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Abstract-- The Dynamic Security Region (DSR) of bulk power 

system has been accepted more and more in recent years for 
providing plenty of security information and good prospect in 
online application. This paper compares three linear 
approximations for the dynamic security region of network-
reduction power systems. The three linear approximations are 
the Q-linear approximation based on the quadratic 
approximation of stability region, the L-linear approximation 
based on the linear approximation of stability region and the L0-
linear approximation based on the invariant assumption of the 
normal vector for the boundary of the stability region 
corresponding to different control variable. The three linear 
approximations are all obtained with a same critical point lying 
just on the boundary of dynamic security region. The critical 
point is searched with numerical simulation. The accuracy of the 
three linear approximations is compared, using the linear 
approximation obtained with the curve fitting approach or the 
actual boundary of DSR searched as the benchmark. Simulation 
results in IEEE 3-machine 9-bus system and 10-machine 39-bus 
New England system show that all the three linear 
approximations display fairly accurate estimation. Furthermore, 
from the computational viewpoint, the L-linear and the L0-linear 
method are two alternative choices to approximate the dynamic 
security region. 
 

Index Terms—Dynamic Security Region; Transient Stability; 
Stability Region; Direct Method; Linear Approximation 

I.  INTRODUCTION 
ransient stability has always been one of the most 
important analyses in power system engineering. 

Transient stability is the ability of the power system to 
maintain synchronism after a fault such as short circuit. 
Significant advances have been made in recent years in the 
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Direct Methods for power system transient stability analysis 
[1-7]. However, due to both the fault and its clearing time are 
fixed, the power system transient stability can be uniquely 
determined by some system control variable. Thus it is useful 
to clarify the set of control variable––dynamic security 
region–– each of which indicate that the power system can 
remain transient stable against a certain fault. 

The concept of dynamic security region was introduced 
many years ago [8]. It has been made practical by a series of 
modifications and enhancements in the last couple of years [9-
14]. Ref. [10] observed that the practical DSR is surrounded 
by the vertical hyper-planes that are upper and lower limits of 
every bus injection, and one or several the hyper-planes that 
describe critical points of transient stability on power injection 
space. To the latter, Ref [11] constructed it by the least square 
curve fitting approach, which uses a lot of critical points 
searched by numerical simulation, furthermore, it gave out the 
practical DSR of the Central China power system. However, it 
is impractical to obtain DSR by numerical simulation in the 
large power system. Analytical methods to direct calculate the 
DSR have been proposed in [12,13]. By assuming that planes, 
tangent to the boundaries of transient stability region at the 
CUEPs, are parallel under different critical power injections 
(i.e. the normal vector of the planes are being the same 
constant corresponding to different control variable), ref. [12] 
proposed a practical analytic expression of the boundary of 
the DSR respected to the critical transient stability. 
Furthermore, by extending the parallel character to the exit 
point of the fault-on trajectory, ref. [13] developed a direct 
method for rapidly determining the hyper-planes 
corresponding to critical transient stability region, based on 
the transient energy function. Recently, ref. [14] presents an 
implicit expression for the local boundary of the DSR based 
on the implicit expression of stability region, and 
subsequently, some approximations for the DSR are derived 
with the approximation for the stability region and 
sensitivities. 

It is reported [12-14] that if we obtain one critical point 
just lying on the boundary of dynamic security region as the 
value of the control variable where the proposed 
approximation method is applied, then we can obtain fairly 
good approximation for the local boundary of DSR. In this 
paper, we compare three linear approximations for the 
dynamic security region, after obtaining one critical point on 
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the boundary of DSR. The three linear approximations are the 
Q-linear approximation based on the quadratic approximation 
of stability region, the L-linear approximation based on the 
linear approximation of stability region and the L0-linear 
approximation based on the invariant assumption of the 
normal vector of the boundary of the stability region 
corresponding to different control variable. In the comparison, 
we use the linear approximation of the DSR obtained by the 
least square curve fitting method as the benchmark. And 
furthermore, we compare the angle of between the normal 
vectors of the linear approximations and benchmark, and the 
coefficient error of the approximation in uniform displaying 
form. Additionally, for the DSR in low dimension, we use the 
figure to directly compare the approximation with the actual 
boundary searched by numerical simulation. The simulations 
in IEEE 3-machine 9-bus system and 10-machine 39-bus New 
England system show that all the three approximations display 
fairly accurate estimation. Furthermore, from the 
computational viewpoint, the L-linear and the L0-linear 
method are two alternative choices to approximate the 
dynamic security region. 

The remainders of the paper are organized as follows: 
after obtaining the implicit expression for the dynamic 
security region (DSR) in Section II, we present three linear 
approximations for the DSR in Section III. We then discuss 
the problem in approximations and comparison in Section IV. 
The approximations are compared using IEEE 3-machine 9-
bus system and 10-machine 39-bus in Section V. Finally, a 
summary is provided in Section VI. 

II.  POWER SYSTEM TRANSIENT STABILITY AND DYNAMIC 
SECURITY REGION 

A.  Power System Model 
Consider a power system with generators and loads 

interconnected together by a transmission network. The 
system dynamics is assumed to be represented by a 
differential equation 

 ),( uxfx =&  (1) 

where nx R∈  are the state variables, and mu R∈  are the 
control variables. Due to power flow equations of the 
transmission network, the electromechanical interaction of a 
power system for stability analysis is typically represented by 
a differential-algebraic equation instead. Additional 
assumption is therefore necessary for the model introduced in 
(1) to be valid for stability analysis. One is to assume that the 
loads are all constant impedance loads. Another one is to 
assume that the structural preserving model [7] is used. 

For example, if the classical model of a power system is 
used for transient stability analysis, then for a power system 
consisting of ng generators with the loads modeled as constant 
impedances, the dynamics of the k-th generator can be written 
with the usual notation as: 
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where Bfπω 20 = , kδ  and kω  are the rotor angle and speed 

of machine k; kD  and kH  are damping ratio and inertia 

constant of machine k, mkP  and ekP  are the mechanical 
power and the electrical at machine #k; 
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where jkkj δδδ −= , kE  is the constant voltage behind direct 

axis transient reactance of machine #k., nnijij jBG ×+= )(Y  

is the reduced admittance matrix.  
If, furthermore, as usual, uniform damping is assumed, 

i.e. kk HDd 2/0 =  ( gnk ,,1L= ), then using the gn th−  

machine as the reference, (2) can be transformed into the form 
of (1) as follows: 
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In such a case, the state variables will be 
TTTx ),( ωδ= , where T

nnn ggg
),( ,11 −= δδδ L , 

T
nnn ggg
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B.  Transient Stability and Dynamic Security Region 
Transient stability is the ability of the power system to 

maintain synchronism after a fault such as short circuit. 
Mathematically, the power system suffered from a fault has 
three stages: the pre-fault, fault-on and post-fault stage. 

At the pre-fault stage, the system is operated at a stable 
equilibrium point )(0 ux  of the pre-fault system 

 ),(1 uxFx =&  0<t  (4) 
At time 0=t , the system undergoes a fault that results 

in a structural change in the system. Suppose the fault is 
cleared at time Ftt = . Then during the fault-on stage, the 
system is governed by a fault-on dynamics described by: 
 ),(2 uyFy =& , 0 0,(0) , ( ) ( , )y x y t t x uφ= = , Ftt <≤0  (5) 

Once the fault is cleared, the system is henceforth 
governed by a post-fault dynamics described by the following 
differential equation (6). The initial condition of the post-fault 
system is the state of the fault-on system at fault clearing, 

0( , , )Ft x uφ . Notice that since the clearing time is given and 

0x  is a function of u, the system state at the time of clearing is 
really only a function of u, we therefore write 

0( ) ( , , )Fu t x uφ φ= . The post-fault dynamics is described 
by: 
 ),( uzfz =& , ( ) ( ) ( )F Fz t y t uφ= = , Ftt ≥  (6) 

Assuming the post-fault system has a (asymptotically) 
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stable equilibrium point )(uzs , then the transient stability 
analysis is to determine whether the initial point of the post-
fault trajectory, ( )uφ , is located inside the stability region of 

the equilibrium point )(uzs , ))(( uzV s . Furthermore, as the 
setting of the control variables u completely determines the 
transient stability of the system. We therefore can define a 
region in the space of control variables u in which the system 
is transiently stable and called it the dynamic security region 
of the power system (with respect to a given fault). 
Mathematically, the dynamic security region (DSR) can be 
described as follows: 
 ))}(()(:{ uzVuu sd ∈=Ω φ  (7) 

In the power system transient stability analysis, the 
concept of Controlling Unstable Equilibrium Point (CUEP) 
has been well recognized [1-6]. The CUEP of a certain fault is 
the unstable equilibrium point whose stable manifold is 
crossed by the continuous faulted trajectory of the fault [6]. 
Furthermore, the stable manifold of a controlling unstable 
equilibrium point ez  can be described as follows [15]: 
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where µ  is the unstable eigen-value at the unstable 

equilibrium point ez . 
With the concept of the CUEP, the local boundary of 

dynamic security region that is of interest to the study of 
transient stability can therefore be written locally as[14]: 

 | { :     ( ( ), ) 0}d local u h u uφ∂Ω = =  (9) 

III.  LINEAR APPROXIMATIONS FOR THE LCOAL BOUNDARY OF 
DYNAMIC SECURITY REGION 

A.  Approximation for Stability Region 
The quadratic approximation of the unstable manifold 

),( uzh  at ez  in (8) can be expressed as: 
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where the coefficient η  and Q of the quadratic expression can 
be determined as follows: 

The coefficient vector nRη ∈ of the linear term is the left 
eigenvector associated with the eigenvalue µ  of the Jacobian 

matrix )(uJ  of f at the equilibrium point ez , i.e.: 

 1)()(),()()()( == uuuuuuJ TT ηηηµη  (11) 
The coefficient matrix Q  of the quadratic term is the 

solution of the Lyapunov equation: 
 )()()()()( uHuCuQuQuC T =+  (12) 

where TuJIuuC )(2/)()( −= µ ; I  is the nn ×  identical 

matrix, and ])()([)(
1

∑
=
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i
ii uHuuH η ; )(uHi  is the 

Hessian matrix of if . 

B.  Linear Approximations for Local Boundary of DSR 
Let us assuming that we have obtained a critical point   

lying on the boundary of the dynamic security region, i.e. 
0)),(( 00 ≈uuh φ . Then, we are interested in finding the 

local boundary of the dynamic security region or its 
approximations, with the information at the critical point u0. 
As the operating condition u changes from u0 to 0u u u= + ∆ , 

( )uφ , )(uze  and ),( uzh  all change, hence the equation of 

the local boundary of DSR ( ( ), ) 0h u uφ =  as well. Let us 

assume we have calculated the all the relevant quantities at 0u , 

i.e., )( 0uze , )( 0uφ , )( 0uJ , )( 0uµ , )( 0uη , )( 0uQ , 

)( 0uη  and the corresponding sensitivities. Then we can use 
the sensitivities to approximate the relevant quantities as 
follows: 
 0 0( ) ( ) ( )e ez u z u Z u u≈ + ⋅∆  (13) 

 0 0( ) ( ) ( )u u E u uη η≈ + ⋅∆  (14) 
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sensitivities. 
Substituting the approximate expressions (13)-(16) into 

the equation in (10), we obtain a linear approximation to the 
section of the boundary of the dynamic security region (9) 
based on the quadratic approximation for the stability region 
(Q-linear approximation) as follows: 
 0)()),(( 010 =−+= uuCCuuhQL φ  (17) 

The coefficients of the above quadratic approximations 
are, 0 0 0( ( ), ( ))Q eC h u z uφ=  
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where )()()( 000 uzuud e−= φ  is the difference between 

the system state at the time of fault clearing 0( )uφ and the 

CUEP )( 0uze , and 0 0 0( ) ( ) ( )D u u Z u= Φ −  is its 
sensitivity with respect to u. 

If we start directly from a linear approximation to the 
stability boundary: 
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 ( , ) [ ( )] ( ( ))T
L eh z u u z z uη= −  (18) 

and substituting (13)-(16) into the equation in (18), we get a 
linear approximation to the section of the boundary of the 
dynamic security region (9) based on the linear approximation 
for the stability region (L-linear approximation) as follows: 
 0)()),(( 010 =−+= uuLLuuhLL φ  (19) 

where 1 0 0 0 0( ) ( ) ( ) ( )T TL u D u d u E uη= +  and 

0 0 0( ( ), )LL h u uφ= . 
If we assume the normal vector of the boundary of the 

stability region being constant under different control variable 
u , i.e. if we start directly from a linear approximation to the 
stability boundary: 
 ))(()]([),( 0* uzzuuzh e

T
L

−= η  (20) 

and substituting (13)-(16) into (20), we get a linear 
approximation to the section of the boundary of the dynamic 
security region (L0-linear approximation) as follows: 
 0)()),(( 01000 =−+= uuLLuuhL φ  (21) 

where )()( 0010 uDuL Tη= . 
Remark 3.1: The computation of the sensitivity in (13)-(16) 
can be found in ref. [14]. 

IV.  ALGORITHM AND DISCUSSION 

A.  Algorithms for Linear Approximations 
To obtain linear approximations in section 3.2, we should 

first obtain one critical point just lying on the boundary of 
dynamic security region, i.e., the value u0 satisfying the 
equation 0)),(( 00 =uuh φ . To do this, we first fix a direct in 
the control variable space, and then search the critical point 
along this direction with the numerical simulation, i.e. the 
point u0 at which the critical clearing time of the system is 
equal to the fixed clearing time. With the above statement, we 
can have the general algorithm for the linear approximations 
of the local boundary of dynamic security region as follows: 

Step 1:Determine the given fault, the clearing time tF and 
the control variable u; 

Step 2: Select one practical direction in the control 
variable space, and then search for the critical control variable 
u0 under which the critical clearing time is tF; 

Step 3: Calculating the state at clearing time )( 0uφ and 

the trajectory sensitivity )( 0uΦ ; 

Step 4: Calculate the CUEP of the system )( 0uze  and the 

corresponding sensitivity )( 0uZ ; 

Step 5: Calculate the linear coefficient )( 0uη  and the 

corresponding sensitivity )( 0uE ; 

Step 6: Calculate the coefficient matrix )( 0uQ  and the 

corresponding sensitivity )( 0uQi ; 
Step 7: Obtain the linear approximation (17), (19) and 

(21) of DSR; 
Step 8: Convert the linear approximations to the uniform 

equation 1=uaT  ( T
maaa ),,( 1 L= ), as the PDSR[16-18]. 

B.  Comparison of the Linear Approximations 
In the computation viewpoint, as the three linear 

approximations all pass through the same critical point, thus 
the computation cost for searching the critical point is same. 
Furthermore, it is clear that the L0-linear approximation only 
needs the trajectory sensitivity (sensitivity of the state at the 
clearing time), and the L-linear approximation need the 
trajectory sensitivity and sensitivities of eigenvector, while the 
Q-linear approximation needs coefficients matrix of quadratic 
term and the corresponding sensitivities obtained by the 
Lyapunov equation, besides the trajectory sensitivity and 
sensitivities of eigenvector. Thus, the L0 linear approximation 
costs least computational burden among the three 
approximations, thus the L0-linear and L-linear approximation 
are more efficient than the Q-linear approximation as absence 
of solving Lyapunov equation. 

To compare the accuracy of the approximations, we take 
the linear approximation, 1=ubT , ( T

mbbb ),,( 1 L= ), 
which obtained by the least square curve-fitting approach with 
the point searched around the critical point, as the benchmark. 
In comparison, we use the following two indexes to identify 
the difference between the proposed linear approximations 
and the benchmark linear approximation. 

Index 1: Angle difference. We compare the accuracy of 
approximation using the angle difference between the normal 
vector of the proposed linear approximations and benchmark, 
i.e., ( )( )baba ⋅⋅= −1cosθ . 

Index 2: Coefficient difference. We compare the 
accuracy of approximation using the norm of the coefficient 
distance between the normal vector of the proposed linear 
approximations and the benchmark, i.e., 

2
baCDba −= . 

Furthermore, for the DSR in the low dimension, we use 
the figure to directly compare the accuracy of linear 
approximation with the actual boundary of DSR searched by 
numerical simulation approach. 

V.  SIMULATION RESULTS 

A.  The 3-Generator 9-Bus System 
The 3-generator 9-bus IEEE test system [17, p.38] is used 

to compare the proposed methods. Classical models of 
generators with uniform damping d0=0.1661 and network 
reduction procedure are used to derive the differential 
equation (1) of the model. We assume that the generator 
powers are the control variables. Therefore, the dimension of 
u is equal to three. 

A three-phase fault occurs at bus 7 on the line between 
nodes 7 and 5. The fault is cleared at 0.10 second after the 
fault occurrence. If we choose one critical point on the 
boundary of the dynamic security region, e.g. a critical point 
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obtained by only increasing the mechanical power of 
generator at bus 3, then we can obtain the coefficients of the 
least square linear approximation(LS), L0-linear 
approximation(L0), L-linear approximation(LL), Q-linear 
approximation(QL) in the uniform equation and the 
comparison results in Table I. 

TABLE I 
RESULTS OF DSR APPROXIMATIONS AND COMPARISON FOR FAULT 7-5 

 
Simulations in Table I display that the angle differences 

between the normal vector of the least square linear 
approximation (LS) and the normal vectors of L0-linear 
approximation (L0), L-linear approximation(LL), Q-linear 
approximation(QL) are very small and the coefficient 
difference are also very small. This indicates that the proposed 
three linear approximations all give out fairly good results for 
the DSR. Furthermore, from the viewpoint of computation, 
the Q-linear approximation requires the computation cost on 
solving the Lyapunov equation, while the L-linear and L0 
linear approximation does not. Thus, the L0 and L-linear 
approximation are two more practical choices to approximate 
the DSR. 

Furthermore, we give out the projected map of the dynamic 
security region for the fault 7-5 in Fig 1.  

 
Fig. 1 DSR Linear Approximation of a 3M9B system to Fault 7-5 

 
The actual boundary in Fig.1 is obtained by searching 

method. Fig. 1 shows that the L-linear approximation gives 
out the best estimation of the dynamic security for this line 
fault 7-5. This consists with the results of angle difference, 
coefficient difference in Table I. This also suggests that 
though the L0 approximation requires the least computation 
cost, but it could not replace the L-linear approximation in the 
accuracy. 

B.  10 Generator 39-Bus New England System 
The simulation results presented in this subsection are 

based on a 10-generator 39-bus New England system [1]. The 

system is modeled by the network-reduction model with 
classical generators having the uniform damping d0=0.2. 

A three-phase fault occurs at bus 17 on the line between 
nodes 17 and 16. The fault is cleared at 0.10 second after the 
fault occurrence. The critical point is obtained only increased 
the mechanical power of generator at bus #36, then we can 
obtain the coefficients of the least square linear 
approximation(LS), L0-linear approximation(L0), L-linear 
approximation(LL), Q-linear approximation(QL) in uniform 
equation in the Table II and the comparison results in the 
Table III. 

TABLE II 
COEFFICIENT OF DSR APPROXIMATIONS FOR LINE FAULT 17-16 

 
 

TABLE III 
COMPARISON RESULTS FOR FAULT 17-16 

 
Simulations results in Table II and Table III show that the 

angle differences and the coefficient difference between the 
least square linear approximation (LS) and L0-linear 
approximation (L0), L-linear approximation(LL), Q-linear 
approximation(QL) are very small. This indicates the 
proposed three linear approximations all give out fairly good 
results for the DSR. 

Furthermore, if only some machines’ the mechanical power 
can be changed, e.g., assuming only three machines, the 
machine at bus ＃34, bus ＃35 and bus ＃36 are controllable. 
Then we can obtain the coefficient of the linear 
approximations in the uniform equation and the comparison 
results in Table IV. 

TABLE IV 
RESULT OF DSR APPROXIMATIONS FOR FAULT 17-16 IN LOW DIMENSION 
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In the case of machines at bus ＃34, bus ＃35 and bus ＃
36 are controllable, we can obtain the projected DSR with the 
mechanical power of machine at bus #34 being 5.08 p.u., 
shown in Fig. 2. The actual boundary in Fig.2 is obtained by 
searching method. Fig. 2 shows that the proposed three linear 
approximations all give out fairly good results for the DSR. 

 
Fig. 2 DSR Approximation of a 10M39B system for Fault 17-16 

VI.  CONCLUSIONS 
This paper compares the three linear approximations, Q-

linear approximation the L-linear approximation and the L0-
linear approximation for the dynamic security region of power 
system with network reduction model. The linear 
approximations used in the comparison are obtained with a 
critical point searched with numerical simulation. The 
simulations in IEEE 3-machine 9-bus system and 10-machine 
39-bus New England system show that all the three 
approximations display fairly accurate estimation. 
Furthermore, from the computational viewpoint, the L-linear 
and the L0-linear method are two alternative choices to 
approximate the dynamic security region. 
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