core
high-risk haplotype. Schwab et al. (2003) concluded
replication by finding an association signal in their sub-
set of the markers, as did Van Den Bogaert et al. (2003)
in their Swedish sample but not in their German or
Polish samples. Given that only a subset of markers was
used, however, it is not clear whether the absence of
association between schizophrenia and dysbindin in the
German or Polish samples should be regarded as non-
replication. Also of note is that the Schwab et al. study
(2003) found evidence for association with the common
haplotype, rather than the rarer haplotype identified by
Straub et al. (2002). Morris et al. (2003) failed to rep-
licate the association in an Irish sample, though, again,
they did not use exactly the same markers as were used
in the original study but typed additional markers across
the gene. Given the increase in marker density in the
study by Morris et al. (2003), this negative finding car-
ried greater weight than did less extensive replication
attempts. Continuing this pattern of thorough investiga-
tion, Williams et al. (2004) mapped a newly discovered
region of dysbindin—the promoter—and, by doing so,
found significant association in both the Irish sample of
Morris et al. (2003) and another sample from Wales.
By a parsing of the gene to capture more variation, a
strong negative finding has now been transformed into
a substantial positive, with the Irish sample (Morris et
al. 2003) providing most of the evidence. For the loca-
tion of the SNPs in the original and subsequent studies
of dysbindin, see figure 1.

Another example of a complex pattern of association
is that between alcoholism and variants at the aldehyde
dehydrogenase 2 (ALDH2) and alcohol dehydrogenase
(ADH) genes. The low-activity variant ALDH2*487Lys,
present in East Asian populations at 30% allele fre-
quency, is responsible for the flush reaction to alcohol



Neale and Sham: The Future of Association Studies 355

and is protective against alcoholism (Harada et al. 1981).
However, this allele is extremely rare in European popu-
lations (Shibuya and Yoshida 1988; Peterson et al.
1999). The ADH genes, which cluster on chromosomal
region 4q21-q25, can be grouped into five classes. The
bulk of the known functional variation is restricted to
the class I genes, consisting of three ADH genes in an
80-kb region. These ADH genes demonstrate strong as-
sociations with alcoholism, but there is much variability
between the patterns of association in different popu-
lations. The reason may be that the frequencies of the
alleles in these genes have been shown to be disparate
in different populations, such as an enrichment of the
ADH1B*47His allele in East Asian populations (Goedde
et al. 1992; Thomasson et al. 1994; Neumark et al.
1998). Other population-based studies have detected
significant differences in allele frequencies—as well as
the pattern of LD—across a number of loci in this gene
cluster (for review, see Osier et al. [2002]).

These examples illustrate some of possible reasons for
the emergence of complex patterns of association find-
ings in complex disorders. First, there may be important
differences in allele frequency or LD structure across
different populations. Thus, in different populations,
the same high-risk allele may have a very different pat-
tern of association with marker alleles and haplotypes.
This may be particularly relevant under a common-dis-
ease-common-variant (CDCV) hypothesis (Chakravarti
1999; Weiss and Clark 2002), in which the age of the
mutation allows for differential recombination histories
in different populations (Pritchard and Przeworski 2001).
The situation may be further complicated by the pres-
ence of hidden stratification in some populations, pro-
ducing spurious association or altering the pattern of a
true association (Morton and Collins 1998; Pritchard
et al. 2000; Thomas and Witte 2002; Stumpf and Gold-
stein 2003; Freedman et al. 2004). Other sources of
complexity are allelic heterogeneity, in which different
alleles at the same locus are responsible for increased
disease risk in different populations, and locus hetero-
geneity, in which alleles at different loci are responsible
for increased disease risk in different populations. Both
of these scenarios are likely when there are multiple rare
variants (MRVs) that are fairly recent in origin. Note
that, currently, little is known about the true nature of
allelic heterogeneity with respect to disease (Pritchard
2001; Reich and Lander 2001). Aside from these ge-
netically driven phenomena, study design and publica-
tion bias may also lead to complex patterns (Colhoun
et al. 2003). Low-powered attempts at replication that
conclude no evidence for association can be potentially
misleading. Conversely, some spurious positive findings
would be expected from multiple analyses from multiple
small studies, especially when subgroups are identified
by data exploration and then are pursued and reported.

Levels of Analysis and Replication

Some of these problems, we suggest, would be consid-
erably reduced by performing association analyses and
replications at the level of the gene. Currently, the levels
of analysis and replication that are most common in the
literature are SNP, haplotype, and functional variant. To
clarify, SNP-based methods are predicated on genotyp-
ing only the most significant SNP from the prior study.
Replication at the SNP level runs a high risk of false-
negative results, because of the failure to include or tag
relevant functional variants within the replication sample.
Replication at the haplotype level uses the same markers
as those in the initial study and may be potentially more
powerful than analysis of a single SNP (Zhang et al.
2002a, 2003) because more variation is studied and
tagged. However, use of the same markers as those in
the initial study implicitly assumes that the allele fre-
quencies and haplotype structure in the region are the
same in the two populations, which may not be a valid
assumption. The complexities of cross-population inves-
tigations are not fully understood, and only with more
extensive data concerning population differences will we
be able to accommodate the potential inconsistencies
arising from such studies (Helmuth 2001; Couzin 2002;
van den Oord and Neale 2003). The testing of only
known functional variants has the advantage of biologi-
cal plausibility but is predicated on full knowledge of
gene function and how this is influenced by genetic
variation.

In gene-based replication, the gene identified by the
initial study is consequently examined for association
with effectively all genetic variants in the intragenic and
regulatory regions. There are several reasons for re-
garding gene-based replication as a gold standard. First
and foremost, genes are the functional unit of the human
genome, and the positions, sequence, and function of
genes are highly consistent across diverse human popula-
tions. This universality is considerably greater than that
of either a SNP or a haplotype. Furthermore, gene-based
replication implies that each population will be studied
with due account of local allele frequencies and LD
structure and should therefore overcome many of the
problems with nonreplication due to population differ-
ences, under both the CDCV and the MRV hypotheses.
Third, gene-based replication simplifies the multiple-
testing problem by conveniently dividing it into two
stages, dealing first with the multiple variants within
a gene and then with the multiple genes in the genome.

Methodological Issues of a Gene-Based Approach

A gene-based approach would ideally consider all varia-
tion within a gene and its regulatory region for associ-
ation with the phenotype. The presence of LD between
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some nearby variants means that full information often
can be obtained by genotyping only a subset of the vari-
ants and by considering their joint haplotypes (Daly et
al. 2001; Johnson et al. 2001; Patil et al. 2001; Gabriel
et al. 2002; Ardlie et al. 2002). By use of this haplotype-
tagging approach, it is possible to study all but rare genetic
variants by genotyping a limited number of relatively
common SNPs. A number of groups have developed
methods for selecting haplotype-tagging SNPs from a
larger set of SNPs (Byng et al. 2003; Chapman et al.
2003; Weale et al. 2003; Lowe et al. 2004; Zhang et al.
2004). A genewide approach also requires the analysis
of multilocus genotype data; methods for doing this,
taking into account phase uncertainty, are being rapidly
developed (Schaid et al. 2002; Zaykin et al. 2002; Zhang
et al. 2002b; North et al. 2003; Seltman et al. 2003;
Tanck et al. 2003; Thomas et al. 2003; Zhao et al. 2003;
Sham et al. 2004).

Direct versus Indirect Association

At present, direct association mapping of functional
variants is limited by incomplete knowledge about func-
tional variation. Most current association mapping is
indirect, with reliance on LD between a disease suscep-
tibility allele and either a single marker allele or a multi-
locus haplotype. Much recent methodological work has
been conducted to optimize this indirect approach, in-
cluding the investigation of haplotype-block structure and
techniques for selecting haplotype-tagging SNPs. The
systematization of the indirect approach is the aim of
the HapMap Project, through a genomewide study of
haplotype-block structure in several populations. As we
approach saturation of genomic variation, it will become
feasible for association studies to examine all the vari-
ants within and around putative genes, including the
functional variants. This would represent a shift toward
a direct approach to association analysis, with some im-
portant consequences. First, haplotype tagging would
become less relevant and would be supplanted by tests
of the main effects of the variants. In other words, the
analysis would shift from a haplotype-scoring to a locus-
scoring framework (Chapman et al. 2003). Second, hap-
lotype methods would assume a new role in association
studies, that of testing for cis-interactions in addition to
main effects.

The haplotype-tagging approach is based on the ex-
istence of strong LD and limited haploptype diversity in
small genomic regions. Thus, increasing the number of
typed SNPs beyond the haplotype-tagging SNPs does not
yield additional unique haplotypes and therefore does
not add to the dimensionality (degrees of freedom) of
the association test. In a similar fashion, a test for allele-
specific main effects will also cease to increase in di-

mensionality, at or before the point when haplotype di-
versity is fully captured by the typed markers. In a re-
gression-modeling framework, the maximum dimension
is restricted by colinearity between alleles, requiring the
removal of some alleles. Similarly, in the case of the
multilocus score test of Chapman et al. (2003), coline-
arity will be manifested in a variance-covariance matrix
that is short of full rank.

When few markers are examined, the dimensionality
of the haplotype-scoring test is greater than that of the
locus-scoring test (Chapman et al. 2003). However, as
the number of typed markers increases toward the point
of saturation, the dimensionality of the locus-scoring test
might, in some cases, converge to that of the haplotype-
scoring test. In the event that each haplotype is uniquely
tagged by a single allele, the two tests will converge.
When this is not the case, the difference between the two
tests represents cis-interactions between alleles. Until
marker saturation is achieved, a disease association that
is stronger with a haplotype than with the constituent
alleles is consistent with both cis-interaction and the tag-
ging of a rare variant by the haplotype. The extent and
importance of cis-interactions in the human genome are
as yet unknown.

Currently, complete sequencing of candidate genes is
feasible only on a limited scale and is seldom performed
comprehensively on entire genes or on an adequate num-
ber of individuals. Indirect association via haplotype tag-
ging is an efficient approach at present, and should remain
so for the near future, especially when screening a large
number of candidate genes. However, haplotype tagging
in the absence of complete knowledge of genetic variation
runs the risk of not detecting some rare variants, thereby
missing an association signal and underestimating the
dimensionality of the test for the entire gene.

Genewide Significance

The use of a gene-based approach to association would
require some adjustment of our testing procedures and
redefinition of significance levels. By analogy to the con-
vention in linkage analysis of adopting a genomewide-
significance level—even for studies that focus on re-
stricted parts of the genome (Morton 1955; Lander and
Kruglyak 1995)—it can be argued that one should adopt
a significance level that reflects all the variation present
in and around the gene, whether or not the study
achieved complete coverage of the variation. This level
of association testing could be termed “genewide signifi-
cance,” whereas “genomewide significance” would also
take into account the examination of all the genes in the
genome. To determine the genewide-significance level, it
is necessary to know the dimensionality of both the em-
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Figure 2 Minimum sample allele frequency for achieving different levels of significance. We assume equal numbers of cases and controls
in an association sample and plot the behavior of the minimum-allele frequency capable of demonstrating significant association at the nominal
(.05), genewide (.00167), and genomewide level ( ) against total sample size. The genewide significance assumes 30 detectable�85.56 # 10
haplotypes across the gene, in accordance with the Crawford et al. (2004) estimate, and the genomewide level assumes 30,000 genes. The
minimum-allele frequency is derived from the instance in which all copies of the allele (c) are found in either the cases (disease predisposing)
or controls (disease protective). The significance is defined as , since, under the null hypothesis, the first copy of the allele must be inc�10.5
either the cases or controls, and each subsequent allele is regarded as independent and has .5 probability of being in the same group as the
first allele. Note the convergence of the nominal and genewide frequencies as sample size increases.

ployed association test (Dtest) and the complete gene-
wide-association test (Dgene). The ratio

Dtest

Dgene

(abbreviated as “r”) is an indication of the proportion
of all possible tests in the entire gene that have been
performed for the study. By use of the Bonferroni proce-
dure, the genewide significance is obtained by multipli-
cation of the nominal P value of the test by the ratio r.
More accurately, the corrected genewide significance is
given by , as is important for meta-analysisr1 � (1 � P)
(see the “Meta-Analysis for Gene-Based Studies” section).

A fundamental issue in the assessment of Dgene is that
variability will increase almost indefinitely by including
progressively rarer variants and by sequencing larger sam-
ples. In practice, however, very rare alleles do not con-
tribute to dimensionality, since they cannot contribute
to the evidence for association, at least in a conventional
test (e.g., a x2 test). There is a minimum number of copies
of an allele present in a sample, below which it is im-

possible to demonstrate a significant association between
the allele and disease. For example, when the numbers
of cases and controls are equal, the most extreme as-
sociation occurs when all copies of the variants are found
among cases or among controls, and the nominal P value
associated with such a scenario with c copies of the
variant is ∼.5c�1. To reach a nominal significance of .05,
the minimum value of c must be 6. Figure 2 shows the
minimal sample allele frequency that can be potentially
significant at nominal, genewide, and genomewide sig-
nificance (see the “Genomewide Significance” section).
We define our genewide- and, consequently, genome-
wide-significance level in accordance with the findings
of Crawford et al. (2004), who sequenced 100 candidate
genes in two populations, one of African descent and
the other of European descent, and reported ∼3,000 hap-
lotypes across the 100 genes, formed by common SNPs
with a minor-allele frequency of at least 5%. These data
suggest an average genewide dimensionality of 30, yield-
ing a Bonferroni correction of 30 when a single SNP is
tested. It is clearly more satisfactory to determine gene-
wide dimensionality for the specific genes being inves-
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tigated, rather than an average value, but this requires
a detailed sequencing effort to find all the variants and
to delineate their LD relationships.

Whereas complete marker saturation is not yet
achieved, data from the HapMap Project are already
providing a lower limit to the dimensionality of many
genes. Differences in the extent of genetic variation exist
between populations (Crawford et al. 2004) and should
be taken into account in determining the dimensionality
of genewide tests.

Genomewide Significance

The conversion of genewide to genomewide signifi-
cance is relatively straightforward, since the approxi-
mate number of genes in the human genome is known,
and these genes are likely to represent largely indepen-
dent units. The different approaches to the problem of
multiple testing in association studies have been re-
viewed by several authors (Altshuler et al. 1998; Col-
houn et al. 2003; van den Oord and Sullivan 2003;
Thomas and Clayton 2004; Wacholder et al. 2004). Un-
der a classical frequentist approach, a genomewide sig-
nificance (P*) can be obtained simply from a genewide
significance (P) by the formula (≈mp∗ mP p 1 � (1 � P)
for small values of P, where m is the number of potential
contributory genes in the genome). The most conser-
vative approach, under the assumption of total igno-
rance, would set the value of m at the total number of
genes in the genome, currently estimated at ∼30,000.
Taking this most conservative approach would convert
a nominal genewide-significance level of to�71.5 # 10
a genomewide-significance level of .05. However, if the
set of plausible contributory genes can be restricted—
for example, to only that expressed in a particular tissue
or organ—then it may be reasonable to reduce the value
of m accordingly.

From a Bayesian point of view, the critical question
at the outset is that of prior probability of association.
A simple view of this prior probability is that it is the
proportion of all potential genes that we expect to have
a detectable impact on the phenotype. From van den
Oord and Sullivan (2003), the threshold value for a gene-
wide significance to be considered significant at a genome-
wide level is given by

(1 � p ) # PTD0∗a p ,
p0 � p0FDR

where PTD is power to detect association, p0 is the pro-
portion of genes expected to have no effect, and FDR
is the false discovery rate. For example, if we assume 10
genes to be contributing to a phenotype and that all
30,000 human genes are potential candidates, then

. If we further assume ap p 29,990/30,000 ≈ .99970

minimum 80% power to detect and an FDR of .05—
which means that, of all tests deemed significant, 5% will
be false discoveries—then . In other words,∗a ≈ .000014
a genewide significance of ∼ would be con-�51.4 # 10
sidered to be significant genomewide. For a replication
attempt, it might be appropriate to consider a smaller
value for p0, so that the threshold for genomewide sig-
nificance would be lower. Ideally, p0 should reflect the
posterior probability of association, given the initial
finding. If, for example, an appropriate value of p0—
considering the strength of the initial finding—is 0.8,
then . Therefore, at this strength of prior evi-∗a ≈ .01
dence, the nominal genewide significance requires little
correction.

Another approach to the problem of multiple testing
at the genomewide level is to adopt an empirical Bayes
approach in which the proportion of tests deviating from
the null hypothesis is estimated internally from the data
(Greenland and Robins 1991). This approach is particu-
larly attractive when a large number of genes have been
tested, as in a microarray experiment. Examples of this
approach include those proposed by Benjamini and Hoch-
berg (1995), Storey and Tibshirani (2003), and Gadbury
et al. (in press).

Meta-Analysis for Gene-Based Studies

Meta-analysis of genetic association studies, as for epi-
demiological association studies, usually looks to the com-
bination of odds ratios to give an overall odds ratio and
to the variation between the same odds ratios to give a
test for heterogeneity. This presents some difficulties for
a gene-based approach, since, in general, the association
cannot be summarized by a single odds ratio. A meta-
analysis can, however, be conducted on the basis of the
combination of P values, by use of a method proposed
by Fisher (1954). The test involves calculating the x2

statistic

m

2x p �2 # ln (p ) ,�2m i
ip1

where m is the number of P values, pi is the P value of
the ith study, and x2 is distributed as x2 with 2m df,
under the null hypothesis. Justification for such a method
has been derived for linkage (Allison and Heo 1998).

One important issue in conducting such a meta-analy-
sis is whether the P values should be corrected for multiple
testing prior to combination. Correction to the genewide
level of significance prior to combination is strongly rec-
ommended, since failure to do so can lead to liberal com-
bined P values, even if these are subsequently adjusted in
accordance with the maximum dimension of the con-
tributing tests. The conversion of a genewide significance
level obtained from such a meta-analysis to a genome-
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wide-significance level is, however, complicated by the
poorly understood relationship between meta-analysis
and multiple-testing correction.

Strategies for Screening a Large Number of Genes

For a complex disorder of uncertain pathophysiology,
the number of genes that might be involved in etiology
can be enormous, and a thorough study of all genetic
variation in every potential candidate gene would be a
very costly exercise. Budgetary constraints may therefore
necessitate efficient methods for screening a large num-
ber of genes to select a subset of candidate genes for
more intensive study.

One obvious way of screening a large number of genes
is to adopt an indirect approach by selecting a small
number of markers in each gene for genotyping, aiming
to capture most but not all the variation in the gene.
This is likely to be a cost-effective strategy, because the
relationship between the number of markers genotyped
and the proportion of tagged variation is likely to be
nonlinear, such that the marginal increase in saturation
tends to be less for each additional typed marker. Thus,
genotyping four well-chosen SNPs within a gene may
enable the tagging of 50% of all the variants within
that gene, but genotyping an additional four SNPs may
provide only an extra 25% saturation. Therefore, when
a large number of genes has to be screened, it does not
make sense to insist on complete saturation of selected
genes, but to increase the number of genes studied by
adopting an incomplete yet reasonably high level of
saturation.

Another approach to efficiently screen a large number
of candidate genes is through DNA pooling, which al-
lows allele frequencies to be measured directly in groups
rather than calculated from individual genotypes (Sham
et al. 2002). The reduction of genotyping cost per marker
makes it possible to screen a much larger number of
markers. The application of microarray genotyping tech-
nology on pooled DNA is a particularly promising way
forward.

What to Do with Very Rare Variants?

The scenario in which the disorder is influenced by
MRVs in a gene, each of minor or modest effect, is po-
tentially problematic for association studies. The prob-
lem is that each risk-increasing variant may be so rare
that there is only a handful of copies in a sample, making
it impossible to achieve even a nominal level of signifi-
cance. In this scenario, an indirect tagging approach may
still be effective, since there is likely to be an uneven dis-
tribution of risk-increasing variants across the marker
haplotypes (Sham et al. 2000). When a direct approach
that aims to capture all genetic variants in cases and
controls is adopted, evidence for the involvement of the

gene may be gleaned from a greater number of variants
in cases than in controls or from different distributions
of the variants in the gene, with clustering in certain
positions among the cases. This is an area of method-
ology that requires further development, as is the com-
bination of information from common and rare variants.

Functional Considerations

Statistical association is an important—but not the
only—consideration for concluding whether variation in
a gene plays a role in causing individual differences in
disease susceptibility. Other relevant considerations in-
clude biological plausibility, animal models, and gene-
expression studies (Page et al. 2003). Since genetic varia-
tion must be ultimately translated into differences in gene
function, to affect disease risk, a gene-based approach
provides a convenient framework for integrating statis-
tical and functional sources of information.

Ultimately, when we have full knowledge of functional
consequences of genetic variation at a molecular and cel-
lular level, the gene-based approach could be restricted
to functional genetic variation only. However, the acqui-
sition of this level of knowledge will be a gradual process,
and a systematic approach covering all genetic variation
within and around genes will likely remain efficient for
the genetic dissection of complex disorders.

Conclusions

Adoption of a gene-based approach to association anal-
ysis and replication is becoming feasible and has many
advantages. In contrast to SNP-based and haplotype-
based approaches, a gene-based approach is less suscep-
tible to erroneous findings due to genetic differences be-
tween populations. By capturing all of the potential
risk-conferring variations, a gene-based approach is ca-
pable of excluding association, subject only to the issue
of power. Use of a genewide-significance level should
reduce the problem of chance findings due to multiple
testing. A gene-based approach lends itself to meta-analy-
sis of combined data from multiple studies. As our
knowledge of the variation in genes grows, a gene-based
approach will become the natural end point for associa-
tion analysis and will provide pointers for genetic analy-
sis at the functional level.

A gene-based approach requires detailed knowledge
of genetic variation in coding sequences as well as regu-
latory and other regions affecting gene function. This
level of knowledge is not generally available, at present.
In the future, when knowledge of genetic variation al-
lows a gene-based approach to be routinely employed,
gene-based studies may become the preferred option for
the genetic dissection of complex traits. At present, a
gene-based approach should ideally be used for the rep-
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lication of previous positive-association findings or for
the study of very strong candidate genes. The gene-based
approach may not be necessary when there is very de-
tailed knowledge about functional variation in the gene
and would not be efficient for screening a very large
number of genes.
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