A PEER-TO-PEER JINI ARCHITECTURE FOR PERVASIVE MULTIMEDIA

Pan Hui, Onshun Chau, Xiaoshan Liu, Victor O.K. Li

Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China
Email: {panhui, h0118759, xsliu, vli}@eee.hku.hk

Abstract - Wireless technologies enable a mobile device to
connect and access resources available in the environment,
enabling pervasive multimedia. In this paper we first
introduce a Bluetooth Jini Profile which allows Bluetooth
devices to integrate with and discover service in a Jini
environment. Then a peer-to-peer architecture, Pervasive
Multimedia Overlay Network (PMON), connecting Jini
networks for media sharing and streaming service, is
developed. This overall structure enhances pervasive
multimedia for mobile devices.

Keywords — Bluetooth, Jini, P2P, pervasive multimedia,
service discovery, media streaming.

I. INTRODUCTION

Mobile devices such as PDAs and mobile phones are
increasingly popular. Even with the improvement in wireless
bandwidth, due to their low processing power and
unsatisfactory display, mobile devices are still not yet ideal
for multimedia services. But the wireless connectivity enables
these mobile devices to connect to any local network. This
feature allows mobile devices to make use of the resources
and services in the local environments instead of having to
bring their own resources. For example, when a mobile
device enters a room, it can operate the Hi-Fi of the room to
play music, the TV to play video to enjoy multimedia service.
But this needs well developed service discovery protocols for
effectively locating and accessing the services available in the
environment. Java Intelligent Network Infrastructure (Jini) [1]
is a middleware technology built on the TCP/IP layer to
implement a service discovery protocol. Jini technology
allows a client to discover services in a local network without
actual knowledge of the locations or characteristics of the
services. In our work, we assume many Jini environments,
each of which allows mobile devices to connect to it, search
and use services inside it. Bluetooth [2] is a low cost and low
power consumption wireless media and is expected to be
found on every mobile device in the future. Jini and Bluetooth
SDP are two common service discovery technologies. They
may meet each other in many environments. But there is not a
general architecture to bring them together and hence
Bluetooth cannot discover Jini. We first design a Bluetooth
Jini Profile which runs in three modes of operations, namely,
Surrogate, Bridge, and Client mode, and allows a multihop
Bluetooth connection to a Jini environment. From the success
of P2P [3] system in recent years for multimedia sharing and
media streaming, we further extend the power of a local Jini

0-7803-8521-7/04/$20.00 © 2004 IEEE

3160

environment by building a peer-to-peer architecture and
defining the communication protocol to connect individual
Jini networks to enable searching and instant streaming of
multimedia from other Jini networks. Each Jini network is
treated as an individual peer node in the whole P2P overlay
network. So our contributions include designing a Jini Profile
for Bluetooth/Jini interoperability, and introducing a peer-to-
peer Jini architecture for media streaming, thus enhancing
pervasive multimedia for mobile devices.

The rest of the paper is organized as follows: First we
introduce Jini Middleware Technology, and then we describe
Bluetooth technology. Section IV shows the Bluetooth Jini.
Section V introduces the Pervasive Multimedia Overlay
Network (PMON) and section VI shows one application
scenario of PMON. Section VII is the conclusion.

II. JINI MIDDLEWARE TECHNOLOGY

Java Intelligent Network Infrastructure (Jini) is a middleware
technology built on the TCP/IP layer to implement a service
discovery protocol.

The service provider may be a computer or a hardware
device with a controllable interface. As the name "Jini"
implies, it is implemented in Java programming Language. If
the device does not have a Java Programmable interface, the
solution is to add another middleware called COBRA to
bridge the two languages.

The core component of the Jini Service Lookup Protocol 1is
the Lookup Service Register (LUS). The service provider
advertises its existence and availability by registering itself to
an LUS. Normally the LUS is the first component to be up in
a Jini community and stays in the Jini community rather
statically. The LUS advertises its existence by sending out
UDP packets with a well-known multicast address. The
interested entities will listen for the packets to determine the
existence of the LUS. Then the client will communicate with
the LUS to search for the services using an unicast discovery
protocol. When a service provider do query the LUS, the LUS
returns a registrar object (an object which acts as a proxy for
the service provider). A copy of the service object will be
placed at the LUS.

When a client wants to search for a service, it first creates a
ServiceTemplate. Service templates are used by both service

providers and the clients for service request matching. It
accepts three important parameters.

ServiceTemplate(ServicelDD servicelD,
java.lang.Class[] serviceTypes, Entry[] attrSetTemplates)

ServicelD: An UUID which uniquely identifies the service.

Class[]: An array of “Class” objects that defines the Class
type of the service provider.

Entry[]: An Entry object will conceptually represent the
attributes of the service in an object format. The type of the
object passed can be regarded as the type of attribute of the
service, and the value parameters that follow the Object type
are the attribute values.

If there is service match, the client will get copies of matched
service object from the LUS. The client can communicate
with the service provider through the Remote Method
Invocation (RMI) and the service provider will tell the client
where to download the service implementation codebase.

III. BLUETOOTH TECHNOLOGY

Bluetooth is a short range wireless technology developed by
the Bluetooth Special Interest Group (SIG). It operates in the
unlicensed Industrial, Scientific and Medical (ISM) band,
which is centred around 2.45 GHz. It is originally designed
for the replacement of cable. Bluetooth uses fast (1600
hops/sec) frequency hopping (FH) technique with 79 channels
centered at (2,402 + kY MHz where K =0, 1,2 ... 78 FH
technique is employed for the sharing of the transmission
medium and for security. The maximum asynchronous data
rate in Bluetooth v1.1 is 732 kbits/s. Each Bluetooth time slot
lasts for 625ps.

Bluetooth devices can operate in one of two modes: Master
or Slave mode. Bluetooth devices are organized into Piconets.
In a particular Piconet, one Bluetooth device acts as Master,
and the others as Slaves. It is the Master that schedules the
data traffic over the Piconet. A collection of Slave devices
operating with one common Master is referred to as a Piconet.
The maximum allowable number of active Bluetooth devices
which may actively participate in a particular Piconet is eight
(one Master and seven Slaves). Each active member is
indicated by a 3-bit number called Active Member address
(AM_ADDR). A Slave can send packets to the Master only if
the Master has sent it a data packet. Thus, the Slaves cannot
send packets to each other directly. Like TCP and UDP in the
TCP/IP protocol, there are two kinds of links in Bluetooth
communication. They are Synchronous Connection-oriented
(SCO) and Asynchronous Connectionless (ACL) links. An
SCO link can be used for transmission of voice packets which
are never retransmitted. An ACL link is used for transmitting
data packets. An ACL link supports broadcast and if there is a
packet loss (may be due to collision), an ACL packet can be
retransmitted.

A Scatternet can be formed by linking several Piconets
together in an ad hoc fashion to accomodate more Bluetooth

0-7803-8521-7/04/$20.00 © 2004 IEEE

3161

devices. The discussion of Scatternet is outside the scope of
this article but our proposed architecture will assume a
Scatternet environment.

Bluetooth implements Service Discovery Protocol (SDP). The
service provided by a bluetooth device is called a profile.
Bluetooth vl1.1 standardizes several profiles. In the upcoming
v1.2 more profiles will be standardized. The service registers
itself to the SDP Database as a service record. A service
record is represented by attribute-value pairs. Here are some
important attributes for a service.

ServiceRecordHandle (0x0000) -- acts as a primary key to
identify a service in the SDP server.

ServicelD (0x0003) -- UUID that uniquely identifies a
service.

ProtocolDescriptorList(0x0004) -- lists the protocol required
to support the profile.

The service request procedure is done by a request-respond
scheme, through SDP Protocol Data Units (PDU).

IV. BLUETOOTH JINI PROFILE

Jini is built on a TCP/IP network. One of the critical points
for Bluetooth devices to participate in a Jini community is
that the access point (AP) should be able to route multicast
packets in and out of the Bluetooth network. There is some
work on Jini/Bluetooth interoperability [4]. But again the
range of the Bluetooth client to the Jini surrogate is only
limited to one hop and there is no public message exchange
protocol such as XML for platform independency. Our goal is
to develop an architecture which enables Bluetooth devices to
look for Jini services up to multiple hops away.

Serveral factors affect our architecture design:
1. The limit on the range of Bluetooth radio:

Life would be easy if every Bluetooth device is just one hop
from the access point. One of the design features of the
Bluetooth device is power conservation. To limit power
consumption, the power of the bluetooth radio is rather small.
Currently most of the Bluetooth modules use Class 3 radio
(1mW). The maximum range is 10m, but due to interference,
the typical range of the Class 3 radio is just 5-6m. In the case
of the PAN or LAN profiles, if the access point is not within
range of the client device, multicast routing of packets has to
be peformed over multiple hops. This increases system
complexity. In this article, we will propose a bridge
architecture for the routing of Jini service requests in a
Bluetooth network.

2. The ad hoc characteristics of Bluetooth network

In a Bluetooth network, it is assumed that all the nodes have a
rather high mobility; they can freely join or leave arbitrarily.
Our proposed architecture should be able to deal with
possible changes of the Bluetooth network topology.

3. The constraint of Bluetooth device

Bluetooth is rather lightweight and simple. It is designed for
cable replacement and for embedded systems. Likewise, any
protocol built on the Bluetooth network should also have the
same quality.

The Jini™ profile defines the architectural components and
necessary procedures cooperating with the Jini Surrogate
architecture to allow a client in a Bluetooth network to
perform Jini service lookup. Jini™ Profile runs in any one of
the three operation modes: Surrogate, Bridge, and Client .

Bluetooth Network

LookUp Service]

Client

TCP/IP Network

Surrogate

Service Provider

Jini

Fig. 1. Bluetooth Jini™ Profile Architecture Overview

Surrogate performs session management and parses Jini
service lookup requests from an XML document sent by a
device in a Bluetooth network. The Bridge routes Jini service
lookup requests initiated by a Client in a Bluetooth network to
enable multihop service discovery. The Client initiates Jini
service lookup requests. The request description is put into an
XML file and transmitted through an OBEX-FTP profile. Fig.
3 shows the Bluetooth protocol stacks needed for Jini Service
Lookup.

R CRane HP B RECOME

LR L2OAR LBAP

Bazeband Bassband

Fig.2. The Bluetooth Protocol Stack for Jini Service Lookup

V. PERVASIVE MULTIMEDIA OVERLAY NETWORK

The system we propose is called Pervasive Multimedia
Overlay Network (PMON). In this network architecture, each
Jini network/environment is treated as a single peer and
connected by P2P protocol to form a P2P network. Each peer
(individual Jini Network) contains four main components:
Jini LookUp Service Register (LUS), Multimedia Gateway
(GW), Media Streaming Server (MSS) and the Jini/Bluetooth
Surrogate. Fig. 3 shows the PMON architecture overview.

0-7803-8521-7/04/$20.00 © 2004 IEEE

3162

| Bufrogate |~ PMON
,,,,,,,,,,,,,,,,,,,,,,,,,,,, ™
) s
/ Jini Network
X
v MSS
\\\
»/4 \\\
ow ow T
/ Jini Network VVVVV } Jini Network
LLux MSS) ‘ MSS :
3 LUX o
Surrogate s .
,,,,,, e A . Surrogate

Fig. 3. PMON Architecture Overview

1. Jini LookUp Service Register (LUS)

Jini LookUp Service Register is the most important
component in a Jini community. It acts as a database for
service providers to advertise their services in a Jini
community. A copy of the service object is stored in the LUS.

2. Multimedia Gateway (GW)

A Multimedia Gateway (GW) just acts as a gateway for a Jini
network to communicate with other Jini networks. GW talks
to other GW by using peer-to-peer protocol descriptors. The
protocol used in our system is similar to Gnutella Protocol
v0.4 [3].We define five types of descriptors, Ping, Pong,
Query, Query Hit, and Push. A GW uses Ping and Pong to
maintain connection status to the Pervasive Multimedia
Overlay Network (PMON), Query to query media files in the
network and QueryHit to return query results. The Push
descriptor is a mechanism that allows a firewalled GW to
contribute file-based data to the network. Although each Jini
network is treated as a virtual node in the PMON; actually
GWs are the real nodes connected in the overlay. It keeps a
list of the machines and their corresponding media files
shared out and hence acts as a proxy to answer whether its
local domain has a particular media file during a P2P search.
When a requested media file is not in the local network, GW
will send out Query messages to all its neighbors in the
PMON and this procedure will continue in other GW until the
TTL wvalue in the query header drops to zero. If a match is
found in a remote GW, that particular GW will retum a
QueryHit which contains the metadata of the local media file,
the address and the network condition of the machines that
provide the service. The local GW, upon receiving the
QueryHits, will collect them in a list and choose the best one
for streaming the data.

3. Media Streaming Server (SS)

The Media Streaming Server can be a Real Time Protocol
(RTP) or Real Time Streaming Protocol (RTSP) media
server. It shares media files and registers with the LUS to act
as a service provider and allows direct connection from
foreign Jini domains.

4. Jini/Bluetooth Surrogate

Jini/Bluetooth Surrogate is a Bluetooth access point which
runs Bluetooth Jini Profile in the surrogate mode and allows a
Bluetooth device to discover a Jini network.

The architecture of the Surrogate is shown in Fig. 4. It
consists of two large modules, one interfacing with the
Bluetooth network and the other the Jini community. The
Surrogate can be decomposed into serveral modules. (The
term “Surrogate” in this article is defined as Bluetooth Jini
Profile--Surrogate operation mode. This definition is different
from that of SUN™ [5]; however our proposed “Surrogate”
includes the majority of the functions in SUN™"s definition
of surrogate)

JinifJava Bluetooth Module
1
ShiP
i G
Jini Clignt 9
Connection
Handler
XML Document 3
XML~ i XML document ©
ServiceTemplate . feceiver
Transiator (OBEX-client} s

1: Bridge/Client Jini Profile Lockup
2: Service Connection From Bridge/Client
3. XML file

Fig. 4. The internal structure of a Surrogate with Jini Client
included

1. Surrogate SDP Database

The Surrogate’s SDP Database has a record Jini Profile with
“Surrogate” as the mode of operation. It allows its surrogate
service to be discovered.

2. Jini Profile Connection Handler

It receives connection requests from Bridge or Client and
performs session management. It can also monitor the client
connection status.

3. XML document receiver (OBEX-Client)

It acts as the client for OBEX-Client for the XML document.
When the file is fully received, the file is stored in a

0-7803-8521-7/04/$20.00 © 2004 IEEE

3163

temporary place. OBEX, the Object Exchange Profile, is a
protocol allowing object push, pull, and initialization of the
Object Exchange Session. It forms the basis for other profiles
such as the FTP profile which allows flat file transfer over the
Bluetooth network. We will use OBEX-FTP for the
transmission of XML documents in our proposed architecture.

4. XML-ServiceTemplate Translator

Converts XML data to Jini ServiceTemplate (a Java object
that represent a service query). The translation process is
written in the Java Programming language.

5. Jini Client

Uses the ServiceTemplate constructed by XML-
ServiceTemplate Translator to query for service in LUS.

VI ENJOY PERVASIVE MULTIMEDIA

When a mobile client connects to a Jini network by the Jini
Profile, it looks for an LUS and searches for any multimedia
services. Through the LUS, it discovers that a device, say a
speaker nearby is available for sharing. The client then
connects to the service and asks the speaker to play a certain
media, which is passed as a parameter along with the call. If
the speaker can find the matching media files locally, it will
play it. If it cannot find the service, it connects to the GW. If
there is no required media data found in GW’s local media
list, the GW will issue a P2P search. Fig. 5 shows the
chronological sequence of a Pervasive Multimedia Streaming
Process.

1. The Speaker/ Monitor at the Client Domain registers itself
to the Jini Lookup Service Register (LUS1)

2. A Streaming Server at Server Domain (SS2) registers itself
to the LUS2.

3. A Multimedia Gateway at Client Domain (GW 1) registers
itself to the LUSI.

4-5. A Multimedia Gateway at the Server Domain (GW2) is
up; it discovers available multimedia server(s).

6-7. GW2 contact the SS2 to cache any available media data.

8-9. A Client (e.g. mobile node) comes in to the Server
Domain and searches for the available multimedia service. It
finds the Speaker/Monitor through the LUSI.

10. The Client connects to the Speaker/Monitor through
Bluetooth and passes in requested media data.

11. The Speaker/Monitor tries to find the requested media
data locally. If it finds the service available, just play the
media data.

12-14. If the requested media data is not available, it tries to
find the data through GW1. GW1 is found through a Jini
LUS.

15. GW1 tries to find whether media data 1s available in the
local domain, from its cached memory.

16. If no media data is found, it sends Query messages to its
neighbours in the PMON.

17. For each Gateway (GW2) found, it attempts to find the
requested media data, from its cache.

18. If matched media data is found, Query Hit will be sent
back, with the location (e.g. IP address + port number +
protocol) of the Multimedia Server (SS2) to requesting
gateway (GW1).

19. GW1 redirects the result to Speaker/Monitor.

20-21. The Speaker/Monitor connects directly to the SS2 with
the required result.

Muitimedia
Gateway2

Jini Lookup. RTP Multmedia
Si 2 St

Server?

Fig. 5. Chronological Sequence of a Pervasive Multimedia
Streaming Process

VII. CONCLUSION

We propose a Bluetooth Jini Profile and a Pervasive
Multimedia Overlay Network (PMON) connecting Jini
networks together to provide pervasive multimedia service for
mobile devices equipped with Bluetooth.

ACKNOWLEDGEMENT

This research is supported in part by the Areas of Excellence
Scheme established under the University Grants Committee
of the Hong Kong Special Administrative Region, China
(Project No. AoE/E-01/99).

REFERENCES

[1] Jini Network Technology, “Jini Specifications V2.07,
http//wwws.sun.comy/software/jini/specs/indes. html, June
2003.

0-7803-8521-7/04/$20.00 © 2004 IEEE

3164

2] C. Bisdikian, “An Overview of the Bluetooth Wireless
Technology”, IEEE Communication Magazine, vol. 39,
pp- 86-94, December 2001.

Clip2, “The Gnutella Protocol Specification v0.417,
http://www9 limewire. com/developer/gnutella protocol O
A.pdf.

S. Kasper and L. Buhrer, “Jini Discovers Bluetooth”,
http://www.tik.ee.ethz.ch/ beutel/projects/sa
da/2002ss sa vincent bt jini.pdf, Summer 2002.
The Jini™ Technology — Surrogate Architecture
Specification version 1.0 Standard,
http://surrogate jini.org, October 2003.

[3]

[4]

[3]

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004
	nd: nd
	header: Proceedings of the 2 International IEEE EMBS Conference on Neural Engineering Arlington, Virginia · March 16 - 19, 2005
	footer: 0-7803-8709-0/05/$20.00©2005 IEEE

