
Routing Algorithm for Provisioning Symmetric Virtual Private
Networks in the Hose Model

Tat Wing Chim, King-Shan Lui, Kwan L. Yeung and Chi Ping Wong
Department of Electrical and Electronic Engineering

The University of Hong Kong
Pokfulam Road, Hong Kong

E-mail: {twchim, kslui, kyeung, h0148944}@eee.hku.hk

Abstract— A virtual private network (VPN) is a private data network
where remote sites are connected over a shared provider network.
In order to provide secure communications between customer sites,
predetermined paths are used to forward data packets. To support
quality of service (QoS), bandwidth has to be reserved on these paths.
Then, finding appropriate paths in order to optimize the bandwidth
used becomes an important problem. In this paper, we study the routing
problem of VPNs under the hose model, where VPN endpoints specify
the maximum bandwidth they need in sending and receiving data. Some
previous works considered the problem under the assumption that all
links have infinite capacities. We remove this constraint in our studies and
develop enhancement to existing algorithms. Our simulation results show
that our algorithm works very well in networks where link capacities are
tight.

I. INTRODUCTION

A. Overview of Virtual Private Network

A virtual private network (VPN) is a private data network that
makes use of the public Internet [1] to maintain privacy through the
use of IP tunneling technology [2] and network security protocols.
VPNs can be regarded as a replacement of the expensive private
leased lines. The main purpose of a VPN is to provide a company
secure communication among multiple sites through the shared
Internet. More detailed descriptions of VPNs can be found in [3]
and [4].

To support a VPN, a service provider has to allocate predetermined
paths to connect among customer sites. As customers may want to
have bandwidth guaranteed, enough bandwidth has to be reserved
on these paths. Therefore, finding appropriate paths and appropriate
bandwidth reservation while minimizing the total bandwidth used
becomes an important problem to service providers.

Two popular models for specifying customer bandwidth require-
ments have been proposed. They are known as the pipe model
and the hose model. In the pipe model, customers are required to
specify the bandwidth they need among each pair of VPN endpoints.
In other words, a customer has to know the traffic between each
pair of sites in advance and inform the service provider. This
model is not very flexible since a customer may not be able to
predict the communication patterns between VPN endpoints. Another
disadvantage of this model is that the resources reserved for a pair
of VPN endpoints cannot be allocated to other traffic flows. Thus,
the utilization of Internet resources becomes very inefficient.

The hose model was proposed by Duffield et al. to solve the
problems of the pipe model [5]. In the hose model, VPN customers
just need to specify the incoming and outgoing traffic volume of
each VPN endpoint (known as ingress bandwidth and egress band-
width) instead of between every pair of VPN endpoints. The ingress
bandwidth of an endpoint is the capacity required for aggregating
the incoming traffic to the endpoint from other endpoints. The egress
bandwidth is the capacity required for aggregating the outgoing traffic

from the endpoint into the network. In other words, ingress bandwidth
specifies the maximum amount of traffic an endpoint would receive
per time unit while egress bandwidth specifies the maximum amount
of traffic an endpoint would send out per time unit. Detailed examples
showing the differences between the pipe model and the hose model
can be found in [6].

The way to connect VPN endpoints is actually a routing problem.
This routing problem is very important since one common goal of
VPN operators is to minimize the total amount of bandwidth reserved
for the network. Different structures have been proposed to connect
VPN endpoints and they result in different amounts of bandwidth
needed. [6] [7] [8] study using a tree to connect VPN endpoints. Other
possible structures are general subgraph [7] and multi-path routing
[9]. In multi-path routing, traffic between a pair of VPN endpoints is
splitted among several paths. Among these three structures, tree is the
most scalable since it is simple and require fewer labels in setting up
the paths when using technology like MPLS. In terms of bandwidth,
tree allows more sharing than a general subgraph. Although multi-
path routing does require less bandwidth to support a VPN than a
tree, it takes a lot of overhead in managing the splitting and the
splitting itself is not an easy problem. Therefore, in this paper, we
focus on using the tree structure to connect VPN endpoints.

B. Our Contributions

The problem of finding a tree to connect VPN endpoints in the
hose-model has been studied by Kumar et al. in [6]. They developed
algorithms trying to optimize the bandwidth needed on the tree under
the assumption that all links have infinite capacities. To facilitate
our discussion, we name their algorithm as the KRSY algorithm. In
this paper, we enhance the KRSY algorithm to consider the case
where links are of finite capacities. This capacitated version has
been shown to be NP-hard [6] and to the best of our knowledge,
there is no existing work solving this problem. We first make a
trivial enhancement to include bandwidth constraints during the
tree construction process. Then, we develop a tree resconstruction
algorithm which aims at increasing the chance of finding a valid
solution without violating the bandwidth restrictions. We study the
performance of our algorithms using simulations and the results show
that our algorithms are successful in enhancing the KRSY algorithm
to work in bandwidth-constrained networks.

C. Organization of this Paper

This paper is organized as follows: a literature review is given in
Section II. We describe the system model and the problem statement
in Section III. We explain the KRSY algorithm in Section IV. Then
we explain our algorithms in detail in Section V. Next we present our
simulation results that evaluate the performance of our algorithms in
Section VI. We conclude this paper in Section VII.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 802 0-7803-9415-1/05/$20.00 © 2005 IEEE

II. RELATED WORKS

The use of hose model for VPNs was firstly suggested by Duffield
et al. in [5]. Jüttner et al. compared the bandwidth efficiency of the
hose model and the pipe model in [10] assuming a range of network
sizes and topologies with a linear programming based formulation.
They concluded that hose model performs better in reducing blocking
probability, decreasing traffic loss, and ease of implementation.

Based on the hose model, Gupta et al. studied the VPN provi-
sioning problem under different scenarios: symmetric vs. assymetric
ingress and egress bandwidths, as well as using a tree vs. using a
graph to connect VPN endpoints [7]. They showed that the problem
is NP-hard for assymetric ingress and egress bandwidths when a
tree is used. On the other hand, the problem of finding an optimal
tree becomes polynomial time solvable when each VPN endpoint
has symmetric ingress and egress bandwidths while links are of
infinite capacities. Kumar et al. [6] considered using a tree to connect
VPN endpoints and provided a solution to solve the symmetric
ingress and egress VPN provisioning problem. They also gave a 10-
approximate algorithm for the NP-hard problem, where ingress and
egress are different [6]. Link capacities were assumed to be infinity
in this work. Gupta et al. then revisited this NP-hard problem in
[8] and presented a 5.55-approximation algorithm to solve it. In a
recent work [9], Erlebach et al. extended [6] further and presented
an optimal polynomial-time algorithm for computing a bandwidth
reservation scheme of minimum cost using multi-path routing under
the assumption that link capacities are finite.

Italiano et al. studied the problem of fast recovery in a hose and
single link failure model in [11]. They aimed at designing an optimal
restoration algorithm to minimize the total bandwidth reserved on the
backup edges.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We adopt some of the notations developed in [6]. A network is
modelled as a graph G = (V, E), where V is the set of nodes and E
is the set of bidirectional links among the nodes in V . (i, j) and (j, i)
are considered as two distinct links. Each link (i, j) is associated with
capacity Lij . It is possible that Lij �= Lji.

In the hose model, each VPN specification consists of a set of VPN
endpoints P ⊆ V and the ingress and egress bandwidths of each of
the VPN endpoints. Ingress bandwidth is the maximum amount of
traffic a VPN endpoint would receive, while egress bandwidth is the
maximum amount of traffic the VPN endpoint would send. For a node
i ∈ P , the hose ingress and egress bandwidths are both Bi, since we
consider the case of symmetric ingress and egress bandwidths only.

Fig. 1. An Example showing the Use of Some Notations

We use a tree to connect VPN endpoints. Formally, a tree T =
(VT , ET) is a subgraph of G where P ⊆ VT ⊆ V and ET ⊆ E.
Enough bandwidth has to be reserved on the links of the tree to
support the VPN. To facilitate our discussion, we define T

(i,j)
i and

T
(i,j)
j , meaning the connected components of T containing nodes i

Notation Meaning

G = (V, E) Graph with nodes V and edges E
Lij Capacity of link (i, j) (in the direction from node

i to j)
P Set of VPN endpoints
Bi Ingress or egress bandwidth for node i
T = (VT , ET) Generic notation for VPN tree
Tv VPN tree rooted at node v

T
(i,j)
i Component of tree T containing i when link (i, j)

is removed from T

P
(i,j)
i VPN endpoints contained in T

(i,j)
i

CT (i, j) Bandwidth reserved on link (i, j) of tree T
CT Sum of bandwidths reserved on all links of tree T
HT (i, j) Utilization on link (i, j) of tree T
HT Utilization on the most utilized link of tree T

TABLE I
NOTATIONS USED IN THIS PAPER

and j respectively after removing (i, j) from T . Refer to the tree
in Figure 1 in which dark nodes represent VPN endpoints and light
nodes represent other network nodes, T

(2,5)
2 stands for the connected

component consists of nodes 1 to 4 while T
(2,5)
5 stands for the

connected component that is made up of nodes 5 to 8. We denote
the set of VPN endpoints on T

(i,j)
i and T

(i,j)
j as P

(i,j)
i and P

(i,j)
j ,

respectively. For example, in the tree in Figure 1, P
(2,5)
2 = {1, 3, 4}

and P
(2,5)
5 = {7, 8}.

We now explain how much bandwidth is needed to be reserved
on link (i, j) on T . Link (i, j) has to support the traffic going from
T

(i,j)
i to T

(i,j)
j . In other words, it should support the traffic from

VPN endpoint a to VPN endpoint b for each a ∈ P
(i,j)
i and for each

b ∈ P
(i,j)
j . The maximum amount of traffic going out from T

(i,j)
i

is
∑

a∈P
(i,j)
i

Ba. The maximum amount of traffic going to T
(i,j)
j is

∑
b∈P

(i,j)
j

Bb. Therefore, the maximum amount of traffic that would

go through link (i, j) is min{∑
a∈P

(i,j)
i

Ba,
∑

b∈P
(i,j)
j

Bb} and this

is the bandwidth needed to be reserved on (i, j). We denote this value
as CT (i, j). As the ingress and egress bandwidths are symmetric,
CT (i, j) = CT (j, i). Refer to the tree in Figure 1 in which the
number next to each VPN endpoint represents its ingress or egress
bandwidth (i.e. B1 = 3, B3 = 5, B4 = 4, B7 = 3, B8 = 6), to
find CT (5, 6) = CT (6, 5), we first remove the edge (5, 6) from
the tree and then compare the following two values: sum of ingress
or egress bandwidths of VPN endpoints on the left of node 5 (i.e.
3 + 5 + 4 = 12) and sum of ingress or egress bandwidths of VPN
endpoints on the right of node 6 (i.e. 3 + 6 = 9) and pick up the
smaller of the two (i.e. 9). The total bandwidth needed for T , namely
CT , is

∑
(i,j)∈ET

CT (i, j). We define the utilization of link (i, j),

HT (i, j), to be CT (i,j)
Lij

. Refer to the tree in Figure 1 where all edges
are of capacity 10, HT (5, 6) = 9/10 = 0.9. We further define HT

to be the utilization of the most utilized link on the tree, that is, HT

=max{HT (i, j)|(i, j) ∈ ET }.
Table I summarizes the notations used in this paper.

B. Problem Statement

We now formally define the VPN routing problem. Given a graph
G, a set of VPN endpoints P , and Bi for each i ∈ P . compute a VPN
tree T that connects all nodes in P with the following properties:

• HT (i, j) ≤ 1 ∀(i, j) ∈ E.
• CT is minimum among all possible trees.
The first property simply says that the capacity constraint should

not be violated. This property makes the problem NP-hard [6]. The

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 803 0-7803-9415-1/05/$20.00 © 2005 IEEE

second property means that we would like to find an optimal tree that
requires the least amount of bandwidth among all possible trees.

IV. KRSY ALGORITHM

In the KRSY Algorithm (for symmetric ingress and egress band-
widths case), all links in a given network topology are assumed to
have infinite capacities. For each node v in the network, a breadth-
first search [12] is carried out. Starting from node v, the search
systematically explores edges in E to ”discover” every reachable
VPN endpoint. The edges explored collectively form a tree and node
v is known to be the root of that tree. Let us denote the tree as Tv .
Leaves that do not correspond to VPN endpoints are then pruned
from Tv . The method described in Section III-A is then used to
find the bandwidth required on each link as well as for the whole
tree. Among all breadth-first search trees considered, the one that
requires the minimum amount of bandwidth is selected by the KRSY
Algorithm.

Figure 2 shows a simple network topology for illustrating how
the KRSY Algorithm works. In the figure, dark nodes represent
VPN endpoints while light nodes represent other network nodes. The
number next to each node represents its ingress or egress capacity
which are assumed to be equal in this paper. The number next to
each link represent its capacity. Among the breadth-first trees rooted
at different nodes, the one rooted at node 9 has the minimum tree cost
82 and so is selected. Figure 3 shows that optimal tree computed using
the KRSY Algorithm with the bandwidth needed on each edge. It can
be observed that the tree is in fact not feasible under the bandwidth
constraints specified in Figure 2. 15 units of bandwidth is needed
on edge (9, 1) while the edge only has a capacity of 12 units. This
happens because the KRSY algorithm does not consider bandwidth
constraints during the execution and results in an infeasible tree.

Fig. 2. A simple network showing how the KRSY Algorithm works

V. ENHANCED ALGORITHMS

In this section, we present two enhancements to the KRSY
algorithm to find a feasible tree to connect VPN endpoints under
bandwidth constraints. The first enhancement is a trivial one that
makes sure KRSY selects a feasible tree by introducing a capacity
check in the original KRSY algorithm. This enhancement is not
sufficient since there are cases that a feasible tree cannot be found
even such one exists. Therefore, we develop another enhancement
which explores more trees and try to find a feasible one.

A. KRSY with Bandwidth constraints (KB Algorithm)

The first enhancement, KB, enhances the KRSY Algorithm to
consider link capacities during the tree construction process. The tree

Fig. 3. Optimal tree constructed by the KRSY Algorithm

exploration process is the same, that is, for each node in the network,
a breadth-first search tree rooted at that node is found. For each tree,
apart from finding the bandwidth needed, we also check whether the
tree is feasible, meaning whether the bandwidth required on any edge
is over the capacity of that edge. Infeasible tree is not selected and
KB returns the minimum cost feasible tree if there exists one or more
feasible trees among the trees explored. Figure 4 shows the procedure
KB-ALGORITHM, which is based on the KRSY algorithm. Lines 11
to 13 are introduced by us for testing bandwidth constraints. It is
not difficult to see that KB has the same running time complexity as
KRSY.

KB-ALGORITHM(G, P)
1 Topt ← 0
2 for each v ∈ G
3 do Tv ← v
4 openQ← {v}
5 while openQ �= Ø
6 do dequeue first node u from openQ
7 for each (u, w) ∈ G such that w �∈ Tv

8 do add edge (u, w) to Tv

9 append node w to end of openQ
10 prune leaves of Tv that do not correspond to P
11 compute HTv

12 if HTv ≤ 1 and CTv < CTopt

13 then Topt ← Tv

14 return Topt

Fig. 4. KB Algorithm for computing optimal tree with bandwidth constraints

Refer to the example in Figure 2, the KB Algorithm does not return
any feasible tree since all the breadth-first search trees considered are
not feasible. To find a feasible tree, we need to explore more trees
and this leads to our second enhancement.

B. KRSY with Bandwidth constraints and tree Reconstruction (KBR)

We further enhance our KB Algorithm to include a tree recon-
struction procedure so as to increase the chance of finding a feasible
tree. We denote this further enhanced version as the KBR algorithm
(KRSY with Bandwidth constraints and tree Reconstruction). We still
find a breadth-first search tree rooted at each node in the network. In
KB, if a tree is infeasible, we will not consider this tree anymore. In
KBR, we try to construct a new feasible tree based on this infeasible
one. A tree is infeasible because one or more edges cannot provide
enough bandwidth. These edges are called infeasible edges. The idea
of KBR is to use a feasible path to replace each infeasible edge. For

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 804 0-7803-9415-1/05/$20.00 © 2005 IEEE

an infeasible edge (i, j) on infeasible tree T , a path from a to b can
replace (i, j) if it has the following properties:

1) a ∈ T
(i,j)
i and b ∈ T

(i,j)
j

1

2) the path does not pass through any node on the tree T , except
a and b

3) capacity on the path is larger than CT (i, j)

The first and the second properties ensure the structure after replacing
edge (i, j) by the path from a to b is still a tree. As illustrated in
Figure 5, a tree can be formed by T

(i,j)
i , T

(i,j)
j , and the path from a

to b. The third property makes sure the path has enough bandwidth
to support the VPN. After replacing each infeasible edge by a feasble
path, a new tree is formed and this new tree becomes feasible.

Fig. 5. Replacing an infeasible edge by a feasible path

It is possible to have more than one feasible path to replace an
infeasible edge. In order to reduce the bandwidth needed, we select
the shortest path among all possible choices. Given an infeasible tree
T = (VT , ET), the detailed process in finding a feasible path in
G = (V, E) to replace an infeasible edge (i, j) is as follows:

1) PathSelected = nil
2) prune the following edges and nodes from G to form G′

• all nodes in VT and their edges from G
• all edges in E of capacity smaller than CT (i, j)

3) for each a ∈ T
(i,j)
i and for each b ∈ T

(i,j)
j

a) put the following edges in G′ to form G′′

• (a, k) ∈ E if Lak ≥ CT (i, j) and k �= j
• (k, b) ∈ E if Lkb ≥ CT (i, j) and k �= i

b) find a shortest path, sp, from a to b in G′′

c) if sp is shorter than PathSelected, PathSelected = sp

There are at most O(|VT |2) pairs between T
(i,j)
i and T

(i,j)
j . We

need to execute the Dijkstra’s algorithm for each pair and so the
total complexity of this process is O(|VT |2(|V |log|V | + |E|)) =
O(|V |3log|V |+ |V |2|E|)).

Figure 6 shows the procedure KBR-ALGORITHM in detail. State-
ments from lines 11 to 21 are introduced by us while all others are
directly adopted from the KRSY Algorithm.

Refer to the same network topology as shown in Figure 2, Figure 7
shows the feasible tree computed using the KBR Algorithm with both
bandwidth constraints and tree reconstruction. When the algorithm
goes through the tree T9 rooted at node 9 containing tree edges (0, 9),
(1, 6), (1, 9), (2, 9), (6, 1), (7, 9), (9, 0), (9, 1), (9, 2) and (9, 7), it
finds that HT9 > 1. Instead of dropping that tree immediately, it
performs a tree reconstruction. In particular, it finds HT9(1, 9) > 1
and HT9(9, 1) > 1. For the overloaded edge (1, 9), the algorithm first
decomposes the tree T9 into two tree components T

(1,9)
91 and T

(1,9)
99 .

The former contains nodes 0, 2, 7 and 9 while the latter contains
nodes 1 and 6. Then the algorithm computes a feasible shortest path
sp = {1−6−5−8−0}, which is disjoint with both T

(1,9)
91 and T

(1,9)
99 ,

1Please refer to Table I for the definitions of notations

KBR-ALGORITHM(G, P)
1 Topt ← 0
2 for each v ∈ G
3 do Tv ← v
4 openQ← {v}
5 while openQ �= Ø
6 do dequeue first node u from openQ
7 for each (u, w) ∈ G such that w �∈ Tv

8 do add edge (u, w) to Tv

9 append node w to end of openQ
10 prune leaves of Tv that do not correspond to P
11 compute HTv

12 if HTv > 1
13 then for each (i, j) ∈ Tv such that HT (i, j) > 1
14 do compute the shortest path sp
15 connecting T

(i,j)
i and T

(i,j)
j

16 if sp is found
17 then remove (i, j) from Tv

18 add all edges in sp to Tv

19 compute HTv

20 if HTv ≤ 1 and CTv < CTopt

21 then Topt ← Tv

22 return Topt

Fig. 6. KBR Algorithm for computing a tree with bandwidth constraints and
tree reconstruction

to connect these two tree components. Next it removes the edge (1, 9)
from T9 and includes the edges (1, 6), (6, 5), (5, 8) and (8, 0) in
sp into T9 instead. Similarly, for the overloaded edge (9, 1), the
algorithm replaces the edge (9, 1) by the edges (0, 8), (8, 5), (5, 6)
and (6, 1) in T9. The cummulated bandwidth reserved is 134.

Fig. 7. Optimal tree constructed by the KBR Algorithm

VI. SIMULATION RESULTS

A. Simulation Models

To measure how effective our KBR Algorithm is, we conduct
simulations. We generate two different sizes of topology for testing.
For each size, we generate 1000 random topologies based on the
BRITE topology generator [13]. For each topology, |P | VPN end-
points are randomly picked up. The capacity of each link as well as
the ingress and egress capacity of each VPN endpoint are uniformly
generated with upper bounds MaxL and MaxB respectively. Table
II summaries the parameters used in the simulation setup.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 805 0-7803-9415-1/05/$20.00 © 2005 IEEE

|V | 30 50

|P | 10 17
MaxL 20 35
MaxB 10 10

TABLE II
PARAMETERS USED IN SIMULATION SETUP

B. Simulation Results

Table III and Table IV show the performance of different algo-
rithms for 30-node cases and 50-node cases, respectively. In the
tables, the second column indicates the number of VPNs that the
algorithm can find a feasible tree out of 1000 different VPN requests.
The third column and the last column indicate the average bandwidth
reserved and the average of average link utilization among all feasible
trees, respectively.

From both tables, we can see that the KRSY algorithm is able
to find feasible trees for only less than 40% (37.1% for 30-node
topologies and 28.1% for 50-node topologies) of the testing cases.
This is due to the fact that KRSY Algorithm does not have bandwidth
constraints in mind during the tree-computation process. With band-
width constraints taken into consideration, KB Algorithm can return
valid solutions in more than 60% (68.5% for 30-node topologies
and 65.6% for 50-node topologies) of the testing cases. Further with
tree reconstruction, KBR Algorithm can return valid solutions in
more than 70% (72% for 30-node topologies and 71.9% for 50-
node topologies) of the testing cases. That means, the probability
that our KBR Algorithm with both bandwidth constraints and tree
reconstruction can return a valid solution is 120.7% higher than that
of KRSY Algorithm. In that sense, our algorithm is far more efficient
than KRSY Algorithm.

It is also worth noting that even though our algorithms enhance the
success ratios in finding feasible trees, our algorithms do not require a
lot of bandwidth to do that. The bandwidth needed is higher by 13.6%
for 30-node topologies and 11.7% for 50-node topologies, which is
not very serious compared with the increase in success ratios.

Algorithms #Valid So-
lutions

Bandwidth
Reserved

Avg. Link
Util.

KRSY Algorithm 371 173.65 0.406
KB Algorithm 685 193.95 0.433
KBR Algorithm 720 197.28 0.438

TABLE III
SIMULATION RESULTS FOR 30-NODE CASES

Algorithms #Valid So-
lutions

Bandwidth
Reserved

Avg. Link
Util.

KRSY Algorithm 281 353.50 0.336
KB Algorithm 656 385.79 0.349
KBR Algorithm 719 394.84 0.355

TABLE IV
SIMULATION RESULTS FOR 50-NODE CASES

VII. CONCLUSION

In this paper, we study the routing problem for provisioning
VPNs under the hose model. The KRSY algorithm has recently been
developed to solve the problem for networks of infinite capacities.
The problem becomes NP-hard when edges in the network have

limit in capacity. We enhance the KRSY algorithm and develop
heuristics for this NP-hard problem. Simulation results show that our
algorithms perform a lot better than the original KRSY algorithm in
capacitated networks. Our algorithms work in symmetric VPNs only.
In the future, we would like to study the problem in the context of
assymetric VPNs.

REFERENCES

[1] H. Liang, O. Kabranov, D. Makrakis, and L. Orozco-Barbosa, “Minimal
Cost Design of Virtual Private Networks,” in IEEE Proceedings of the
CCECE ’02, 2002, pp. 1610 – 1615.

[2] W. Simpson, “IP in IP Tunneling,” RFC 1853, Oct. 1995.
[3] R. Venkateswaran, “Virtual Private Networks,” IEEE Potentials, pp. 11

– 15, Feb. 2001.
[4] B. Fox and B. Gleeson, “Virtual Private Networks Identifier,” RFC 2685,

Sept. 1999.
[5] N. G. Duffield P. Goyal A. Greenberg P. Mishra K. K. Ramakrishnan

and J. E. van der Merwe, “Resource Management With Hoses: Point-to-
Cloud Services for Virtual Private Networks,” IEEE/ACM Transactions
on Networking, pp. 679 – 692, Oct. 2002.

[6] A. Kumar, R. Rastogi, A. Silberschatz, and Bulent Yener, “Algo-
rithms for Provisioning Virtual Private Networks in the Hose Model,”
IEEE/ACM Transactions on Networking, pp. 565 – 578, Aug. 2002.

[7] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener, “Pro-
visioning a Virtual Private Network: A Network Design Problem for
Multicommodity Flow,” in ACM Proceedings of the STOC ’01, 2001,
pp. 389 – 398.

[8] A. Gupta, A. Kumar, and T. Roughgarden, “Simpler and Better
Approximation Algorithms for Network Design,” in ACM Proceedings
of the STOC ’03, 2003, pp. 365 – 372.

[9] T. Erlebach and M. Rüegg, “Optimal Bandwidth Reservation in Hose-
Model VPNs with Multi-Path Routing,” in IEEE Proceedings of the
INFOCOM ’04, 2004, pp. 2275 – 2282.

[10] A. Jüttner, I. Szabó, and Á. Szentesi, “On Bandwidth Efficiency of
the Hose Resource Management Model in Virtual Private Networks,” in
IEEE Proceedings of the INFOCOM ’03, 2003, pp. 386 – 395.

[11] R. Rastogi G. F. Italiano and B. Yener, “Restoration Algorithms for
Virtual Private Networks in the Hose Model,” in IEEE Proceedings of
the INFOCOM ’02, 2002, pp. 131 – 139.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, “Introduction to
Algorithms,” book, 1990.

[13] “http://www.cs.bu.edu/brite/,” .

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 806 0-7803-9415-1/05/$20.00 © 2005 IEEE

